Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -168,11 +168,9 @@ 168 168 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 169 169 Effective immediately 170 170 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 171 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 - 173 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 174 - 175 -2: Online automatic parameter self-adjusting mode (Not implemented yet) 171 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 173 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 176 176 )))|(% style="text-align:center; vertical-align:middle" %)- 177 177 178 178 Table 7-4 Details of self-adjusting mode selection parameters ... ... @@ -219,7 +219,7 @@ 219 219 Operation setting 220 220 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 221 221 Effective immediately 222 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %) 200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz220 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 223 223 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 224 224 Operation setting 225 225 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( ... ... @@ -250,7 +250,7 @@ 250 250 Operation setting 251 251 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 252 252 Effective immediately 253 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %) 210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((251 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 254 254 0.1ms 255 255 ))) 256 256 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)((( ... ... @@ -285,7 +285,7 @@ 285 285 Operation setting 286 286 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 287 287 Effective immediately 288 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %) 232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz286 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 289 289 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 290 290 Operation setting 291 291 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( ... ... @@ -309,12 +309,12 @@ 309 309 **Setting method** 310 310 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 311 311 **Effective time** 312 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width:371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**310 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 313 313 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 314 314 Operation setting 315 315 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 316 316 Effective immediately 317 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %) 80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms315 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 318 318 319 319 Table 7-8 Details of torque filter time constant parameters 320 320 ... ... @@ -747,8 +747,6 @@ 747 747 748 748 Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects. 749 749 750 -**VD2L drive does not support low frequency vibrartion suppression.** 751 - 752 752 (% style="text-align:center" %) 753 753 ((( 754 754 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -797,8 +797,6 @@ 797 797 798 798 Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14. 799 799 800 -**VD2L drive does not support type A vibration suppression.** 801 - 802 802 (% style="text-align:center" %) 803 803 ((( 804 804 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)