Wiki source code of 07 Adjustments

Version 55.12 by Karen on 2023/05/16 11:41

Hide last authors
Leo Wei 1.1 1 = **Overview** =
2
3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4
Joey 1.2 5 (% style="text-align:center" %)
Stone Wu 16.5 6 (((
Stone Wu 18.1 7 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 )))
Leo Wei 1.1 10
11 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
12
Stone Wu 16.5 13 (% class="box infomessage" %)
14 (((
Leo Wei 1.1 15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
Stone Wu 16.5 16 )))
Leo Wei 1.1 17
Stone Wu 18.1 18 (% class="table-bordered" style="margin-right:auto" %)
Stone Wu 16.5 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 |(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
Leo Wei 1.1 25
26 Table 7-1 Description of gain adjustment process
27
28 = **Inertia recognition** =
29
30 Load inertia ratio P03-01 refers to:
31
Joey 11.2 32 (% style="text-align:center" %)
Stone Wu 18.1 33 [[image:image-20220611152902-1.png||class="img-thumbnail"]]
Leo Wei 1.1 34
35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36
Stone Wu 18.1 37 (% class="warning" %)|(((
Joey 1.3 38 (% style="text-align:center" %)
Joey 11.2 39 [[image:image-20220611152918-2.png]]
Joey 1.3 40 )))
41 |(((
Leo Wei 1.1 42 **Before performing online load inertia recognition, the following conditions should be met:**
43
Stone Wu 16.5 44 * The maximum speed of the motor should be greater than 300rpm;
45 * The actual load inertia ratio is between 0.00 and 100.00;
46 * The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 * The backlash of the load transmission mechanism is within a certain range;
Leo Wei 1.1 48
49 **The motor's runable stroke should meet two requirements:**
50
Stone Wu 16.5 51 * There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 * Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 * Meet the requirement of inertia recognition turns P03-05.
54 * Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 * During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
Leo Wei 1.1 56 )))
57
58 The related function codes are shown in the table below.
59
60 (% class="table-bordered" %)
Stone Wu 16.5 61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
Leo Wei 1.1 62 **Setting method**
Stone Wu 18.1 63 )))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
Leo Wei 1.1 64 **Effective time**
Stone Wu 18.1 65 )))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Stone Wu 16.5 66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 67 Operation setting
Stone Wu 18.1 68 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 69 Effective immediately
Stone Wu 18.1 70 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
Stone Wu 16.5 71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 72 Inertia recognition turns
73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 Shutdown setting
Stone Wu 18.1 75 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 76 Effective immediately
Stone Wu 18.1 77 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
Stone Wu 16.5 78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 79 Inertia recognition maximum speed
80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 Shutdown setting
Stone Wu 18.1 82 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 83 Effective immediately
Stone Wu 18.1 84 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
Leo Wei 1.1 85 Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86
87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
88 )))|(% style="text-align:center; vertical-align:middle" %)rpm
Stone Wu 16.5 89 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
Leo Wei 1.1 90 Parameter recognition rotation direction
91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 Shutdown setting
Stone Wu 18.1 93 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
Leo Wei 1.1 94 Effective immediately
Stone Wu 18.1 95 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
Leo Wei 1.1 96 0: Forward and reverse reciprocating rotation
97
98 1: Forward one-way rotation
99
100 2: Reverse one-way rotation
101 )))|(% style="text-align:center; vertical-align:middle" %)-
102
103 Table 7-2 Related parameters of gain adjustment
104
105 = **Gain adjustment** =
106
107 In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.
108
109 Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.
110
111 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
112
Stone Wu 16.5 113 == Automatic gain adjustment ==
Leo Wei 1.1 114
115 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
116
117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118
Stone Wu 18.1 119 (% class="table-bordered" style="margin-right:auto" %)
120 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 |(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
Leo Wei 1.1 122
123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124
125 (% class="table-bordered" %)
Stone Wu 16.5 126 |=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 |=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 |=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 |=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
Leo Wei 1.1 130
131 Table 7-3 Experience reference of rigidity grade
132
133 When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.
134
135 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
136
Stone Wu 14.8 137 * Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 * Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 * Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
Leo Wei 1.1 144
145 (% class="table-bordered" %)
Stone Wu 18.1 146 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
Leo Wei 1.1 147 |(((
148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149
150 ✎For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".
