Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 1.1
edited by Leo Wei
on 2022/06/08 12:57
Change comment: Imported from XAR
To version 4.15
edited by Stone Wu
on 2022/07/07 15:37
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome
1 +Servo.1 User Manual.02 VD2 SA Series.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.Stone
Content
... ... @@ -6,16 +6,17 @@
6 6  
7 7  The position of RS485 communication port (take VD2B as an example) is as the figure below.
8 8  
9 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6583b880b8115df0.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6583b880b8115df0.gif"]]
9 +(% style="text-align:center" %)
10 +[[image:image-20220608154248-1.png]]
10 10  
11 11  Figure 8-1 The position of RS485 communication port of VD2B drive
12 12  
13 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
14 14  
15 15  The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
16 16  
17 17  (% class="table-bordered" %)
18 -|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
19 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]
19 19  |(((
20 20  ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together!
21 21  
... ... @@ -22,7 +22,8 @@
22 22  ✎In a half-duplex connection, only one servo drive can communicate with the host computer at the same time. If two or more servo drives upload data at the same time, bus competition will occur. Not only will it lead to communication failure, it may also cause some components to generate large currents and damage the components.
23 23  )))
24 24  
25 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ec4180b4b0c8dd01.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ec4180b4b0c8dd01.gif"]]
26 +(% style="text-align:center" %)
27 +[[image:image-20220608174415-1.png]]
26 26  
27 27  Figure 8-2 RS485 communication network wiring diagram
28 28  
... ... @@ -31,7 +31,7 @@
31 31  No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.
32 32  
33 33  (% class="table-bordered" %)
34 -|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
36 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]]
35 35  |Under no circumstances can the grounding wire form a closed loop.
36 36  
37 37  When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.
... ... @@ -52,58 +52,46 @@
52 52  
53 53  (% class="table-bordered" %)
54 54  |(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
55 -|(% style="text-align:center; vertical-align:middle" %)Read 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
57 +|(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
56 56  |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59 +|(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10
57 57  
58 -**(1) Read function code: 0x03**
61 +**Read function code: 0x03**
59 59  
60 60  Request format:
61 61  
62 -(% class="table-bordered" %)
63 -|(% style="text-align:center; vertical-align:middle; width:84px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:179px" %)(((
64 -**Initial address high byte**
65 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
66 -**Initial address low byte**
67 -)))|(% style="text-align:center; vertical-align:middle; width:194px" %)(((
68 -**Number of reads high byte**
69 -)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
70 -**Number of reads low byte**
71 -)))|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
72 -|(% style="text-align:center; vertical-align:middle; width:84px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:104px" %)03|(% style="text-align:center; vertical-align:middle; width:179px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:162px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:194px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:195px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
65 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
66 +|**high byte**|**low byte**|**high byte**|**low byte**
67 +|1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes
73 73  
74 74  Correct response format:
75 75  
76 -(% class="table-bordered" %)
77 -|(% style="text-align:center; vertical-align:middle; width:85px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:139px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:244px" %)(((
78 -**Return data number of bytes**
79 -)))|(% style="text-align:center; vertical-align:middle; width:203px" %)(((
80 -**Register 1 high byte**
81 -)))|(% style="text-align:center; vertical-align:middle; width:190px" %)(((
82 -**Register 1 low byte**
83 -)))|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)**CRC check code**
84 -|(% style="text-align:center; vertical-align:middle; width:85px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:139px" %)03|(% style="text-align:center; vertical-align:middle; width:244px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:203px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:190px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)2 bytes
71 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code**
72 +|**high byte**|**low byte**
73 +|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes
85 85  
86 -**(2) Write function code: 0x06**
75 +**Write function code: 0x06**
87 87  
88 88  Request format:
89 89  
90 -(% class="table-bordered" %)
91 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
92 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
79 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)(((
80 +**Register address**
81 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
82 +|**high byte**|**low byte**|**high byte**|**low byte**
83 +|1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
93 93  
94 94  Response format:
95 95  
96 -(% class="table-bordered" %)
97 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
98 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
87 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
88 +|**high byte**|**low byte**|**high byte**|**low byte**
89 +|1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
99 99  
100 100  If the setting is successful, the original is returned
101 101  
102 -(% class="table-bordered" %)
103 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Data**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
104 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)N bytes|(% style="text-align:center; vertical-align:middle" %)2 bytes
93 +|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code**
94 +|1 byte|1 byte|N bytes|2 bytes
105 105  
106 -== **CRC check** ==
96 +(% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check**
107 107  
108 108  The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:
109 109  
... ... @@ -174,42 +174,66 @@
174 174  
175 175  == **Communication example** ==
176 176  
177 -**03 Function Code Read**
178 178  
168 +
169 +**03 Function code read**
170 +
179 179  Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
180 180  
181 181  Request format:
182 182  
183 -(% class="table-bordered" %)
184 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
185 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
175 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
176 +|**high byte**|**low byte**|**high byte**|**low byte**
177 +|01|03|1E|24|00|01|C2 29
186 186  
187 187  The slave responds normally:
188 188  
189 -(% class="table-bordered" %)
190 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
191 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
181 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte**
182 +|**high byte**|**low byte**
183 +|01|03|02|0C|4F|FC B0
192 192  
193 -The value read is 0x0C26, which means that the voltage is 311.0V. 
