Wiki source code of 08 Communication

Version 3.1 by Joey on 2022/06/15 15:01

Show last authors
1 The VD2 series servo drive has Modbus communication function, which could cooperate with the host computer for parameter modification, parameter query, monitoring volume servo status query and control. The servo drive is used as a slave device.
2
3 = **Modbus communication** =
4
5 == **Hardware wiring** ==
6
7 The position of RS485 communication port (take VD2B as an example) is as the figure below.
8
9 (% style="text-align:center" %)
10 [[image:image-20220608154248-1.png]]
11
12 Figure 8-1 The position of RS485 communication port of VD2B drive
13
14 For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
15
16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17
18 (% class="table-bordered" %)
19 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]
20 |(((
21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together!
22
23 ✎In a half-duplex connection, only one servo drive can communicate with the host computer at the same time. If two or more servo drives upload data at the same time, bus competition will occur. Not only will it lead to communication failure, it may also cause some components to generate large currents and damage the components.
24 )))
25
26 (% style="text-align:center" %)
27 [[image:image-20220608174415-1.png]]
28
29 Figure 8-2 RS485 communication network wiring diagram
30
31 The terminal of RS485 network should use a terminating resistors of 120Ω to weaken the reflection of the signal. Intermediate networks cannot use terminating resistors.
32
33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.
34
35 (% class="table-bordered" %)
36 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]]
37 |Under no circumstances can the grounding wire form a closed loop.
38
39 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.
40
41 = **Modbus communication protocol analysis** =
42
43 == **Modbus data frame format** ==
44
45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.
46
47 (% class="table-bordered" %)
48 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
50
51 == **Description of supported function codes** ==
52
53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:
54
55 (% class="table-bordered" %)
56 |(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59
60 **(1) Read function code: 0x03**
61
62 Request format:
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle; width:84px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:179px" %)(((
66 **Initial address high byte**
67 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
68 **Initial address low byte**
69 )))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
70 **Number of reads high byte**
71 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
72 **Number of reads low byte**
73 )))|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
74 |(% style="text-align:center; vertical-align:middle; width:84px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:104px" %)03|(% style="text-align:center; vertical-align:middle; width:179px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:162px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:194px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:195px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
75
76 Correct response format:
77
78 (% class="table-bordered" %)
79 |(% style="text-align:center; vertical-align:middle; width:85px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:139px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:244px" %)(((
80 **Return data number of bytes**
81 )))|(% style="text-align:center; vertical-align:middle; width:203px" %)(((
82 **Register 1 high byte**
83 )))|(% style="text-align:center; vertical-align:middle; width:190px" %)(((
84 **Register 1 low byte**
85 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)**CRC check code**
86 |(% style="text-align:center; vertical-align:middle; width:85px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:139px" %)03|(% style="text-align:center; vertical-align:middle; width:244px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:203px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:190px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)2 bytes
87
88 **(2) Write function code: 0x06**
89
90 Request format:
91
92 (% class="table-bordered" %)
93 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
94 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
95
96 Response format:
97
98 (% class="table-bordered" %)
99 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
100 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
101
102 If the setting is successful, the original is returned
103
104 (% class="table-bordered" %)
105 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Data**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
106 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)N bytes|(% style="text-align:center; vertical-align:middle" %)2 bytes
107
108 == **CRC check** ==
109
110 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:
111
112 {{code language="LUA"}}
113 {
114
115     Uint16 crc = 0xffff;
116
117     Uint16 i;
118
119
120
121   while(uLen--)
122
123   {
124
125     crc ^=(Uint16) *pBuf++;
126
127     for(i=0; i<8; i++)
128
129     {
130
131       if(crc & 0x0001)
132
133 {
134
135 crc = (crc >> 1) ^ 0xa001;
136
137 }
138
139 else
140
141 {
142
143 crc = crc >> 1;
144
145 }
146
147
148
149     }
150
151   }
152
153   return crc;
154
155 }
156
157 return crc;
158
159 }
160 {{/code}}
161
162 == **Error response frame** ==
163
164 (% class="table-bordered" %)
165 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
166 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes
167
168 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.