151 )))
152
153 (% class="table-bordered" %)
Stone Wu 18.1 154 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
Leo Wei 1.1 155 **Setting method**
Stone Wu 18.1 156 )))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
Leo Wei 1.1 157 **Effective time**
Stone Wu 18.1 158 )))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 |=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
Leo Wei 1.1 160 Operation setting
Stone Wu 18.1 161 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
Leo Wei 1.1 162 Effective immediately
Stone Wu 18.1 163 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
Stone Wu 16.5 164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
Leo Wei 1.1 167 )))|(% style="text-align:center; vertical-align:middle" %)-
168
169 Table 7-4 Details of self-adjusting mode selection parameters
170
Stone Wu 16.5 171 == Manual gain adjustment ==
Leo Wei 1.1 172
173 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
174
175 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
176
Joey 1.2 177 (% style="text-align:center" %)
Stone Wu 16.5 178 (((
Stone Wu 18.1 179 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 )))
Leo Wei 1.1 182
183 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
184
185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186
Karen 19.2 187 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.
Leo Wei 1.1 188
189 (% class="table-bordered" %)
Stone Wu 16.5 190 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
Leo Wei 1.1 198
Stone Wu 16.5 199 **Speed loop gain**
Leo Wei 1.1 200
201 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
202
203 (% class="table-bordered" %)
Stone Wu 16.5 204 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
Leo Wei 1.1 205 **Setting method**
Stone Wu 16.5 206 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
Leo Wei 1.1 207 **Effective time**
Stone Wu 16.5 208 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 210 Operation setting
Stone Wu 16.5 211 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Leo Wei 1.1 212 Effective immediately
Stone Wu 16.5 213 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 215 Operation setting
Stone Wu 16.5 216 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Leo Wei 1.1 217 Effective immediately
Stone Wu 16.5 218 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
Leo Wei 1.1 219
220 Table 7-5 Speed loop gain parameters
221
Stone Wu 14.11 222 (% style="text-align:center" %)
Stone Wu 16.5 223 (((
Stone Wu 18.1 224 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 )))
Stone Wu 14.11 227
Stone Wu 16.5 228 **Speed loop integral time constant**
Stone Wu 14.11 229
Leo Wei 1.1 230 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
231
232 (% class="table-bordered" %)
Stone Wu 16.5 233 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
Leo Wei 1.1 234 **Setting method**
Stone Wu 16.5 235 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
Leo Wei 1.1 236 **Effective time**
Stone Wu 16.5 237 )))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 239 1st speed loop integral time constant
Stone Wu 16.5 240 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 241 Operation setting
Stone Wu 16.5 242 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
Leo Wei 1.1 243 Effective immediately
Stone Wu 16.5 244 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 0.1ms
Leo Wei 1.1 246 )))
Stone Wu 16.5 247 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
Leo Wei 1.1 248 2nd speed loop integral time constant
Stone Wu 16.5 249 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Leo Wei 1.1 250 Operation setting
Stone Wu 16.5 251 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
Leo Wei 1.1 252 Effective immediately
Stone Wu 16.5 253 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 0.1ms
Leo Wei 1.1 255 )))
256
257 Table 7-6 Speed loop integral time constant parameters
258
Stone Wu 14.13 259 (% style="text-align:center" %)
Stone Wu 16.5 260 (((
Stone Wu 18.1 261 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 )))
Stone Wu 14.13 264
Stone Wu 16.5 265 **Position loop gain**
Stone Wu 14.13 266
Leo Wei 1.1 267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268
269 (% class="table-bordered" %)
Stone Wu 18.1 270 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
Leo Wei 1.1 271 **Setting method**
Stone Wu 18.1 272 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
Leo Wei 1.1 273 **Effective time**
Stone Wu 18.1 274 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 276 Operation setting
Stone Wu 18.1 277 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
Leo Wei 1.1 278 Effective immediately
Stone Wu 18.1 279 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 281 Operation setting
Stone Wu 18.1 282 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
Leo Wei 1.1 283 Effective immediately
Stone Wu 18.1 284 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
Leo Wei 1.1 285
286 Table 7-7 Position loop gain parameters
287
Stone Wu 14.14 288 (% style="text-align:center" %)
Stone Wu 16.5 289 (((
Stone Wu 18.1 290 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Stone Wu 16.5 291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 )))
Stone Wu 14.14 293
Stone Wu 16.5 294 **Torque instruction filter time**