185 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V.
194 194  
187 +
188 +
195 195  **06 Function Code Write**
196 196  
197 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
191 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
198 198  
199 199  Request format:
200 200  
201 -(% class="table-bordered" %)
202 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
203 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
196 +|**high byte**|**low byte**|**high byte**|**low byte**
197 +|01|06|01|0A|0B|B8|AF, 76
204 204  
205 205  The slave responds normally:
206 206  
207 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
208 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
202 +|**high byte**|**low byte**|**high byte**|**low byte**
203 +|01|06|01|0A|0B|B8|AF, 76
209 209  
205 +
206 +
207 +**10 Function code write**
208 +
209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
210 +
211 +Request format:
212 +
213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
216 +
217 +The slave responds normally:
218 +
219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
221 +|01|10|07|09|00|02|90|BE
222 +
210 210  = **Servo communication parameter setting** =
211 211  
212 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_fd76131f4dd0361c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_fd76131f4dd0361c.gif"]]
225 +(% style="text-align:center" %)
226 +[[image:image-20220608174504-2.png]]
213 213  
214 214  Figure 8-3 Modbus communication parameter setting process
215 215  
... ... @@ -225,14 +225,11 @@
225 225  
226 226  The data bit check methods of servo communication are:
227 227  
228 -Odd parity
242 +* Odd parity
243 +* Even parity
244 +* No parity
245 +* The stop bit: 1 stop bit and 2 stop bits.
229 229  
230 -Even parity
231 -
232 -No parity
233 -
234 -The stop bit: 1 stop bit and 2 stop bits.
235 -
236 236  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
237 237  
238 238  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -244,7 +244,7 @@
244 244  If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.
245 245  
246 246  (% class="table-bordered" %)
247 -|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
258 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
248 248  |After the EEPROM is damaged, the servo will have an non resettable fault!
249 249  
250 250  **(5) Set the high and low order of the 32-bit monitoring data**
... ... @@ -256,16 +256,16 @@
256 256  The description of related function codes are as follows.
257 257  
258 258  (% class="table-bordered" %)
259 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
270 +|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
260 260  **Setting method**
261 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
272 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
262 262  **Effective time**
263 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:347px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
264 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
275 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
265 265  Operation setting
266 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
277 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
267 267  Effective immediately
268 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)2|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 5|(% style="width:347px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
269 269  0-2400bps
270 270  
271 271  1-4800bps
... ... @@ -277,12 +277,12 @@
277 277  4-38400bps
278 278  
279 279  5-57600bp
280 -)))|(% style="text-align:center; vertical-align:middle" %)-
281 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
292 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
282 282  Operation setting
283 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
294 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
284 284  Effective immediately
285 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 3|(% style="width:347px" %)(((
296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
286 286  0: 1 stop bit, no parity
287 287  
288 288  1: 1 stop bit, odd parity
... ... @@ -290,16 +290,16 @@
290 290  2: 1 stop bit, even parity
291 291  
292 292  3: 2 stop bits, no parity
293 -)))|(% style="text-align:center; vertical-align:middle" %)-
294 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
305 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
295 295  Operation setting
296 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
307 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
297 297  Effective immediately
298 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:347px" %)(((
309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
299 299  0: Do not write to EEPROM, and do not store after power failure;
300 300  
301 301  1: Write to EEPROM, power-down storage.
302 -)))|(% style="text-align:center; vertical-align:middle" %)-
313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
303 303  
304 304  = **Modbus communication variable address and value** =
305 305  
... ... @@ -307,24 +307,21 @@
307 307  
308 308  Modbus registers are divided into two categories:
309 309  
310 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
311 311  
312 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
313 -
314 314  **Servo function code representation: PXX-YY.**
315 315  
316 -XX: represents the function code group number,
326 +* XX: represents the function code group number,
327 +* YY: represents the bias within the function code group;;
317 317  
318 -YY: represents the bias within the function code group;;
319 -
320 320  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
321 321  
322 322  **Servo monitor volume representation: Uxx-yy.**
323 323  
324 -xx: represents the monitoring volume group number,
333 +* xx: represents the monitoring volume group number,
334 +* yy: represents the bias within the monitoring volume group;
325 325  
326 -yy: represents the bias within the monitoring volume group;
327 -
328 328  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
329 329  
330 330  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -343,24 +343,24 @@
343 343  )))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
344 344  |(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
345 345  
346 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
354 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
347 347  
348 348  == **Variable value type description** ==
349 349  
350 350  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
351 351  
352 -~1. The data is positive or 0: complement code = original code
360 +1. The data is positive or 0: complement code = original code
361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
353 353  
354 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
363 +For example:
355 355  
356 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
357 357  
358 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
359 -
360 360  == **Numerical unit description** ==
361 361  
362 362  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
363 363  
364 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
365 -
366 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
image-20220608154248-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +12.3 KB
Content
image-20220608154320-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +10.1 KB
Content
image-20220608154619-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +10.8 KB
Content
image-20220608174415-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +54.9 KB
Content
image-20220608174504-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +87.2 KB
Content
image-20220611153134-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611153144-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611153214-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content