169
170 (% class="table-bordered" %)
171 |(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description**
172 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code
173 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address
174 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data
175 |(% style="text-align:center; vertical-align:middle" %)0x0004|(% style="text-align:center; vertical-align:middle" %)Slave device failure
176
177 == **Communication example** ==
178
179 **03 Function Code Read**
180
181 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
182
183 Request format:
184
185 (% class="table-bordered" %)
186 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
187 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
188
189 The slave responds normally:
190
191 (% class="table-bordered" %)
192 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
193 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
194
195 The value read is 0x0C26, which means that the voltage is 311.0V. 
196
197 **06 Function Code Write**
198
199 P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
200
201 Request format:
202
203 (% class="table-bordered" %)
204 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
205 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
206
207 The slave responds normally:
208
209 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
210 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
211
212 = **Servo communication parameter setting** =
213
214 (% style="text-align:center" %)
215 [[image:image-20220608174504-2.png]]
216
217 Figure 8-3 Modbus communication parameter setting process
218
219 **(1) Set the servo address P12-1**
220
221 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.
222
223 **(2) Set the serial port baud rate P12-2**
224
225 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.
226
227 **(3) Set the serial port data format P12-3**
228
229 The data bit check methods of servo communication are:
230
231 Odd parity
232
233 Even parity
234
235 No parity
236
237 The stop bit: 1 stop bit and 2 stop bits.
238
239 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
240
241 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
242
243 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.
244
245 If the value of the function code only needs to be rewritten once, and the value is used later, the function of real-time writing of the function code to EEPROM can be enabled.
246
247 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.
248
249 (% class="table-bordered" %)
250 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
251 |After the EEPROM is damaged, the servo will have an non resettable fault!
252
253 **(5) Set the high and low order of the 32-bit monitoring data**
254
255 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!
256
257 For example, U0-54 (position within 1 circle of absolute encoder) occupies two consecutive offset numbers, which are 0x1E3D and 0x1E3E respectively. Assuming the value of U0-54 is 0x12345678, the correct data sequence bit should be 0x1E3D=0x5678 , 0x1E3E=0x1234 (little endian mode: low byte first, high byte behind.)
258
259 The description of related function codes are as follows.
260
261 (% class="table-bordered" %)
262 |(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
263 **Setting method**
264 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
265 **Effective time**
266 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
267 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
268 Operation setting
269 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
270 Effective immediately
271 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
272 0-2400bps
273
274 1-4800bps
275
276 2-9600bps
277
278 3-19200bps
279
280 4-38400bps
281
282 5-57600bp
283 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
284 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
285 Operation setting
286 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
287 Effective immediately
288 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
289 0: 1 stop bit, no parity
290
291 1: 1 stop bit, odd parity
292
293 2: 1 stop bit, even parity
294
295 3: 2 stop bits, no parity
296 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
297 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
298 Operation setting
299 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
300 Effective immediately
301 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
302 0: Do not write to EEPROM, and do not store after power failure;
303
304 1: Write to EEPROM, power-down storage.
305 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
306
307 = **Modbus communication variable address and value** =
308
309 == **Variable address description** ==
310
311 Modbus registers are divided into two categories:
312
313 ~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
314
315 2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
316
317 **Servo function code representation: PXX-YY.**
318
319 XX: represents the function code group number,
320
321 YY: represents the bias within the function code group;;
322
323 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
324
325 **Servo monitor volume representation: Uxx-yy.**
326
327 xx: represents the monitoring volume group number,
328
329 yy: represents the bias within the monitoring volume group;
330
331 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
332
333 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
334
335 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:
336
337 (% class="table-bordered" %)
338 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)(((
339 **Modbus address**
340
341 **(Hexadecimal)**
342 )))|(% style="text-align:center; vertical-align:middle" %)(((
343 **Modbus address**
344
345 **(Decimal)**
346 )))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
347 |(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
348
349 For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
350
351 == **Variable value type description** ==
352
353 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
354
355 ~1. The data is positive or 0: complement code = original code
356
357 2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
358
359 For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
360
361 If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
362
363 == **Numerical unit description** ==
364
365 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
366
367 ~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
368
369 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.