Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 72.1
edited by Mora Zhou
on 2024/07/17 14:06
Change comment: There is no comment for this version
To version 78.1
edited by Mora Zhou
on 2025/04/29 13:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -168,9 +168,11 @@
168 168  )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
169 169  Effective immediately
170 170  )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
171 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
172 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
173 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
171 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
172 +
173 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
174 +
175 +2: Online automatic parameter self-adjusting mode (Not implemented yet)
174 174  )))|(% style="text-align:center; vertical-align:middle" %)-
175 175  
176 176  Table 7-4 Details of self-adjusting mode selection parameters
... ... @@ -217,7 +217,7 @@
217 217  Operation setting
218 218  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
219 219  Effective immediately
220 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
222 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
221 221  |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
222 222  Operation setting
223 223  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
... ... @@ -248,7 +248,7 @@
248 248  Operation setting
249 249  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
250 250  Effective immediately
251 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
252 252  0.1ms
253 253  )))
254 254  |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
... ... @@ -283,7 +283,7 @@
283 283  Operation setting
284 284  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
285 285  Effective immediately
286 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
288 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
287 287  |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
288 288  Operation setting
289 289  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
... ... @@ -307,12 +307,12 @@
307 307  **Setting method**
308 308  )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
309 309  **Effective time**
310 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
312 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
311 311  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
312 312  Operation setting
313 313  )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
314 314  Effective immediately
315 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
316 316  
317 317  Table 7-8 Details of torque filter time constant parameters
318 318  
... ... @@ -702,8 +702,9 @@
702 702  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
703 703  Effective immediately
704 704  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
705 -1. 0: all truncated
706 -1. 100: all passed
707 +0: all truncated
708 +
709 +100: all passed
707 707  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
708 708  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
709 709  Operation setting
... ... @@ -710,10 +710,13 @@
710 710  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
711 711  Effective immediately
712 712  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
713 -1. 0: 0.5 times the bandwidth
714 -1. 4: 1 times the bandwidth
715 -1. 8: 2 times the bandwidth
716 -1. 12: 4 times the bandwidth
716 +0: 0.5 times the bandwidth
717 +
718 +4: 1 times the bandwidth
719 +
720 +8: 2 times the bandwidth
721 +
722 +12: 4 times the bandwidth
717 717  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
718 718  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
719 719  Operation setting
... ... @@ -725,8 +725,9 @@
725 725  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
726 726  Effective immediately
727 727  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
728 -1. 0: all truncated
729 -1. 100: all passed
734 +0: all truncated
735 +
736 +100: all passed
730 730  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
731 731  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
732 732  Operation setting
... ... @@ -733,10 +733,13 @@
733 733  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
734 734  Effective immediately
735 735  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
736 -1. 0: 0.5 times the bandwidth
737 -1. 4: 1 times the bandwidth
738 -1. 8: 2 times the bandwidth
739 -1. 12: 4 times the bandwidth
743 +0: 0.5 times the bandwidth
744 +
745 +4: 1 times the bandwidth
746 +
747 +8: 2 times the bandwidth
748 +
749 +12: 4 times the bandwidth
740 740  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
741 741  
742 742  Table 7-11 Notch filter function code parameters
... ... @@ -758,22 +758,30 @@
758 758  )))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)(((
759 759  **Effective time**
760 760  )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit**
761 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
771 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11(((
772 +〇
773 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
762 762  Operation setting
763 763  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
764 764  Effective immediately
765 765  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %)
766 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
778 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12(((
779 +〇
780 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
767 767  Operation setting
768 768  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
769 769  Effective immediately
770 770  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ
771 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
785 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14(((
786 +〇
787 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
772 772  Operation setting
773 773  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
774 774  Effective immediately
775 775  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001
776 776  
793 +〇 indicates that VD2L servo drive does not support this function code.
794 +
777 777  **Vibration frequency detection:**
778 778  
779 779  * Users can measure vibration by measuring equipment such as laser displacement.
... ... @@ -795,6 +795,8 @@
795 795  
796 796  Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
797 797  
816 +**VD2L drive does not support type A vibration suppression.**
817 +
798 798  (% style="text-align:center" %)
799 799  (((
800 800  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
... ... @@ -806,32 +806,44 @@
806 806  )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
807 807  **Effective time**
808 808  )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
809 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
829 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19(((
830 +〇
831 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
810 810  Operation setting
811 811  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
812 812  Effective immediately
813 813  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
814 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
836 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20(((
837 +〇
838 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
815 815  Operation setting
816 816  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
817 817  Effective immediately
818 818  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
819 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
843 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21(((
844 +〇
845 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
820 820  Operation setting
821 821  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
822 822  Effective immediately
823 823  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
824 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
850 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22(((
851 +〇
852 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
825 825  Operation setting
826 826  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
827 827  Effective immediately
828 828  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
829 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
857 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23(((
858 +〇
859 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
830 830  Operation setting
831 831  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
832 832  Effective immediately
833 833  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
834 834  
865 +〇 indicates that VD2L servo drive does not supprt this function code.
866 +
835 835  **Vibration frequency detection:**
836 836  
837 837  The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.