Wiki source code of 07 Adjustments

Version 18.1 by Stone Wu on 2022/09/23 14:44

Hide last authors
Leo Wei 1.1 1 = **Overview** =
2
3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4
Joey 1.2 5 (% style="text-align:center" %)
Stone Wu 16.5 6 (((
Stone Wu 18.1 7 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 )))
Leo Wei 1.1 10
11 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
12
Stone Wu 16.5 13 (% class="box infomessage" %)
14 (((
Leo Wei 1.1 15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
Stone Wu 16.5 16 )))
Leo Wei 1.1 17
Stone Wu 18.1 18 (% class="table-bordered" style="margin-right:auto" %)
Stone Wu 16.5 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 |(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
Leo Wei 1.1 25
26 Table 7-1 Description of gain adjustment process
27
28 = **Inertia recognition** =
29
30 Load inertia ratio P03-01 refers to:
31
Joey 11.2 32 (% style="text-align:center" %)
Stone Wu 18.1 33 [[image:image-20220611152902-1.png||class="img-thumbnail"]]
Leo Wei 1.1 34
35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36
Stone Wu 18.1 37 (% class="warning" %)|(((
Joey 1.3 38 (% style="text-align:center" %)
Joey 11.2 39 [[image:image-20220611152918-2.png]]
Joey 1.3 40 )))
41 |(((
Leo Wei 1.1 42 **Before performing online load inertia recognition, the following conditions should be met:**
43
Stone Wu 16.5 44 * The maximum speed of the motor should be greater than 300rpm;
45 * The actual load inertia ratio is between 0.00 and 100.00;
46 * The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 * The backlash of the load transmission mechanism is within a certain range;
Leo Wei 1.1 48
49 **The motor's runable stroke should meet two requirements:**
50
Stone Wu 16.5 51 * There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 * Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 * Meet the requirement of inertia recognition turns P03-05.
54 * Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 * During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
Leo Wei 1.1 56 )))
57
58 The related function codes are shown in the table below.
59
60 (% class="table-bordered" %)
Stone Wu 16.5 61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
Leo Wei 1.1 62 **Setting method**
Stone Wu 18.1 63 )))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
Leo Wei 1.1 64 **Effective time**
Stone Wu 18.1 65 )))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Stone Wu 16.5 66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 67 Operation setting
Stone Wu 18.1 68 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 69 Effective immediately
Stone Wu 18.1 70 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
Stone Wu 16.5 71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 72 Inertia recognition turns
73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 Shutdown setting
Stone Wu 18.1 75 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 76 Effective immediately
Stone Wu 18.1 77 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
Stone Wu 16.5 78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 79 Inertia recognition maximum speed
80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 Shutdown setting
Stone Wu 18.1 82 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 83 Effective immediately
Stone Wu 18.1 84 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
Leo Wei 1.1 85 Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86
87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
88 )))|(% style="text-align:center; vertical-align:middle" %)rpm
Stone Wu 16.5 89 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 90 Parameter recognition rotation direction
91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 Shutdown setting
Stone Wu 18.1 93 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 94 Effective immediately
Stone Wu 18.1 95 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
Leo Wei 1.1 96 0: Forward and reverse reciprocating rotation
97
98 1: Forward one-way rotation
99
100 2: Reverse one-way rotation
101 )))|(% style="text-align:center; vertical-align:middle" %)-
102
103 Table 7-2 Related parameters of gain adjustment
104
105 = **Gain adjustment** =
106
107 In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.
108
109 Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.
110
111 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
112
Stone Wu 16.5 113 == Automatic gain adjustment ==
Leo Wei 1.1 114
115 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
116
117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118
Stone Wu 18.1 119 (% class="table-bordered" style="margin-right:auto" %)
120 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 |(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
Leo Wei 1.1 122
123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124
125 (% class="table-bordered" %)
Stone Wu 16.5 126 |=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 |=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 |=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 |=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
Leo Wei 1.1 130
131 Table 7-3 Experience reference of rigidity grade
132
133 When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.
134
135 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
136
Stone Wu 14.8 137 * Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 * Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 * Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
Leo Wei 1.1 144
145 (% class="table-bordered" %)
Stone Wu 18.1 146 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
Leo Wei 1.1 147 |(((
148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149
150 ✎For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".