Stone Wu 14.14 295
Leo Wei 1.1 296 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
297
298 (% class="table-bordered" %)
Stone Wu 16.5 299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
Leo Wei 1.1 300 **Setting method**
Stone Wu 18.1 301 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
Leo Wei 1.1 302 **Effective time**
Stone Wu 18.1 303 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Stone Wu 16.5 304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
Leo Wei 1.1 305 Operation setting
Stone Wu 18.1 306 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
Leo Wei 1.1 307 Effective immediately
Stone Wu 18.1 308 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
Leo Wei 1.1 309
310 Table 7-8 Details of torque filter time constant parameters
311
312 == **Feedforward gain** ==
313
314 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
315
Stone Wu 16.5 316 Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
Leo Wei 1.1 317
318 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
319
320 (% class="table-bordered" %)
Stone Wu 16.5 321 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
Leo Wei 1.1 323 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
324
325 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
326 )))
Stone Wu 16.5 327 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
Leo Wei 1.1 328
329 Table 7-9 Speed feedforward parameters
330
Stone Wu 17.1 331 (% style="text-align:center" %)
332 (((
Stone Wu 18.1 333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
Stone Wu 17.1 335 )))
Stone Wu 14.18 336
337
Leo Wei 1.1 338 (% class="table-bordered" %)
Stone Wu 18.1 339 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
Leo Wei 1.1 342
343 Table 7-10 Torque feedforward parameters
344
Karen 18.2 345 == **Model Tracking Control Function** ==
346
Karen 19.3 347 Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
Karen 18.2 348
349 (% style="text-align:center" %)
Karen 19.3 350 (((
351 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Karen 25.2 352 [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]]
Karen 19.3 353 )))
Karen 18.2 354
355 The usage method and conditions of model tracking control:
356
357 ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
358
Karen 19.3 359 2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load).
Karen 18.2 360
361 3. Set P2-20=1 to enable the function of model tracking control.
362
363 4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
364
365 5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
366
Karen 21.2 367 (% class="box infomessage" %)
368 (((
Karen 18.2 369 **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
Karen 22.1 370 )))
Karen 18.2 371
Karen 19.3 372 (% class="table-bordered" %)
373 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
374 **Setting method**
375 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
376 **Effective time**
377 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Karen 21.2 378 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
379 Shutdown setting
380 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 381 Effective immediately
Karen 21.2 382 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.|
Karen 23.3 383 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
Karen 21.2 384 Shutdown setting
Karen 23.2 385 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 386 Effective immediately
Karen 23.3 387 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s
Karen 24.7 388 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
389 Shutdown setting
390 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 391 Effective immediately
Karen 24.8 392 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10%
Karen 18.2 393
Karen 19.3 394 (% class="table-bordered" %)
395 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
396 **Setting method**
397 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
398 **Effective time**
399 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
Karen 21.2 400 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|(((
Karen 19.3 401 Operation setting
Karen 23.2 402 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 403 Effective immediately
Karen 23.3 404 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
Karen 21.2 405 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|(((
Karen 19.3 406 Operation setting
Karen 23.2 407 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 408 Effective immediately
Karen 24.9 409 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="text-align:center; vertical-align:middle" %)0.10%
Karen 23.2 410 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
Karen 19.3 411 Effective immediately
Karen 21.2 412 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
Karen 18.2 413
414 Please refer to the following for an example of the procedure of adjusting servo gain.
415
Karen 24.1 416 (% style="width:1508px" %)
Karen 24.11 417 |=(% style="text-align:center; vertical-align:middle; width:80px" %)**Step**|=(% style="text-align:center; vertical-align:middle; width:1420px" %)**Content**
Karen 24.3 418 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)1|Please try to set the correct load inertia ratio parameter P3-1.
