Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 74.1
edited by Mora Zhou
on 2025/04/29 11:32
Change comment: There is no comment for this version
To version 52.2
edited by Karen
on 2023/05/16 11:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.Karen
Content
... ... @@ -19,12 +19,9 @@
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 -|(% rowspan="3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 23  |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 -|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4
25 -|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
26 -|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3
27 -|Type A vibration suppression|Enable type A vibration suppression|7.4.4
24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
28 28  
29 29  Table 7-1 Description of gain adjustment process
30 30  
... ... @@ -121,12 +121,8 @@
121 121  
122 122  (% class="table-bordered" style="margin-right:auto" %)
123 123  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
124 -|(% style="text-align:left; vertical-align:middle" %)(((
125 -Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
126 126  
127 -**VD2L drive does not support automatic gain adjustment!**
128 -)))
129 -
130 130  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
131 131  
132 132  (% class="table-bordered" %)
... ... @@ -147,7 +147,7 @@
147 147  * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
148 148  * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
149 149  * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
150 -* Step7 After the parameter measurement is completed, Wecon SCTool will pop up a confirmation window for parameter writing and saving.
143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
151 151  
152 152  (% class="table-bordered" %)
153 153  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
... ... @@ -168,11 +168,9 @@
168 168  )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
169 169  Effective immediately
170 170  )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
171 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
172 -
173 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
174 -
175 -2: Online automatic parameter self-adjusting mode (Not implemented yet)
164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
176 176  )))|(% style="text-align:center; vertical-align:middle" %)-
177 177  
178 178  Table 7-4 Details of self-adjusting mode selection parameters
... ... @@ -339,7 +339,7 @@
339 339  
340 340  (% style="text-align:center" %)
341 341  (((
342 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
343 343  [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
344 344  )))
345 345  
... ... @@ -357,7 +357,7 @@
357 357  
358 358  (% style="text-align:center" %)
359 359  (((
360 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
361 361  [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]]
362 362  )))
363 363  
... ... @@ -384,9 +384,7 @@
384 384  )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
385 385  **Effective time**
386 386  )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
387 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
388 -Enable model(% style="background-color:transparent" %) tracking control function
389 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
390 390  Shutdown setting
391 391  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
392 392  Effective immediately
... ... @@ -638,6 +638,368 @@
638 638  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
639 639  )))
640 640  
630 +== ==
631 +
632 +==
633 + ==
634 +
635 +== **Gain switching** ==
636 +
637 +Gain switching function:
638 +
639 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
640 +
641 +●Switch to a higher gain in the motor stationary state to shorten the positioning time;
642 +
643 +●Switch to a higher gain in the motor running state to get better command tracking performance;
644 +
645 +●Switch different gain settings by external signals depending on the load connected.
646 +
647 +(1) Gain switching parameter setting
648 +
649 +①When P02-07=0
650 +
651 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
652 +
653 +(% style="text-align:center" %)
654 +[[image:20230515-8.png]]
655 +
656 +② When P02-07=1
657 +
658 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
659 +
660 +(% style="text-align:center" %)
661 +[[image:20230515-9.png]]
662 +
663 +Figure 7-9 Flow chart of gain switching when P02-07=1
664 +
665 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
666 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
667 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
668 +|(% style="width:72px" %)(((
669 +
670 +
671 +
672 +
673 +
674 +
675 +2
676 +)))|(% style="width:146px" %)(((
677 +
678 +
679 +
680 +
681 +
682 +
683 +Large torque command
684 +)))|[[image:image-20230515140641-1.png]]
685 +|(% style="width:72px" %)(((
686 +
687 +
688 +
689 +
690 +
691 +
692 +
693 +3
694 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
695 +|(% style="width:72px" %)(((
696 +
