Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -11,7 +11,7 @@ 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 ... ... @@ -45,7 +45,7 @@ 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 51 == **Description of supported function codes** == ... ... @@ -53,7 +53,7 @@ 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -68,9 +68,10 @@ 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code** 73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 ... ... @@ -90,8 +90,8 @@ 90 90 91 91 If the setting is successful, the original is returned 92 92 93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 -|1 byte|1 byte|N bytes|2 bytes 94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 95 95 96 96 (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check** 97 97 ... ... @@ -150,13 +150,13 @@ 150 150 == **Error response frame** == 151 151 152 152 (% class="table-bordered" %) 153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 154 154 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 155 155 156 156 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 157 157 158 158 (% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 161 161 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 162 162 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -184,21 +184,40 @@ 184 184 185 185 For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 186 186 188 + 189 + 187 187 **06 Function Code Write** 188 188 189 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 192 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 190 190 191 191 Request format: 192 192 193 -(% class="table-bordered" %)194 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**195 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF196 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 197 +|**high byte**|**low byte**|**high byte**|**low byte** 198 +|01|06|01|0A|0B|B8|AF, 76 196 196 197 197 The slave responds normally: 198 198 199 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 200 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 202 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 203 +|**high byte**|**low byte**|**high byte**|**low byte** 204 +|01|06|01|0A|0B|B8|AF, 76 201 201 206 +**10 Function code write** 207 + 208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 209 + 210 +Request format: 211 + 212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 215 + 216 +The slave responds normally: 217 + 218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 220 +|01|10|07|09|00|02|90|BE 221 + 202 202 = **Servo communication parameter setting** = 203 203 204 204 (% style="text-align:center" %) ... ... @@ -206,29 +206,26 @@ 206 206 207 207 Figure 8-3 Modbus communication parameter setting process 208 208 209 -** (1)Set the servo address P12-1**229 +**Set the servo address P12-1** 210 210 211 211 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 212 212 213 -** (2)Set the serial port baud rate P12-2**233 +**Set the serial port baud rate P12-2** 214 214 215 215 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 216 216 217 -** (3)Set the serial port data format P12-3**237 +**Set the serial port data format P12-3** 218 218 219 219 The data bit check methods of servo communication are: 220 220 221 -Odd parity 241 +* Odd parity 242 +* Even parity 243 +* No parity 244 +* The stop bit: 1 stop bit and 2 stop bits. 222 222 223 -Even parity 224 - 225 -No parity 226 - 227 -The stop bit: 1 stop bit and 2 stop bits. 228 - 229 229 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 230 230 231 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 232 232 233 233 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 234 234 ... ... @@ -240,7 +240,7 @@ 240 240 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 241 241 |After the EEPROM is damaged, the servo will have an non resettable fault! 242 242 243 -** (5)Set the high and low order of the 32-bit monitoring data**260 +**Set the high and low order of the 32-bit monitoring data** 244 244 245 245 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 246 246 ... ... @@ -249,51 +249,42 @@ 249 249 The description of related function codes are as follows. 250 250 251 251 (% class="table-bordered" %) 252 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 253 253 **Setting method** 254 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 255 255 **Effective time** 256 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**257 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 258 258 Operation setting 259 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 260 260 Effective immediately 261 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 262 -0-2400bps 263 - 264 -1-4800bps 265 - 266 -2-9600bps 267 - 268 -3-19200bps 269 - 270 -4-38400bps 271 - 272 -5-57600bp 273 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 274 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 279 +* 0: 2400bps 280 +* 1: 4800bps 281 +* 2: 9600bps 282 +* 3: 19200bps 283 +* 4: 38400bps 284 +* 5: 57600bp 285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 275 275 Operation setting 276 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 277 277 Effective immediately 278 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 279 -0: 1 stop bit, no parity 280 - 281 -1: 1 stop bit, odd parity 282 - 283 -2: 1 stop bit, even parity 284 - 285 -3: 2 stop bits, no parity 286 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 287 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 291 +* 0: 1 stop bit, no parity 292 +* 1: 1 stop bit, odd parity 293 +* 2: 1 stop bit, even parity 294 +* 3: 2 stop bits, no parity 295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 288 288 Operation setting 289 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 290 290 Effective immediately 291 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 292 -0: Do not write to EEPROM, and do not store after power failure; 300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 301 +* 0: Do not write to EEPROM, and do not store after power failure; 302 +* 1: Write to EEPROM, power-down storage. 303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 293 293 294 -1: Write to EEPROM, power-down storage. 295 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 296 - 297 297 = **Modbus communication variable address and value** = 298 298 299 299 == **Variable address description** == ... ... @@ -300,24 +300,21 @@ 300 300 301 301 Modbus registers are divided into two categories: 302 302 303 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 304 304 305 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 306 - 307 307 **Servo function code representation: PXX-YY.** 308 308 309 -XX: represents the function code group number, 316 +* XX: represents the function code group number, 317 +* YY: represents the bias within the function code group;; 310 310 311 -YY: represents the bias within the function code group;; 312 - 313 313 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 314 314 315 315 **Servo monitor volume representation: Uxx-yy.** 316 316 317 -xx: represents the monitoring volume group number, 323 +* xx: represents the monitoring volume group number, 324 +* yy: represents the bias within the monitoring volume group; 318 318 319 -yy: represents the bias within the monitoring volume group; 320 - 321 321 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 322 322 323 323 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -325,35 +325,33 @@ 325 325 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 326 326 327 327 (% class="table-bordered" %) 328 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 329 -**Modbus address** 333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 334 +**Modbus address (Hexadecimal)** 335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 336 +**Modbus address (Decimal)** 337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 330 330 331 -**(Hexadecimal)** 332 -)))|(% style="text-align:center; vertical-align:middle" %)((( 333 -**Modbus address** 340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 334 334 335 -**(Decimal)** 336 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 337 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 338 - 339 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 340 - 341 341 == **Variable value type description** == 342 342 343 343 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 344 344 345 -~1. The data is positive or 0: complement code = original code 346 +1. The data is positive or 0: complement code = original code 347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 346 346 347 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001349 +For example: 348 348 349 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 350 350 351 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 352 - 353 353 == **Numerical unit description** == 354 354 355 355 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 356 356 357 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 358 358 359 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.362 +The other units can be deduced by this, and integer remains unchanged.