Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 76.1
edited by Mora Zhou
on 2025/04/29 13:50
Change comment: There is no comment for this version
To version 50.4
edited by Karen
on 2023/05/16 11:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.Karen
Content
... ... @@ -19,12 +19,9 @@
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 -|(% rowspan="3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 23  |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 -|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4
25 -|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
26 -|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3
27 -|Type A vibration suppression|Enable type A vibration suppression|7.4.4
24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
28 28  
29 29  Table 7-1 Description of gain adjustment process
30 30  
... ... @@ -121,12 +121,8 @@
121 121  
122 122  (% class="table-bordered" style="margin-right:auto" %)
123 123  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
124 -|(% style="text-align:left; vertical-align:middle" %)(((
125 -Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
126 126  
127 -**VD2L drive does not support automatic gain adjustment!**
128 -)))
129 -
130 130  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
131 131  
132 132  (% class="table-bordered" %)
... ... @@ -147,7 +147,7 @@
147 147  * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
148 148  * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
149 149  * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
150 -* Step7 After the parameter measurement is completed, Wecon SCTool will pop up a confirmation window for parameter writing and saving.
143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
151 151  
152 152  (% class="table-bordered" %)
153 153  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
... ... @@ -168,11 +168,9 @@
168 168  )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
169 169  Effective immediately
170 170  )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
171 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
172 -
173 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
174 -
175 -2: Online automatic parameter self-adjusting mode (Not implemented yet)
164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
176 176  )))|(% style="text-align:center; vertical-align:middle" %)-
177 177  
178 178  Table 7-4 Details of self-adjusting mode selection parameters
... ... @@ -219,7 +219,7 @@
219 219  Operation setting
220 220  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
221 221  Effective immediately
222 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
213 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
223 223  |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
224 224  Operation setting
225 225  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
... ... @@ -250,7 +250,7 @@
250 250  Operation setting
251 251  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
252 252  Effective immediately
253 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
244 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 254  0.1ms
255 255  )))
256 256  |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
... ... @@ -285,7 +285,7 @@
285 285  Operation setting
286 286  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
287 287  Effective immediately
288 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
279 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
289 289  |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
290 290  Operation setting
291 291  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
... ... @@ -309,12 +309,12 @@
309 309  **Setting method**
310 310  )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
311 311  **Effective time**
312 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
303 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
313 313  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
314 314  Operation setting
315 315  )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
316 316  Effective immediately
317 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
308 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
318 318  
319 319  Table 7-8 Details of torque filter time constant parameters
320 320  
... ... @@ -339,7 +339,7 @@
339 339  
340 340  (% style="text-align:center" %)
341 341  (((
342 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
343 343  [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
344 344  )))
345 345  
... ... @@ -357,7 +357,7 @@
357 357  
358 358  (% style="text-align:center" %)
359 359  (((
360 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
361 361  [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]]
362 362  )))
363 363  
... ... @@ -384,9 +384,7 @@
384 384  )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
385 385  **Effective time**
386 386  )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
387 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
388 -Enable model(% style="background-color:transparent" %) tracking control function
389 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
390 390  Shutdown setting
391 391  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
392 392  Effective immediately
... ... @@ -638,6 +638,452 @@
638 638  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
639 639  )))
640 640  
630 +== **Model Tracking Control Function** ==
631 +
632 +Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
633 +
634 +(% style="text-align:center" %)
635 +[[image:20230515-7.png]]
636 +
637 +The usage method and conditions of model tracking control:
638 +
639 +~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
640 +
641 +2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
642 +
643 +3. Set P2-20=1 to enable the function of model tracking control.
644 +
645 +4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
646 +
647 +5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
648 +
649 +**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
650 +
651 +|**Function code**|**Name**|(((
652 +**Setting**
653 +
654 +**method**
655 +)))|(((
656 +**Effective**
657 +
658 +**time**
659 +)))|**Default**|**Range**|**Definition**|**Unit**
660 +|P2-20|Model tracking control function|Shutdown setting|(((
661 +Effective
662 +
663 +immediately
664 +)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
665 +|P2-21|Model tracking control gain|Shutdown setting|(((
666 +Effective
667 +
668 +immediately
669 +)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
670 +|P2-22|Model tracking control gain compensation|Shutdown setting|(((
671 +Effective
672 +
673 +immediately
674 +)))|1000|500 to 2000|0.10%
675 +
676 +|**Function code**|**Name**|(((
677 +**Setting**
678 +
679 +**method**
680 +)))|(((
681 +**Effective**
682 +
683 +**time**
684 +)))|**Default**|**Range**|**Definition**|**Unit**
685 +|P2-23|Model tracking control forward rotation bias|(((
686 +Operation
687 +
688 +setting
689 +)))|(((
690 +Effective
691 +
692 +immediately
693 +)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
694 +|P2-24|Model tracking control reverses rotation bias|(((
695 +Operation
696 +
697 +setting
698 +)))|(((
699 +Effective
700 +
701 +immediately
702 +)))|1000|0 to 10000|0.10%
703 +|P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
704 +Effective
705 +
706 +immediately
707 +)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
708 +
709 +Please refer to the following for an example of the procedure of adjusting servo gain.