151 )))
152
153 (% class="table-bordered" %)
Stone Wu 18.1 154 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
Leo Wei 1.1 155 **Setting method**
Stone Wu 18.1 156 )))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
Leo Wei 1.1 157 **Effective time**
Stone Wu 18.1 158 )))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 |=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
Leo Wei 1.1 160 Operation setting
Stone Wu 18.1 161 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
Leo Wei 1.1 162 Effective immediately
Stone Wu 18.1 163 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
Stone Wu 16.5 164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
Leo Wei 1.1 167 )))|(% style="text-align:center; vertical-align:middle" %)-
168
169 Table 7-4 Details of self-adjusting mode selection parameters
170
Stone Wu 16.5 171 == Manual gain adjustment ==
Leo Wei 1.1 172
173 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
174
175 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
176
Joey 1.2 177 (% style="text-align:center" %)
Stone Wu 16.5 178 (((
Stone Wu 18.1 179 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 )))
Leo Wei 1.1 182
183 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
184
185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186
187 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
188
189 (% class="table-bordered" %)
Stone Wu 16.5 190 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
Leo Wei 1.1 198
Stone Wu 16.5 199 **Speed loop gain**
Leo Wei 1.1 200
201 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
202
203 (% class="table-bordered" %)
Stone Wu 16.5 204 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
Leo Wei 1.1 205 **Setting method**
Stone Wu 16.5 206 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
Leo Wei 1.1 207 **Effective time**
Stone Wu 16.5 208 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 210 Operation setting
Stone Wu 16.5 211 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Leo Wei 1.1 212 Effective immediately
Stone Wu 16.5 213 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 215 Operation setting
Stone Wu 16.5 216 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Leo Wei 1.1 217 Effective immediately
Stone Wu 16.5 218 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
Leo Wei 1.1 219
220 Table 7-5 Speed loop gain parameters
221
Stone Wu 14.11 222 (% style="text-align:center" %)
Stone Wu 16.5 223 (((
Stone Wu 18.1 224 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 )))
Stone Wu 14.11 227
Stone Wu 16.5 228 **Speed loop integral time constant**
Stone Wu 14.11 229
Leo Wei 1.1 230 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
231
232 (% class="table-bordered" %)
Stone Wu 16.5 233 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
Leo Wei 1.1 234 **Setting method**
Stone Wu 16.5 235 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
Leo Wei 1.1 236 **Effective time**
Stone Wu 16.5 237 )))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 239 1st speed loop integral time constant
Stone Wu 16.5 240 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 241 Operation setting
Stone Wu 16.5 242 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
Leo Wei 1.1 243 Effective immediately
Stone Wu 16.5 244 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 0.1ms
Leo Wei 1.1 246 )))
Stone Wu 16.5 247 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 248 2nd speed loop integral time constant
Stone Wu 16.5 249 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 250 Operation setting
Stone Wu 16.5 251 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
Leo Wei 1.1 252 Effective immediately
Stone Wu 16.5 253 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 0.1ms
Leo Wei 1.1 255 )))
256
257 Table 7-6 Speed loop integral time constant parameters
258
Stone Wu 14.13 259 (% style="text-align:center" %)
Stone Wu 16.5 260 (((
Stone Wu 18.1 261 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 )))
Stone Wu 14.13 264
Stone Wu 16.5 265 **Position loop gain**
Stone Wu 14.13 266
Leo Wei 1.1 267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268
269 (% class="table-bordered" %)
Stone Wu 18.1 270 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
Leo Wei 1.1 271 **Setting method**
Stone Wu 18.1 272 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
Leo Wei 1.1 273 **Effective time**
Stone Wu 18.1 274 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 276 Operation setting
Stone Wu 18.1 277 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
Leo Wei 1.1 278 Effective immediately
Stone Wu 18.1 279 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 281 Operation setting
Stone Wu 18.1 282 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
Leo Wei 1.1 283 Effective immediately
Stone Wu 18.1 284 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
Leo Wei 1.1 285
286 Table 7-7 Position loop gain parameters
287
Stone Wu 14.14 288 (% style="text-align:center" %)
Stone Wu 16.5 289 (((
Stone Wu 18.1 290 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 )))
Stone Wu 14.14 293
Stone Wu 16.5 294 **Torque instruction filter time**
Stone Wu 14.14 295
Leo Wei 1.1 296 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
297
298 (% class="table-bordered" %)
Stone Wu 16.5 299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
Leo Wei 1.1 300 **Setting method**
Stone Wu 18.1 301 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
Leo Wei 1.1 302 **Effective time**
Stone Wu 18.1 303 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Stone Wu 16.5 304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 305 Operation setting
