Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 75.1
edited by Mora Zhou
on 2025/04/29 11:38
Change comment: There is no comment for this version
To version 83.2
edited by Iris
on 2025/07/24 11:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.Iris
Content
... ... @@ -8,7 +8,7 @@
8 8  [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 9  )))
10 10  
11 -The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
11 +The servo gains are composed of multiple parameter sets, including position loop gain, speed loop gain, filter coefficients, and load inertia ratio. These gains affect each other, requirinbalanced adjustment of all parameter values during servo tuning."
12 12  
13 13  (% class="box infomessage" %)
14 14  (((
... ... @@ -219,7 +219,7 @@
219 219  Operation setting
220 220  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
221 221  Effective immediately
222 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
222 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
223 223  |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
224 224  Operation setting
225 225  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
... ... @@ -250,7 +250,7 @@
250 250  Operation setting
251 251  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
252 252  Effective immediately
253 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 254  0.1ms
255 255  )))
256 256  |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
... ... @@ -285,7 +285,7 @@
285 285  Operation setting
286 286  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
287 287  Effective immediately
288 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
288 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
289 289  |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
290 290  Operation setting
291 291  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
... ... @@ -314,7 +314,7 @@
314 314  Operation setting
315 315  )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
316 316  Effective immediately
317 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
318 318  
319 319  Table 7-8 Details of torque filter time constant parameters
320 320  
... ... @@ -653,7 +653,7 @@
653 653  
654 654  **Notch filter**
655 655  
656 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
656 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-11__.
657 657  
658 658  == Notch filter ==
659 659  
... ... @@ -672,12 +672,12 @@
672 672  
673 673  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
674 674  
675 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
675 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-12__.
676 676  
677 677  (% style="text-align:center" %)
678 678  (((
679 679  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
680 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
680 +[[Figure 7-11 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
681 681  )))
682 682  
683 683  
... ... @@ -684,7 +684,7 @@
684 684  (% style="text-align:center" %)
685 685  (((
686 686  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
687 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
687 +[[Figure 7-12 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
688 688  )))
689 689  
690 690  
... ... @@ -704,8 +704,9 @@
704 704  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
705 705  Effective immediately
706 706  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
707 -1. 0: all truncated
708 -1. 100: all passed
707 +0: all truncated
708 +
709 +100: all passed
709 709  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
710 710  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
711 711  Operation setting
... ... @@ -712,10 +712,13 @@
712 712  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
713 713  Effective immediately
714 714  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
715 -1. 0: 0.5 times the bandwidth
716 -1. 4: 1 times the bandwidth
717 -1. 8: 2 times the bandwidth
718 -1. 12: 4 times the bandwidth
716 +0: 0.5 times the bandwidth
717 +
718 +4: 1 times the bandwidth
719 +
720 +8: 2 times the bandwidth
721 +
722 +12: 4 times the bandwidth
719 719  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
720 720  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
721 721  Operation setting
... ... @@ -727,8 +727,9 @@
727 727  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
728 728  Effective immediately
729 729  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
730 -1. 0: all truncated
731 -1. 100: all passed
734 +0: all truncated
735 +
736 +100: all passed
732 732  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
733 733  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
734 734  Operation setting
... ... @@ -735,10 +735,13 @@
735 735  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
736 736  Effective immediately
737 737  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
738 -1. 0: 0.5 times the bandwidth
739 -1. 4: 1 times the bandwidth
740 -1. 8: 2 times the bandwidth
741 -1. 12: 4 times the bandwidth
743 +0: 0.5 times the bandwidth
744 +
745 +4: 1 times the bandwidth
746 +
747 +8: 2 times the bandwidth
748 +
749 +12: 4 times the bandwidth
742 742  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
743 743  
744 744  Table 7-11 Notch filter function code parameters
... ... @@ -760,22 +760,34 @@
760 760  )))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)(((
761 761  **Effective time**
762 762  )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit**
763 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
771 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11(((
772 +〇
773 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
764 764  Operation setting
765 765  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
766 766  Effective immediately
767 767  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %)
768 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
778 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12(((
779 +〇
780 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
769 769  Operation setting
770 770  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
771 771  Effective immediately
772 772  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ
773 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
785 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14(((
786 +〇
787 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
774 774  Operation setting
775 775  )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
776 776  Effective immediately
777 777  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001
778 778  
793 +☆: Indicates that VD2F servo drive does not support this function code
794 +
795 +〇: Indicates that VD2L servo drive does not support this function code
796 +
797 +★: Indicates that VD2F and VD2L servo drives do not support this function code
798 +
779 779  **Vibration frequency detection:**
780 780  
781 781  * Users can measure vibration by measuring equipment such as laser displacement.
... ... @@ -810,32 +810,48 @@
810 810  )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
811 811  **Effective time**
812 812  )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
813 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
833 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19(((
834 +〇
835 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
814 814  Operation setting
815 815  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
816 816  Effective immediately
817 817  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
818 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
840 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20(((
841 +〇
842 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
819 819  Operation setting
820 820  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
821 821  Effective immediately
822 822  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
823 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
847 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21(((
848 +〇
849 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
824 824  Operation setting
825 825  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
826 826  Effective immediately
827 827  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
828 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
854 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22(((
855 +〇
856 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
829 829  Operation setting
830 830  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
831 831  Effective immediately
832 832  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
833 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
861 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23(((
862 +〇
863 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
834 834  Operation setting
835 835  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
836 836  Effective immediately
837 837  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
838 838  
869 +☆: Indicates that VD2F servo drive does not support this function code
870 +
871 +〇: Indicates that VD2L servo drive does not support this function code
872 +
873 +★: Indicates that VD2F and VD2L servo drives do not support this function code
874 +
839 839  **Vibration frequency detection:**
840 840  
841 841  The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
... ... @@ -851,4 +851,4 @@
851 851  
852 852  (% class="table-bordered" style="margin-right:auto" %)
853 853  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]]
854 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
890 +|(% style="text-align:left; vertical-align:middle" %)**Note:** If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!