697 +
698 +
699 +
700 +
701 +
702 +4
703 +)))|(% style="width:146px" %)(((
704 +
705 +
706 +
707 +
708 +
709 +
710 +Large speed command
711 +)))|[[image:image-20230515140641-3.png]]
712 +
713 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
714 +|(% style="width:74px" %)(((
715 +
716 +
717 +
718 +
719 +
720 +5
721 +)))|(% style="width:176px" %)(((
722 +
723 +
724 +
725 +
726 +
727 +Fast actual speed
728 +)))|(((
729 +
730 +
731 +[[image:image-20230515140641-4.png]]
732 +)))
733 +|(% style="width:74px" %)(((
734 +
735 +
736 +
737 +
738 +
739 +
740 +
741 +6
742 +)))|(% style="width:176px" %)(((
743 +
744 +
745 +
746 +
747 +
748 +
749 +
750 +Speed command change rate is large
751 +)))|[[image:image-20230515140641-5.png]]
752 +|(% style="width:74px" %)(((
753 +
754 +
755 +
756 +
757 +
758 +
759 +7
760 +
761 +
762 +)))|(% style="width:176px" %)(((
763 +
764 +
765 +
766 +
767 +
768 +
769 +Large position deviation
770 +)))|[[image:image-20230515140641-6.png]]
771 +|(% style="width:74px" %)(((
772 +
773 +
774 +
775 +
776 +
777 +8
778 +)))|(% style="width:176px" %)(((
779 +
780 +
781 +
782 +
783 +
784 +Position command
785 +)))|[[image:image-20230515140641-7.png]]
786 +
787 +|(% style="width:73px" %)(((
788 +
789 +
790 +
791 +
792 +
793 +
794 +9
795 +)))|(% style="width:154px" %)(((
796 +
797 +
798 +
799 +
800 +
801 +
802 +Positioning completed
803 +)))|[[image:image-20230515140641-8.png]]
804 +|(% style="width:73px" %)(((
805 +
806 +
807 +10
808 +
809 +
810 +)))|(% style="width:154px" %)(((
811 +
812 +
813 +Position command + actual speed
814 +)))|(((
815 +
816 +
817 +Refer to the chart below
818 +)))
819 +
820 +(% style="text-align:center" %)
821 +[[image:20230515-10.png]]
822 +
823 +Figure 7-10 P02-08=10 Position command + actual speed gain description
824 +
825 +(2) Description of related parameters
826 +
827 +|(% rowspan="2" style="width:68px" %)
828 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
829 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
830 +|(% colspan="8" %)(((
831 +Set the switching mode of the second gain.
832 +
833 +|**Setting value**|**Function**
834 +|0|(((
835 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
836 +
837 +DI logic invalid: PI control;
838 +
839 +DI logic valid: PI control.
840 +)))
841 +|1|The first gain and the second gain are switched by the setting value of P02-08.
842 +)))
843 +
844 +|(% rowspan="2" %)
845 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
846 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
847 +|(% colspan="8" %)(((
848 +Set the conditions for gain switching.
849 +
850 +|Setting value|Gain switching conditions|Details
851 +|0|The default is the first gain|Fixed use of the first gain
852 +|1|Switch by DI port|(((
853 +Use DI function 10 (GAIN-SEL, gain switching);
854 +
855 +DI logic is invalid: the first gain (P02-01~~P02-03);
856 +
857 +DI logic is valid: the second gain (P02-04~~P02-06).
858 +)))
859 +|2|Large torque command|(((
860 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
861 +
862 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
863 +
864 +
865 +)))
866 +|3|Large actual torque|(((
867 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
868 +
869 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
870 +
871 +
872 +)))
873 +|4|Large speed command|(((
874 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
875 +
876 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
877 +
878 +
879 +)))
880 +|5|Large actual speed|(((
881 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
882 +
883 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
884 +
885 +
886 +)))
887 +|(((
888 +
889 +
890 +6
891 +)))|(((
892 +
893 +
894 +Large rate of change in speed command
895 +)))|(((
896 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
897 +
898 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
899 +
900 +
901 +)))
902 +|(((
903 +
904 +
905 +7
906 +)))|(((
907 +
908 +
909 +Large position deviation
910 +)))|(((
911 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
912 +
913 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
914 +)))
915 +|8|Position command|(((
916 +In the previous first gain, if the position command is not 0, switch to the second gain;
917 +
918 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
919 +)))
920 +|(((
921 +
922 +
923 +9
924 +)))|(((
925 +
926 +
927 +Positioning complete
928 +)))|(((
929 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
930 +
931 +
932 +)))
933 +|(((
934 +
935 +
936 +10
937 +)))|(((
938 +
939 +
940 +Position command + actual speed
941 +)))|(((
942 +In the previous first gain, if the position command is not 0, the second gain is switched;
943 +
944 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
945 +
946 +
947 +)))
948 +
949 +
950 +)))
951 +
952 +|(% rowspan="2" %)
953 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
954 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
955 +|(% colspan="8" %)(((
956 +The duration of the switching condition required for the second gain to switch back to the first gain.