Karen 24.4 419 |=(% style="text-align:center; vertical-align:middle; width:80px" %)2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
Karen 24.5 420 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)3|Turn on the model tracking function, set P2-20 to 1.
421 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring.
422 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
423 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
Karen 22.2 424
425 == **Gain switching** ==
426
Karen 28.1 427 **Gain switching function:**
Karen 22.2 428
Karen 27.1 429 ● Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
Karen 22.2 430
Karen 27.1 431 ● Switch to a higher gain in the motor stationary state to shorten the positioning time;
Karen 22.2 432
Karen 27.1 433 ● Switch to a higher gain in the motor running state to get better command tracking performance;
Karen 22.2 434
Karen 27.1 435 ● Switch different gain settings by external signals depending on the load connected.
Karen 22.2 436
Karen 28.1 437 **Gain switching parameter setting**
Karen 22.2 438
439 ①When P02-07=0
440
441 Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
442
443 (% style="text-align:center" %)
Karen 28.5 444 (((
445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Karen 29.1 446 [[image:20230515-8.png||height="378" id="20230515-8.png" width="363"]]
Karen 28.5 447 )))
Karen 22.2 448
449 ② When P02-07=1
450
451 The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
452
453 (% style="text-align:center" %)
Karen 28.2 454 (((
455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 [[**Figure 7-9 Flow chart of gain switching when P02-07=1**>>image:20230515-9.png||id="20230515-9.png"]]
457 )))
Karen 22.2 458
Karen 37.4 459 |=(% style="text-align:center; vertical-align:middle; width:120px" %)**P02-08**|=(% style="text-align: center; vertical-align: middle; width: 464px;" %)**Content**|=(% style="text-align: center; vertical-align: middle; width: 946px;" %)**Diagram**
460 |=(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle; width:464px" %)Fixed use of the first gain|(% style="width:946px" %)~-~-
461 |=(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle; width:464px" %)Switching with DI|(% style="width:946px" %)~-~-
Karen 34.2 462 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 463 2
Karen 37.4 464 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 465 Large torque command
Karen 43.5 466 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-1.png||height="310" width="543"]]
Karen 37.4 467 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 468 3
Karen 43.4 469 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
470 Large actual torque
Karen 43.5 471 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-2.png||height="252" width="550"]]
Karen 37.4 472 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 473 4
Karen 38.1 474 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 475 Large speed command
Karen 43.5 476 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-3.png||height="212" width="558"]]
Karen 37.4 477 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 478 5
Karen 37.4 479 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 480 Fast actual speed
Karen 43.5 481 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-4.png||height="223" width="561"]]
Karen 37.4 482 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 483 6
Karen 37.4 484 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 485 Speed command change rate is large
Karen 43.5 486 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-5.png||height="327" width="570"]]
Karen 43.3 487 |=(% style="text-align:center; vertical-align:middle;width:74px" %)(((
Karen 22.2 488 7
Karen 37.4 489 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 490 Large position deviation
Karen 43.5 491 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-6.png||height="305" width="574"]]
Karen 37.4 492 |=(% style="text-align:center; vertical-align:middle;" %)(((
Karen 22.2 493 8
Karen 37.4 494 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 495 Position command
Karen 43.5 496 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-7.png||height="280" width="570"]]
Karen 37.4 497 |=(% style="text-align:center; vertical-align:middle; width:74px" %)(((
Karen 22.2 498 9
Karen 37.4 499 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 500 Positioning completed
Karen 44.2 501 )))|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230515140641-8.png||height="302" width="553"]]
Karen 37.4 502 |=(% style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 503 10
Karen 37.4 504 )))|(% style="text-align:center; vertical-align:middle; width:464px" %)(((
Karen 22.2 505 Position command + actual speed
Karen 37.4 506 )))|(% style="text-align:center; vertical-align:middle; width:946px" %)(((
Karen 22.2 507 Refer to the chart below
508 )))
509
510 (% style="text-align:center" %)
Karen 38.2 511 (((
512 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
513 [[**Figure 7-10 P02-08=10 Position command + actual speed gain description**>>image:20230515-10.png||id="Iimage-20220608174118-1.png"]]
514 )))
Karen 22.2 515
Karen 38.3 516 **Description of related parameters**
Karen 22.2 517
Karen 38.11 518 |=(% rowspan="2" style="text-align: center; vertical-align: middle; width:120px" %)
Karen 38.8 519 **P02-07**|=(% style="width:150px" %)**Parameter name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 39.1 520 |(% style="text-align:center; width:150px" %)The second gain switching mode|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)0|(% style="text-align:center" %)0 to 1|(% style="text-align:center" %)Gain control|