710 +
711 +|**Step**|**Content**
712 +|1|Please try to set the correct load inertia ratio parameter P3-1.
713 +|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
714 +|3|Turn on the model tracking function, set P2-20 to 1.
715 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
716 +|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
717 +|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
718 +
719 +== **Gain switching** ==
720 +
721 +Gain switching function:
722 +
723 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
724 +
725 +●Switch to a higher gain in the motor stationary state to shorten the positioning time;
726 +
727 +●Switch to a higher gain in the motor running state to get better command tracking performance;
728 +
729 +●Switch different gain settings by external signals depending on the load connected.
730 +
731 +(1) Gain switching parameter setting
732 +
733 +①When P02-07=0
734 +
735 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
736 +
737 +(% style="text-align:center" %)
738 +[[image:20230515-8.png]]
739 +
740 +② When P02-07=1
741 +
742 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
743 +
744 +(% style="text-align:center" %)
745 +[[image:20230515-9.png]]
746 +
747 +Figure 7-9 Flow chart of gain switching when P02-07=1
748 +
749 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
750 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
751 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
752 +|(% style="width:72px" %)(((
753 +
754 +
755 +
756 +
757 +
758 +
759 +2
760 +)))|(% style="width:146px" %)(((
761 +
762 +
763 +
764 +
765 +
766 +
767 +Large torque command
768 +)))|[[image:image-20230515140641-1.png]]
769 +|(% style="width:72px" %)(((
770 +
771 +
772 +
773 +
774 +
775 +
776 +
777 +3
778 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
779 +|(% style="width:72px" %)(((
780 +
781 +
782 +
783 +
784 +
785 +
786 +4
787 +)))|(% style="width:146px" %)(((
788 +
789 +
790 +
791 +
792 +
793 +
794 +Large speed command
795 +)))|[[image:image-20230515140641-3.png]]
796 +
797 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
798 +|(% style="width:74px" %)(((
799 +
800 +
801 +
802 +
803 +
804 +5
805 +)))|(% style="width:176px" %)(((
806 +
807 +
808 +
809 +
810 +
811 +Fast actual speed
812 +)))|(((
813 +
814 +
815 +[[image:image-20230515140641-4.png]]
816 +)))
817 +|(% style="width:74px" %)(((
818 +
819 +
820 +
821 +
822 +
823 +
824 +
825 +6
826 +)))|(% style="width:176px" %)(((
827 +
828 +
829 +
830 +
831 +
832 +
833 +
834 +Speed command change rate is large
835 +)))|[[image:image-20230515140641-5.png]]
836 +|(% style="width:74px" %)(((
837 +
838 +
839 +
840 +
841 +
842 +
843 +7
844 +
845 +
846 +)))|(% style="width:176px" %)(((
847 +
848 +
849 +
850 +
851 +
852 +
853 +Large position deviation
854 +)))|[[image:image-20230515140641-6.png]]
855 +|(% style="width:74px" %)(((
856 +
857 +
858 +
859 +
860 +
861 +8
862 +)))|(% style="width:176px" %)(((
863 +
864 +
865 +
866 +
867 +
868 +Position command
869 +)))|[[image:image-20230515140641-7.png]]
870 +
871 +|(% style="width:73px" %)(((
872 +
873 +
874 +
875 +
876 +
877 +
878 +9
879 +)))|(% style="width:154px" %)(((
880 +
881 +
882 +
883 +
884 +
885 +
886 +Positioning completed
887 +)))|[[image:image-20230515140641-8.png]]
888 +|(% style="width:73px" %)(((
889 +
890 +
891 +10
892 +
893 +
894 +)))|(% style="width:154px" %)(((
895 +
896 +
897 +Position command + actual speed
898 +)))|(((
899 +
900 +
901 +Refer to the chart below
902 +)))
903 +
904 +(% style="text-align:center" %)
905 +[[image:20230515-10.png]]
906 +
907 +Figure 7-10 P02-08=10 Position command + actual speed gain description
908 +
909 +(2) Description of related parameters
910 +
911 +|(% rowspan="2" style="width:68px" %)
912 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
913 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
914 +|(% colspan="8" %)(((
915 +Set the switching mode of the second gain.
