Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo.Manual.02 VD2 SA Series.WebHome 1 +Servo.1 User Manual.02 VD2 SA Series.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Iris1 +XWiki.Stone - Content
-
... ... @@ -2,21 +2,21 @@ 2 2 3 3 = **Modbus communication** = 4 4 5 -== Hardware wiring == 5 +== **Hardware wiring** == 6 6 7 7 The position of RS485 communication port (take VD2B as an example) is as the figure below. 8 8 9 9 (% style="text-align:center" %) 10 -[[image:image-20220608154248-1.png ||class="img-thumbnail"]]10 +[[image:image-20220608154248-1.png]] 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/0 2%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 18 18 (% class="table-bordered" %) 19 - (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]19 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 20 20 |((( 21 21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together! 22 22 ... ... @@ -24,7 +24,7 @@ 24 24 ))) 25 25 26 26 (% style="text-align:center" %) 27 -[[image:image-20220608174415-1.png ||class="img-thumbnail"]]27 +[[image:image-20220608174415-1.png]] 28 28 29 29 Figure 8-2 RS485 communication network wiring diagram 30 30 ... ... @@ -33,29 +33,27 @@ 33 33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals. 34 34 35 35 (% class="table-bordered" %) 36 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 37 -|((( 38 -The grounding wire cannot form a closed loop under no circumstances. 39 -))) 36 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 37 +|Under no circumstances can the grounding wire form a closed loop. 40 40 41 41 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed. 42 42 43 43 = **Modbus communication protocol analysis** = 44 44 45 -== Modbus data frame format == 43 +== **Modbus data frame format** == 46 46 47 47 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 48 48 49 49 (% class="table-bordered" %) 50 -| =(% rowspan="2" scope="row" style="text-align:;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align:;" %)**Address**|=(% style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Data**|=(% style="text-align:;" %)**CRC check code**48 +|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 51 51 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 52 52 53 -== Supported function codes ==51 +== **Description of supported function codes** == 54 54 55 55 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 56 56 57 57 (% class="table-bordered" %) 58 -| =(% style="text-align:;" %)**Operate**|=(% style="text-align:;" %)**Command code**56 +|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 59 59 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 60 60 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 61 61 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -64,16 +64,15 @@ 64 64 65 65 Request format: 66 66 67 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of reads**|=(% rowspan="2" %)**CRC check code**68 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**65 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 66 +|**high byte**|**low byte**|**high byte**|**low byte** 69 69 |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes 70 70 71 71 Correct response format: 72 72 73 -(% style="width:1055px" %) 74 -|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" style="width: 279px;" %)**Number of bytes of returned data**|=(% colspan="2" style="width: 274px;" %)**Register 1**|=(% rowspan="2" style="width: 98px;" %)**…**|=(% rowspan="2" %)**CRC check code** 75 -|=(% style="width: 160px;" %)**high byte**|=(% style="width: 114px;" %)**low byte** 76 -|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 71 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 +|**high byte**|**low byte** 73 +|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 77 77 78 78 **Write function code: 0x06** 79 79 ... ... @@ -87,16 +87,16 @@ 87 87 88 88 Response format: 89 89 90 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**91 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**87 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 88 +|**high byte**|**low byte**|**high byte**|**low byte** 92 92 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 93 93 94 94 If the setting is successful, the original is returned 95 95 96 -| =(% rowspan="2"style="width: 551px;"%)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="width: 114px;" %)**Address**|=(% style="width: 127px;" %)**Function code**|=(% style="width: 104px;" %)**Data**|=(% style="width: 180px;" %)**CRC check code**97 -| (% style="width:114px"%)1byte|(% style="width:127px"%)1byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes93 +|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 +|1 byte|1 byte|N bytes|2 bytes 98 98 99 - ==(% style="color:inherit; font-family:inherit; font-size:26px" %)CRC check(%%) ==96 +(% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check** 100 100 101 101 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows: 102 102 ... ... @@ -153,13 +153,13 @@ 153 