Karen 22.2 521 |(% colspan="8" %)(((
522 Set the switching mode of the second gain.
523
Karen 40.5 524 |=(% style="text-align: center; vertical-align: middle; width:120px" %)**Setting value**|=(% style="text-align: center; vertical-align: middle" %)**Function**
Karen 39.2 525 |=(% style="text-align: center; vertical-align: middle" %)0|(((
Karen 22.2 526 The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
527
528 DI logic invalid: PI control;
529
530 DI logic valid: PI control.
531 )))
Karen 39.2 532 |=(% style="text-align: center; vertical-align: middle" %)1|The first gain and the second gain are switched by the setting value of P02-08.
Karen 22.2 533 )))
534
Karen 40.3 535 |=(% rowspan="2" style="text-align: center; vertical-align: middle; width:120px" %)**P02-08**|=(% style="width:150px" %)Parameter name|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 40.4 536 |(% style="text-align:center; width:150px" %)Gain switching condition selection|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)0|(% style="text-align:center" %)0 to 10|(% style="text-align:center" %)Gain control|
Karen 22.2 537 |(% colspan="8" %)(((
538 Set the conditions for gain switching.
539
Karen 40.5 540 |=(% style="text-align: center; vertical-align: middle; width:120px" %)Setting value|=(% style="text-align: center; vertical-align: middle" %)Gain switching conditions|=(% style="text-align: center; vertical-align: middle" %)Details
Karen 40.9 541 |=(% style="text-align: center; vertical-align: middle" %)0|(% style="text-align:center; vertical-align:middle" %)The default is the first gain|Fixed use of the first gain
Karen 40.17 542 |=(% style="text-align: center; vertical-align: middle" %)1|(% style="text-align:center; vertical-align:middle" %)Switch by DI port|(((
Karen 22.2 543 Use DI function 10 (GAIN-SEL, gain switching);
544
545 DI logic is invalid: the first gain (P02-01~~P02-03);
546
547 DI logic is valid: the second gain (P02-04~~P02-06).
548 )))
Karen 40.17 549 |=(% style="text-align: center; vertical-align: middle" %)2|(% style="text-align:center; vertical-align:middle" %)Large torque command|(((
Karen 22.2 550 In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
551
552 In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
553 )))
Karen 40.17 554 |=(% style="text-align: center; vertical-align: middle" %)3|(% style="text-align:center; vertical-align:middle" %)Large actual torque|(((
Karen 22.2 555 In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
556
Karen 30.2 557 In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
Karen 22.2 558 )))
Karen 40.17 559 |=(% style="text-align: center; vertical-align: middle" %)4|(% style="text-align:center; vertical-align:middle" %)Large speed command|(((
Karen 22.2 560 In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
561
Karen 40.6 562 In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
Karen 22.2 563 )))
Karen 40.17 564 |=(% style="text-align: center; vertical-align: middle" %)5|(% style="text-align:center; vertical-align:middle" %)Large actual speed|(((
Karen 22.2 565 In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
566
Karen 40.6 567 In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
Karen 22.2 568 )))
Karen 40.17 569 |=(% style="text-align: center; vertical-align: middle" %)6|(% style="text-align:center; vertical-align:middle" %)Large rate of change in speed command|(((
Karen 22.2 570 In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
571
