Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -184,21 +184,42 @@ 184 184 185 185 For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 186 186 187 + 188 + 187 187 **06 Function Code Write** 188 188 189 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 191 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 190 190 191 191 Request format: 192 192 193 -(% class="table-bordered" %)194 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**195 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 +|**high byte**|**low byte**|**high byte**|**low byte** 197 +|01|06|01|0A|0B|B8|AF, 76 196 196 197 197 The slave responds normally: 198 198 199 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 200 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 +|**high byte**|**low byte**|**high byte**|**low byte** 203 +|01|06|01|0A|0B|B8|AF, 76 201 201 205 + 206 + 207 +**10 Function code write** 208 + 209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 210 + 211 +Request format: 212 + 213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 216 + 217 +The slave responds normally: 218 + 219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 221 +|01|10|07|09|00|02|90|BE 222 + 202 202 = **Servo communication parameter setting** = 203 203 204 204 (% style="text-align:center" %) ... ... @@ -218,14 +218,11 @@ 218 218 219 219 The data bit check methods of servo communication are: 220 220 221 -Odd parity 242 +* Odd parity 243 +* Even parity 244 +* No parity 245 +* The stop bit: 1 stop bit and 2 stop bits. 222 222 223 -Even parity 224 - 225 -No parity 226 - 227 -The stop bit: 1 stop bit and 2 stop bits. 228 - 229 229 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 230 230 231 231 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -253,12 +253,12 @@ 253 253 **Setting method** 254 254 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 255 255 **Effective time** 256 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 257 257 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 258 258 Operation setting 259 259 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 260 260 Effective immediately 261 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 335px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 262 262 0-2400bps 263 263 264 264 1-4800bps ... ... @@ -270,12 +270,12 @@ 270 270 4-38400bps 271 271 272 272 5-57600bp 273 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 274 274 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 275 275 Operation setting 276 276 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 277 277 Effective immediately 278 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 335px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 279 279 0: 1 stop bit, no parity 280 280 281 281 1: 1 stop bit, odd parity ... ... @@ -283,16 +283,16 @@ 283 283 2: 1 stop bit, even parity 284 284 285 285 3: 2 stop bits, no parity 286 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 287 287 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 288 288 Operation setting 289 289 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 290 290 Effective immediately 291 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 335px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 292 292 0: Do not write to EEPROM, and do not store after power failure; 293 293 294 294 1: Write to EEPROM, power-down storage. 295 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 296 296 297 297 = **Modbus communication variable address and value** = 298 298 ... ... @@ -300,24 +300,21 @@ 300 300 301 301 Modbus registers are divided into two categories: 302 302 303 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 304 304 305 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 306 - 307 307 **Servo function code representation: PXX-YY.** 308 308 309 -XX: represents the function code group number, 326 +* XX: represents the function code group number, 327 +* YY: represents the bias within the function code group;; 310 310 311 -YY: represents the bias within the function code group;; 312 - 313 313 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 314 314 315 315 **Servo monitor volume representation: Uxx-yy.** 316 316 317 -xx: represents the monitoring volume group number, 333 +* xx: represents the monitoring volume group number, 334 +* yy: represents the bias within the monitoring volume group; 318 318 319 -yy: represents the bias within the monitoring volume group; 320 - 321 321 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 322 322 323 323 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -342,18 +342,20 @@ 342 342 343 343 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 344 344 345 -~1. The data is positive or 0: complement code = original code 360 +1. The data is positive or 0: complement code = original code 361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 346 346 347 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001363 +For example: 348 348 349 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 350 350 351 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 352 - 353 353 == **Numerical unit description** == 354 354 355 355 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 356 356 357 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 358 358 359 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.376 +The other units can be deduced by this, and integer remains unchanged.