153 == **Error response frame** == 154 154 155 155 (% class="table-bordered" %) 156 -| =(% style="text-align:;" %)**Address**|=(% style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Error code**|=(% style="text-align:;" %)**CRC check code**153 +|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 157 157 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 158 158 159 159 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 160 160 161 161 (% class="table-bordered" %) 162 -| =(% style="text-align:;" %)**Error code**|=(% style="text-align:;" %)**Coding description**159 +|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 163 163 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 164 164 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 165 165 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -167,6 +167,8 @@ 167 167 168 168 == **Communication example** == 169 169 167 + 168 + 170 170 **03 Function code read** 171 171 172 172 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) ... ... @@ -173,18 +173,20 @@ 173 173 174 174 Request format: 175 175 176 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**177 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**175 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 176 +|**high byte**|**low byte**|**high byte**|**low byte** 178 178 |01|03|1E|24|00|01|C2 29 179 179 180 180 The slave responds normally: 181 181 182 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" %)**Number of bytes**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC high byte**183 -| =**high byte**|=**low byte**181 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 182 +|**high byte**|**low byte** 184 184 |01|03|02|0C|4F|FC B0 185 185 186 186 For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 187 187 187 + 188 + 188 188 **06 Function Code Write** 189 189 190 190 P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) ... ... @@ -191,16 +191,18 @@ 191 191 192 192 Request format: 193 193 194 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**195 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 +|**high byte**|**low byte**|**high byte**|**low byte** 196 196 |01|06|01|0A|0B|B8|AF, 76 197 197 198 198 The slave responds normally: 199 199 200 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**201 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 +|**high byte**|**low byte**|**high byte**|**low byte** 202 202 |01|06|01|0A|0B|B8|AF, 76 203 203 205 + 206 + 204 204 **10 Function code write** 205 205 206 206 P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). ... ... @@ -207,33 +207,32 @@ 207 207 208 208 Request format: 209 209 210 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of register**|=(% rowspan="2" %)**Number of data**|=(% colspan="2" %)**Data 1**|=(% colspan="2" %)**Data 2**|=(% colspan="2" %)**CRC check code**211 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 212 212 |01|10|07|09|00|02|04|00|00|07|D0|16|59 213 213 214 214 The slave responds normally: 215 215 216 -| =(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% colspan="2" %)**CRC check code**217 -| =**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 218 218 |01|10|07|09|00|02|90|BE 219 219 220 220 = **Servo communication parameter setting** = 221 221 222 222 (% style="text-align:center" %) 223 -((( 224 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 225 -[[Figure 8-3 Modbus communication parameter setting process>>image:image-20220608174504-2.png||id="Iimage-20220608174504-2.png"]] 226 -))) 226 +[[image:image-20220608174504-2.png]] 227 227 228 - **Set the servoaddressP12-1**228 +Figure 8-3 Modbus communication parameter setting process 229 229 230 +**(1) Set the servo address P12-1** 231 + 230 230 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 231 231 232 -**Set the serial port baud rate P12-2** 234 +**(2) Set the serial port baud rate P12-2** 233 233 234 234 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 235 235 236 -**Set the serial port data format P12-3** 238 +**(3) Set the serial port data format P12-3** 237 237 238 238 The data bit check methods of servo communication are: 239 239 ... ... @@ -244,7 +244,7 @@ 244 244 245 245 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 246 246 247 -**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 249 +**(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 248 248 249 249 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 250 250 ... ... @@ -253,10 +253,10 @@ 253 253 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM. 254 254 255 255 (% class="table-bordered" %) 256 - (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]258 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 257 257 |After the EEPROM is damaged, the servo will have an non resettable fault! 258 258 259 -**Set the high and low order of the 32-bit monitoring data** 261 +**(5) Set the high and low order of the 32-bit monitoring data** 260 260 261 261 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 262 262 ... ... @@ -265,35 +265,33 @@ 265 265 The description of related function codes are as follows. 