Karen 40.15 572 In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
Karen 22.2 573 )))
Karen 40.17 574 |=(% style="text-align: center; vertical-align: middle" %)7|(% style="text-align:center; vertical-align:middle" %)Large position deviation|(((
Karen 22.2 575 In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
576
Karen 40.9 577 In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
Karen 22.2 578 )))
Karen 40.17 579 |=(% style="text-align: center; vertical-align: middle" %)8|(% style="text-align:center; vertical-align:middle" %)Position command|(((
Karen 22.2 580 In the previous first gain, if the position command is not 0, switch to the second gain;
581
582 In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
583 )))
Karen 40.17 584 |=(% style="text-align: center; vertical-align: middle" %)9|(% style="text-align:center; vertical-align:middle" %)Positioning complete|(((
Karen 22.2 585 In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
586 )))
Karen 40.17 587 |=(% style="text-align: center; vertical-align: middle" %)10|(% style="text-align:center; vertical-align:middle" %)Position command + actual speed|(((
Karen 22.2 588 In the previous first gain, if the position command is not 0, the second gain is switched;
589
590 In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
591 )))
Karen 40.15 592 )))
Karen 22.2 593
Karen 41.2 594 |=(% rowspan="2" style="text-align:center; vertical-align:middle; width:120px" %)**P02-13**|=(% style="width:150px" %)Parameter name|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 40.18 595 |(% style="text-align:center; width:150px" %)Delay Time for Gain Switching|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)20|(% style="text-align:center" %)0 to 10000|(% style="text-align:center" %)Gain control|(% style="text-align:center" %)0.1ms
Karen 45.5 596 |(% colspan="8" style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 597 The duration of the switching condition required for the second gain to switch back to the first gain.
598
Karen 45.5 599 [[image:image-20230515140953-9.png]]
600
Karen 22.2 601 **✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
602 )))
603
Karen 41.2 604 |=(% rowspan="2" style="text-align:center; vertical-align:middle; width:120px" %)**P02-14**|=(% style="width:150px" %)Parameter name|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 41.8 605 |(% style="text-align:center; width:150px" %)Gain switching grade|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)50|(% style="text-align:center" %)0 to 20000|(% style="text-align:center" %)Gain control|(% style="text-align:center" %)According to the switching conditions
Karen 45.6 606 |(% colspan="8" style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 607 Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
608
Karen 45.6 609 [[image:image-20230515140953-10.png]]
Karen 22.2 610 )))
611
Karen 41.2 612 |=(% rowspan="2" style="text-align:center; vertical-align:middle; width:120px" %)**P02-15**|=(% style="width:150px" %)Parameter name|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 41.9 613 |(% style="text-align:center; width:150px" %)Gain switching hysteresis|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)20|(% style="text-align:center" %)0 to 20000|(% style="text-align:center" %)Gain control|(% style="text-align:center" %)According to the switching conditions
Karen 45.6 614 |(% colspan="8" style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 615 Set the hysteresis to meet the gain switching condition.