916 +
917 +|**Setting value**|**Function**
918 +|0|(((
919 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
920 +
921 +DI logic invalid: PI control;
922 +
923 +DI logic valid: PI control.
924 +)))
925 +|1|The first gain and the second gain are switched by the setting value of P02-08.
926 +)))
927 +
928 +|(% rowspan="2" %)
929 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
930 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
931 +|(% colspan="8" %)(((
932 +Set the conditions for gain switching.
933 +
934 +|Setting value|Gain switching conditions|Details
935 +|0|The default is the first gain|Fixed use of the first gain
936 +|1|Switch by DI port|(((
937 +Use DI function 10 (GAIN-SEL, gain switching);
938 +
939 +DI logic is invalid: the first gain (P02-01~~P02-03);
940 +
941 +DI logic is valid: the second gain (P02-04~~P02-06).
942 +)))
943 +|2|Large torque command|(((
944 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
945 +
946 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
947 +
948 +
949 +)))
950 +|3|Large actual torque|(((
951 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
952 +
953 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
954 +
955 +
956 +)))
957 +|4|Large speed command|(((
958 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
959 +
960 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
961 +
962 +
963 +)))
964 +|5|Large actual speed|(((
965 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
966 +
967 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
968 +
969 +
970 +)))
971 +|(((
972 +
973 +
974 +6
975 +)))|(((
976 +
977 +
978 +Large rate of change in speed command
979 +)))|(((
980 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
981 +
982 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
983 +
984 +
985 +)))
986 +|(((
987 +
988 +
989 +7
990 +)))|(((
991 +
992 +
993 +Large position deviation
994 +)))|(((
995 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
996 +
997 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
998 +)))
999 +|8|Position command|(((
1000 +In the previous first gain, if the position command is not 0, switch to the second gain;
1001 +
1002 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
1003 +)))
1004 +|(((
1005 +
1006 +
1007 +9
1008 +)))|(((
1009 +
1010 +
1011 +Positioning complete
1012 +)))|(((
1013 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
1014 +
1015 +
1016 +)))
1017 +|(((
1018 +
1019 +
1020 +10
1021 +)))|(((
1022 +
1023 +
1024 +Position command + actual speed
1025 +)))|(((
1026 +In the previous first gain, if the position command is not 0, the second gain is switched;
1027 +
1028 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
1029 +
1030 +
1031 +)))
1032 +
1033 +
1034 +)))
1035 +
1036 +|(% rowspan="2" %)
1037 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1038 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
1039 +|(% colspan="8" %)(((
1040 +The duration of the switching condition required for the second gain to switch back to the first gain.
1041 +
1042 +[[image:image-20230515140953-9.png]]
1043 +
1044 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
1045 +)))
1046 +
1047 +|(% rowspan="2" %)
1048 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1049 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
1050 +|(% colspan="8" %)(((
1051 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
1052 +
1053 +[[image:image-20230515140953-10.png]]
1054 +)))
1055 +
1056 +|(% rowspan="2" %)
1057 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1058 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
1059 +|(% colspan="8" %)(((
1060 +Set the hysteresis to meet the gain switching condition.