266 266 267 267 (% class="table-bordered" %) 268 -| =(% style="text-align:;" %)**Function code**|=(% style="text-align:165px;" %)**Name**|=(% style="text-align:48px;" %)(((270 +|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 269 269 **Setting method** 270 -)))| =(% style="text-align:5px;" %)(((272 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 271 271 **Effective time** 272 -)))| =(% style="text-align:9px;" %)**Default value**|=(% style="text-align:85px;" %)**Range**|=(% style="text-align:4px;" %)**Definition**|=(% style="text-align:69px;" %)**Unit**273 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)(((274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 275 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 274 274 Operation setting 275 -)))|(% style="text-align:center; vertical-align:middle; width:16 5px" %)(((277 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 276 276 Effective immediately 277 -)))|(% style="text-align:center; vertical-align:middle; width:10 9px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to6|(% style="width:224px" %)(((278 -0 :2400bps279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 280 +0-2400bps 279 279 280 -1 :4800bps282 +1-4800bps 281 281 282 -2 :9600bps284 +2-9600bps 283 283 284 -3 :19200bps286 +3-19200bps 285 285 286 -4 :38400bps288 +4-38400bps 287 287 288 -5: 57600bp 289 - 290 -6:115200bps 291 -)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 292 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 290 +5-57600bp 291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 292 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 293 293 Operation setting 294 -)))|(% style="text-align:center; vertical-align:middle; width:16 5px" %)(((294 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 295 295 Effective immediately 296 -)))|(% style="text-align:center; vertical-align:middle; width:10 9px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 297 297 0: 1 stop bit, no parity 298 298 299 299 1: 1 stop bit, odd parity ... ... @@ -301,33 +301,20 @@ 301 301 2: 1 stop bit, even parity 302 302 303 303 3: 2 stop bits, no parity 304 -)))|(% style="text-align:center; vertical-align:middle; width: 69px" %)-305 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width: 165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)(((304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 305 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 306 306 Operation setting 307 -)))|(% style="text-align:center; vertical-align:middle; width:16 5px" %)(((307 +)))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 308 308 Effective immediately 309 -)))|(% style="text-align:center; vertical-align:middle; width:10 9px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 310 310 0: Do not write to EEPROM, and do not store after power failure; 311 311 312 312 1: Write to EEPROM, power-down storage. 313 -)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 314 -|P12-06|Modbus 32-bit variable big endian and little endian|((( 315 -Operation 313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 316 316 317 -setting 318 -)))|((( 319 -Effective 320 - 321 -immediately 322 -)))|0|0-1|((( 323 -0: Big-endian mode, the lower address stores the higher 16 bits of data, and the higher address stores the lower 16 bits of data 324 - 325 -1: Little-endian mode, the lower address stores the lower 16 bits of data, and the higher address stores the higher 16 bits of data 326 -)))|- 327 - 328 328 = **Modbus communication variable address and value** = 329 329 330 -== **Variable address** == 317 +== **Variable address description** == 331 331 332 332 Modbus registers are divided into two categories: 333 333 ... ... @@ -353,17 +353,21 @@ 353 353 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 354 354 355 355 (% class="table-bordered" %) 356 -|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 357 -**Modbus address (Hexadecimal)** 358 -)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 359 -**Modbus address (Decimal)** 360 -)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 361 -|(% style="text-align:center; vertical-align:middle; width:162px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 343 +|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 344 +**Modbus address** 362 362 363 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 346 +**(Hexadecimal)** 347 +)))|(% style="text-align:center; vertical-align:middle" %)((( 348 +**Modbus address** 364 364 365 -== **Variable value type** == 350 +**(Decimal)** 351 +)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 352 +|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 366 366 354 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 355 + 356 +== **Variable value type description** == 357 + 367 367 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 368 368 369 369 1. The data is positive or 0: complement code = original code