616
Karen 45.6 617 [[image:image-20230515140953-11.png]]
Karen 22.2 618 )))
619
Karen 41.3 620 |=(% rowspan="2" style="text-align:center; vertical-align:middle; width:120px" %)**P02-16**|=(% style="width:150px" %)Parameter name|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Setting method**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Effective time**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Set range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Application category**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Unit**
Karen 41.9 621 |(% style="text-align:center; width:150px" %)Position loop gain switching time|(% style="text-align:center" %)Operation setting|(% style="text-align:center" %)Effective immediately|(% style="text-align:center" %)30|(% style="text-align:center" %)0 to 10000|(% style="text-align:center" %)Gain control|(% style="text-align:center" %)0.1ms
Karen 45.6 622 |(% colspan="8" style="text-align:center; vertical-align:middle" %)(((
Karen 22.2 623 Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
624
Karen 45.6 625 [[image:image-20230515140953-12.png]]|
Karen 44.5 626
Karen 22.2 627 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
628 )))
629
630 = **Mechanical resonance suppression** =
631
632 == Mechanical resonance suppression methods ==
633
634 When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
635
636 **Torque instruction filter**
637
638 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
639
640 (% style="text-align:center" %)
641 [[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
642
643 **Notch filter**
644
645 The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
646
647 == Notch filter ==
648
649 The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
650
651 **Width grade of notch filter**
652
653 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
654
655 (% style="text-align:center" %)
656 [[image:image-20220706155836-6.png||class="img-thumbnail"]]
657
658 In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
659
660 **Depth grade of notch filter**
661
662 The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
663
664 When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
665
666 (% style="text-align:center" %)
667 (((
668 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
669 [[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
670 )))
671
672
673 (% style="text-align:center" %)
674 (((
675 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
676 [[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
677 )))
678
679
680 (% class="table-bordered" %)
681 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
682 **Setting method**
683 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
684 **Effective time**
685 )))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
686 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
687 Operation setting
688 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
689 Effective immediately
690 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
691 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
692 Operation setting
693 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
694 Effective immediately
695 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
696 1. 0: all truncated
697 1. 100: all passed
698 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
699 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
700 Operation setting
701 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
702 Effective immediately
703 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
704 1. 0: 0.5 times the bandwidth
705 1. 4: 1 times the bandwidth
706 1. 8: 2 times the bandwidth
707 1. 12: 4 times the bandwidth
708 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
709 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
710 Operation setting
711 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
712 Effective immediately
713 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
714 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
715 Operation setting
716 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
717 Effective immediately
718 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
719 1. 0: all truncated
720 1. 100: all passed
721 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
722 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
723 Operation setting
724 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
725 Effective immediately
726 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
727 1. 0: 0.5 times the bandwidth
728 1. 4: 1 times the bandwidth
729 1. 8: 2 times the bandwidth
730 1. 12: 4 times the bandwidth
731 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
732
733 Table 7-11 Notch filter function code parameters
734 ~)~)~)
Karen 46.2 735
Karen 47.2 736 == Low frequency vibration suppression ==
Karen 46.2 737
738 Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.
739
740 (% style="text-align:center" %)
741 (((
742 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Karen 46.3 743 [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
Karen 46.2 744 )))
Karen 48.1 745
Karen 55.7 746 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 294px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 137px;" %)(((
Karen 55.5 747 **Setting method**
Karen 55.7 748 )))|=(% style="text-align: center; vertical-align: middle; width: 156px;" %)(((
Karen 55.3 749 **Effective time**
Karen 55.6 750 )))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 126px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 448px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
Karen 55.8 751 |=(% style="text-align:center; vertical-align:middle" %)P4-11|(% style="width:294px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
Karen 55.6 752 Operation setting
Karen 55.9 753 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
Karen 55.6 754 Effective immediately
Karen 55.10 755 )))|(% style="text-align:center; vertical-align:middle " %)0|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1|(% style="width:448px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:96px" %)
Karen 55.9 756 |=(% style="text-align:center; vertical-align:middle" %)P4-12|(% style="width:294px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
Karen 55.7 757 Operation setting
Karen 55.9 758 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
Karen 55.7 759 Effective immediately
Karen 55.10 760 )))|(% style="text-align:center; vertical-align:middle" %)800|(% style="text-align:center; vertical-align:middle; width:126px" %)10 to 2000|(% style="width:448px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.1HZ
Karen 55.12 761 |=(% style="text-align:center; vertical-align:middle" %)P4-14|(% style="width:294px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle;width:137px" %)(((
Karen 55.7 762 Operation setting
Karen 55.11 763 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
Karen 55.7 764 Effective immediately
Karen 55.9 765 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1000|(% style="width:448px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.001
Karen 50.3 766
767 **(1) Vibration frequency detection:**
768
769 * Users can measure vibration by measuring equipment such as laser displacement.
770 * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
771 * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
772
773 **(2) Debugging method:**
774
775 * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
776 * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
777 * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
778 * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
779
780 |[[image:image-20230516105941-2.png]]
781 |Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
782
Karen 48.4 783 == Type A vibration suppression ==
Karen 48.1 784
Karen 49.2 785 Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
Karen 48.1 786
787 (% style="text-align:center" %)
788 (((
789 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
Karen 48.2 790 [[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
Karen 48.1 791 )))