1061 +
1062 +[[image:image-20230515140953-11.png]]
1063 +)))
1064 +
1065 +|(% rowspan="2" %)
1066 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1067 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
1068 +|(% colspan="8" %)(((
1069 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
1070 +
1071 +[[image:image-20230515140953-12.png]]
1072 +
1073 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
1074 +)))
1075 +
641 641  = **Mechanical resonance suppression** =
642 642  
643 643  == Mechanical resonance suppression methods ==
... ... @@ -704,9 +704,8 @@
704 704  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
705 705  Effective immediately
706 706  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
707 -0: all truncated
708 -
709 -100: all passed
1142 +1. 0: all truncated
1143 +1. 100: all passed
710 710  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
711 711  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
712 712  Operation setting
... ... @@ -713,13 +713,10 @@
713 713  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
714 714  Effective immediately
715 715  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
716 -0: 0.5 times the bandwidth
717 -
718 -4: 1 times the bandwidth
719 -
720 -8: 2 times the bandwidth
721 -
722 -12: 4 times the bandwidth
1150 +1. 0: 0.5 times the bandwidth
1151 +1. 4: 1 times the bandwidth
1152 +1. 8: 2 times the bandwidth
1153 +1. 12: 4 times the bandwidth
723 723  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
724 724  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
725 725  Operation setting
... ... @@ -731,9 +731,8 @@
731 731  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
732 732  Effective immediately
733 733  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
734 -0: all truncated
735 -
736 -100: all passed
1165 +1. 0: all truncated
1166 +1. 100: all passed
737 737  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
738 738  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
739 739  Operation setting
... ... @@ -740,23 +740,19 @@
740 740  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
741 741  Effective immediately
742 742  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
743 -0: 0.5 times the bandwidth
744 -
745 -4: 1 times the bandwidth
746 -
747 -8: 2 times the bandwidth
748 -
749 -12: 4 times the bandwidth
1173 +1. 0: 0.5 times the bandwidth
1174 +1. 4: 1 times the bandwidth
1175 +1. 8: 2 times the bandwidth
1176 +1. 12: 4 times the bandwidth
750 750  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
751 751  
752 752  Table 7-11 Notch filter function code parameters
1180 +~)~)~)
753 753  
754 754  == Low frequency vibration suppression ==
755 755  
756 756  Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.
757 757  
758 -**VD2L drive does not support low frequency vibrartion suppression.**
759 -
760 760  (% style="text-align:center" %)
761 761  (((
762 762  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
... ... @@ -763,34 +763,50 @@
763 763  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
764 764  )))
765 765  
766 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 134px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 258px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
767 -**Setting method**
768 -)))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)(((
769 -**Effective time**
770 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit**
771 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
772 -Operation setting
773 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
774 -Effective immediately
775 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %)
776 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
777 -Operation setting
778 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
779 -Effective immediately
780 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ
781 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
782 -Operation setting
783 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
784 -Effective immediately
785 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001
1192 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|**Name**|(((
1193 +**Setting**
786 786  
787 -**Vibration frequency detection:**
1195 +**method**
1196 +)))|(((
1197 +**Effective**
788 788  
1199 +**time**
1200 +)))|**Default**|**Range**|**Definition**|**Unit**
1201 +|P4-11|Enable low-frequency vibration suppression function|(((
1202 +Operation
1203 +
1204 +setting
1205 +)))|(((
1206 +Effective
1207 +
1208 +immediately
1209 +)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1210 +|P4-12|Low-frequency vibration suppression frequency|(((
1211 +Operation
1212 +
1213 +setting
1214 +)))|(((
1215 +Effective
1216 +
1217 +immediately
1218 +)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1219 +|P4-14|Shutdown vibration detection amplitude|(((
1220 +Operation
1221 +
1222 +setting
1223 +)))|(((
1224 +Effective
1225 +
1226 +immediately
1227 +)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
1228 +
1229 +**(1) Vibration frequency detection:**
1230 +
789 789  * Users can measure vibration by measuring equipment such as laser displacement.
790 790  * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
791 791  * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
792 792  
793 -**Debugging method:**
1235 +**(2) Debugging method:**
794 794  
795 795  * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
796 796  * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
... ... @@ -797,66 +797,15 @@
797 797  * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
798 798  * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
799 799  
800 -(% class="table-bordered" style="margin-right:auto" %)
801 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
802 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
1242 +|[[image:image-20230516105941-2.png]]
1243 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
803 803  
804 804  == Type A vibration suppression ==
805 805  
806 806  Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
807 807  
808 -**VD2L drive does not support type A vibration suppression.**
809 -
810 810  (% style="text-align:center" %)
811 811  (((
812 812  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
813 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
1252 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
814 814  )))
815 -
816 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 136px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 225px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
817 -**Setting method**
818 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
819 -**Effective time**
820 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
821 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
822 -Operation setting
823 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
824 -Effective immediately
825 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
826 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
827 -Operation setting
828 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
829 -Effective immediately
830 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
831 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
832 -Operation setting
833 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
834 -Effective immediately
835 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
836 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
837 -Operation setting
838 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
839 -Effective immediately
840 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
841 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
842 -Operation setting
843 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
844 -Effective immediately
845 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
846 -
847 -**Vibration frequency detection:**
848 -
849 -The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
850 -
851 -**Debugging method:**
852 -
853 -* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
854 -* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
855 -* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
856 -* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
857 -* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
858 -* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
859 -
860 -(% class="table-bordered" style="margin-right:auto" %)
861 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]]
862 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -1.8 KB
Content