Stone Wu 18.1 306 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
Leo Wei 1.1 307 Effective immediately
Stone Wu 18.1 308 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
Leo Wei 1.1 309
310 Table 7-8 Details of torque filter time constant parameters
311
312 == **Feedforward gain** ==
313
314 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
315
Stone Wu 16.5 316 Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
Leo Wei 1.1 317
318 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
319
320 (% class="table-bordered" %)
Stone Wu 16.5 321 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
Leo Wei 1.1 323 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
324
325 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
326 )))
Stone Wu 16.5 327 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
Leo Wei 1.1 328
329 Table 7-9 Speed feedforward parameters
330
Stone Wu 17.1 331 (% style="text-align:center" %)
332 (((
Stone Wu 18.1 333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
Stone Wu 17.1 335 )))
Stone Wu 14.18 336
337
Leo Wei 1.1 338 (% class="table-bordered" %)
Stone Wu 18.1 339 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
Leo Wei 1.1 342
343 Table 7-10 Torque feedforward parameters
344
345 = **Mechanical resonance suppression** =
346
Stone Wu 17.1 347 == Mechanical resonance suppression methods ==
Leo Wei 1.1 348
349 When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
350
Stone Wu 17.1 351 **Torque instruction filter**
Leo Wei 1.1 352
353 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
354
Joey 10.1 355 (% style="text-align:center" %)
Stone Wu 18.1 356 [[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
Leo Wei 1.1 357
Stone Wu 17.1 358 **Notch filter**
Leo Wei 1.1 359
Stone Wu 17.1 360 The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
Leo Wei 1.1 361
Stone Wu 17.1 362 == Notch filter ==
Leo Wei 1.1 363
364 The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
365
Stone Wu 17.1 366 **Width grade of notch filter**
Leo Wei 1.1 367
368 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
369
Joey 10.1 370 (% style="text-align:center" %)
Stone Wu 18.1 371 [[image:image-20220706155836-6.png||class="img-thumbnail"]]
Leo Wei 1.1 372
Stone Wu 16.5 373 In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
Leo Wei 1.1 374
Stone Wu 17.1 375 **Depth grade of notch filter**
Leo Wei 1.1 376
377 The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
378
Stone Wu 17.1 379 When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
Leo Wei 1.1 380
Joey 1.2 381 (% style="text-align:center" %)
Stone Wu 18.1 382 (((
383 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
384 [[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
385 )))
Leo Wei 1.1 386
387
Stone Wu 14.21 388 (% style="text-align:center" %)
Stone Wu 18.1 389 (((
390 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
391 [[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
392 )))
Stone Wu 14.21 393
Leo Wei 1.1 394
395 (% class="table-bordered" %)
Stone Wu 17.1 396 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
Leo Wei 1.1 397 **Setting method**
Stone Wu 18.1 398 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
Leo Wei 1.1 399 **Effective time**
Stone Wu 18.1 400 )))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
Stone Wu 17.1 401 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 402 Operation setting
Stone Wu 18.1 403 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 404 Effective immediately
Stone Wu 18.1 405 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
Stone Wu 17.1 406 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 407 Operation setting
Stone Wu 18.1 408 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 409 Effective immediately
Stone Wu 18.1 410 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
Stone Wu 17.1 411 1. 0: all truncated
412 1. 100: all passed
413 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
414 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 415 Operation setting
Stone Wu 18.1 416 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 417 Effective immediately
Stone Wu 18.1 418 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
Stone Wu 17.1 419 1. 0: 0.5 times the bandwidth
420 1. 4: 1 times the bandwidth
421 1. 8: 2 times the bandwidth
422 1. 12: 4 times the bandwidth
423 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
424 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 425 Operation setting
Stone Wu 18.1 426 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 427 Effective immediately
Stone Wu 18.1 428 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
Stone Wu 17.1 429 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 430 Operation setting
Stone Wu 18.1 431 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 432 Effective immediately
Stone Wu 18.1 433 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
Stone Wu 17.1 434 1. 0: all truncated
435 1. 100: all passed
436 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
437 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
Leo Wei 1.1 438 Operation setting
Stone Wu 18.1 439 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
Leo Wei 1.1 440 Effective immediately
Stone Wu 18.1 441 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
Stone Wu 17.1 442 1. 0: 0.5 times the bandwidth
443 1. 4: 1 times the bandwidth
444 1. 8: 2 times the bandwidth
445 1. 12: 4 times the bandwidth
446 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
Leo Wei 1.1 447
448 Table 7-11 Notch filter function code parameters