957 +
958 +[[image:image-20230515140953-9.png]]
959 +
960 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
961 +)))
962 +
963 +|(% rowspan="2" %)
964 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
965 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
966 +|(% colspan="8" %)(((
967 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
968 +
969 +[[image:image-20230515140953-10.png]]
970 +)))
971 +
972 +|(% rowspan="2" %)
973 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
974 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
975 +|(% colspan="8" %)(((
976 +Set the hysteresis to meet the gain switching condition.
977 +
978 +[[image:image-20230515140953-11.png]]
979 +)))
980 +
981 +|(% rowspan="2" %)
982 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
983 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
984 +|(% colspan="8" %)(((
985 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
986 +
987 +[[image:image-20230515140953-12.png]]
988 +
989 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
990 +)))
991 +
641 641  = **Mechanical resonance suppression** =
642 642  
643 643  == Mechanical resonance suppression methods ==
... ... @@ -742,13 +742,12 @@
742 742  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
743 743  
744 744  Table 7-11 Notch filter function code parameters
1096 +~)~)~)
745 745  
746 746  == Low frequency vibration suppression ==
747 747  
748 748  Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.
749 749  
750 -**VD2L drive does not support low frequency vibrartion suppression.**
751 -
752 752  (% style="text-align:center" %)
753 753  (((
754 754  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
... ... @@ -755,34 +755,46 @@
755 755  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
756 756  )))
757 757  
758 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 134px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 258px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
1108 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)(((
759 759  **Setting method**
760 -)))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)(((
761 -**Effective time**
762 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit**
763 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
764 -Operation setting
765 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
766 -Effective immediately
767 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %)
768 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
769 -Operation setting
770 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
771 -Effective immediately
772 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ
773 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
774 -Operation setting
775 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
776 -Effective immediately
777 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001
1110 +)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)(((
1111 +**Effective time**
1112 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
1113 +|P4-11|Enable low-frequency vibration suppression function|(((
1114 +Operation
778 778  
779 -**Vibration frequency detection:**
1116 +setting
1117 +)))|(((
1118 +Effective
780 780  
1120 +immediately
1121 +)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1122 +|P4-12|Low-frequency vibration suppression frequency|(((
1123 +Operation
1124 +
1125 +setting
1126 +)))|(((
1127 +Effective
1128 +
1129 +immediately
1130 +)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1131 +|P4-14|Shutdown vibration detection amplitude|(((
1132 +Operation
1133 +
1134 +setting
1135 +)))|(((
1136 +Effective
1137 +
1138 +immediately
1139 +)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
1140 +
1141 +**(1) Vibration frequency detection:**
1142 +
781 781  * Users can measure vibration by measuring equipment such as laser displacement.
782 782  * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
783 783  * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
784 784  
785 -**Debugging method:**
1147 +**(2) Debugging method:**
786 786  
787 787  * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
788 788  * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
... ... @@ -789,66 +789,15 @@
789 789  * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
790 790  * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
791 791  
792 -(% class="table-bordered" style="margin-right:auto" %)
793 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
794 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
1154 +|[[image:image-20230516105941-2.png]]
1155 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
795 795  
796 796  == Type A vibration suppression ==
797 797  
798 798  Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
799 799  
800 -**VD2L drive does not support type A vibration suppression.**
801 -
802 802  (% style="text-align:center" %)
803 803  (((
804 804  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
805 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
1164 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
806 806  )))
807 -
808 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 136px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 225px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
809 -**Setting method**
810 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
811 -**Effective time**
812 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
813 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
814 -Operation setting
815 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
816 -Effective immediately
817 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
818 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
819 -Operation setting
820 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
821 -Effective immediately
822 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
823 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
824 -Operation setting
825 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
826 -Effective immediately
827 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
828 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
829 -Operation setting
830 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
831 -Effective immediately
832 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
833 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
834 -Operation setting
835 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
836 -Effective immediately
837 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
838 -
839 -**Vibration frequency detection:**
840 -
841 -The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
842 -
843 -**Debugging method:**
844 -
845 -* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
846 -* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
847 -* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
848 -* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
849 -* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
850 -* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
851 -
852 -(% class="table-bordered" style="margin-right:auto" %)
853 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]]
854 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -1.8 KB
Content