Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.10
edited by Stone Wu
on 2022/07/07 15:23
Change comment: There is no comment for this version
To version 9.1
edited by Stone Wu
on 2022/08/30 09:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.1 User Manual.02 VD2 SA Series.WebHome
1 +Servo.Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -11,7 +11,7 @@
11 11  
12 12  Figure 8-1 The position of RS485 communication port of VD2B drive
13 13  
14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__.
15 15  
16 16  The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17 17  
... ... @@ -45,7 +45,7 @@
45 45  The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.
46 46  
47 47  (% class="table-bordered" %)
48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code**
49 49  |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
50 50  
51 51  == **Description of supported function codes** ==
... ... @@ -53,7 +53,7 @@
53 53  The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:
54 54  
55 55  (% class="table-bordered" %)
56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code**
57 57  |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
58 58  |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59 59  |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10
... ... @@ -68,9 +68,10 @@
68 68  
69 69  Correct response format:
70 70  
71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code**
72 -|**high byte**|**low byte**
73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes
71 +(% style="width:1055px" %)
72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code**
73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte**
74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes
74 74  
75 75  **Write function code: 0x06**
76 76  
... ... @@ -90,8 +90,8 @@
90 90  
91 91  If the setting is successful, the original is returned
92 92  
93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code**
94 -|1 byte|1 byte|N bytes|2 bytes
94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code**
95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes
95 95  
96 96  (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check**
97 97  
... ... @@ -150,13 +150,13 @@
150 150  == **Error response frame** ==
151 151  
152 152  (% class="table-bordered" %)
153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code**
154 154  |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes
155 155  
156 156  When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.
157 157  
158 158  (% class="table-bordered" %)
159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description**
160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description**
160 160  |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code
161 161  |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address
162 162  |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data
... ... @@ -184,21 +184,40 @@
184 184  
185 185  For example: The value read is 0x0C4F, which means that the voltage is 315.1V.
186 186  
188 +
189 +
187 187  **06 Function Code Write**
188 188  
189 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
192 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
190 190  
191 191  Request format:
192 192  
193 -(% class="table-bordered" %)
194 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
195 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
196 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
197 +|**high byte**|**low byte**|**high byte**|**low byte**
198 +|01|06|01|0A|0B|B8|AF, 76
196 196  
197 197  The slave responds normally:
198 198  
199 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
200 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
202 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
203 +|**high byte**|**low byte**|**high byte**|**low byte**
204 +|01|06|01|0A|0B|B8|AF, 76
201 201  
206 +**10 Function code write**
207 +
208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
209 +
210 +Request format:
211 +
212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
215 +
216 +The slave responds normally:
217 +
218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
220 +|01|10|07|09|00|02|90|BE
221 +
202 202  = **Servo communication parameter setting** =
203 203  
204 204  (% style="text-align:center" %)
... ... @@ -206,29 +206,26 @@
206 206  
207 207  Figure 8-3 Modbus communication parameter setting process
208 208  
209 -**(1) Set the servo address P12-1**
229 +**Set the servo address P12-1**
210 210  
211 211  When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.
212 212  
213 -**(2) Set the serial port baud rate P12-2**
233 +**Set the serial port baud rate P12-2**
214 214  
215 215  The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.
216 216  
217 -**(3) Set the serial port data format P12-3**
237 +**Set the serial port data format P12-3**
218 218  
219 219  The data bit check methods of servo communication are:
220 220  
221 -Odd parity
241 +* Odd parity
242 +* Even parity
243 +* No parity
244 +* The stop bit: 1 stop bit and 2 stop bits.
222 222  
223 -Even parity
224 -
225 -No parity
226 -
227 -The stop bit: 1 stop bit and 2 stop bits.
228 -
229 229  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
230 230  
231 -**(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
232 232  
233 233  When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.
234 234  
... ... @@ -240,7 +240,7 @@
240 240  |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
241 241  |After the EEPROM is damaged, the servo will have an non resettable fault!
242 242  
243 -**(5) Set the high and low order of the 32-bit monitoring data**
260 +**Set the high and low order of the 32-bit monitoring data**
244 244  
245 245  Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!
246 246  
... ... @@ -249,51 +249,42 @@
249 249  The description of related function codes are as follows.
250 250  
251 251  (% class="table-bordered" %)
252 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)(((
253 253  **Setting method**
254 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)(((
255 255  **Effective time**
256 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
257 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit**
274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
258 258  Operation setting
259 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
260 260  Effective immediately
261 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
262 -0-2400bps
263 -
264 -1-4800bps
265 -
266 -2-9600bps
267 -
268 -3-19200bps
269 -
270 -4-38400bps
271 -
272 -5-57600bp
273 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
274 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)(((
279 +* 0: 2400bps
280 +* 1: 4800bps
281 +* 2: 9600bps
282 +* 3: 19200bps
283 +* 4: 38400bps
284 +* 5: 57600bp
285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
275 275  Operation setting
276 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
277 277  Effective immediately
278 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
279 -0: 1 stop bit, no parity
280 -
281 -1: 1 stop bit, odd parity
282 -
283 -2: 1 stop bit, even parity
284 -
285 -3: 2 stop bits, no parity
286 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
287 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)(((
291 +* 0: 1 stop bit, no parity
292 +* 1: 1 stop bit, odd parity
293 +* 2: 1 stop bit, even parity
294 +* 3: 2 stop bits, no parity
295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
288 288  Operation setting
289 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
290 290  Effective immediately
291 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
292 -0: Do not write to EEPROM, and do not store after power failure;
300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)(((
301 +* 0: Do not write to EEPROM, and do not store after power failure;
302 +* 1: Write to EEPROM, power-down storage.
303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
293 293  
294 -1: Write to EEPROM, power-down storage.
295 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
296 -
297 297  = **Modbus communication variable address and value** =
298 298  
299 299  == **Variable address description** ==
... ... @@ -300,24 +300,21 @@
300 300  
301 301  Modbus registers are divided into two categories:
302 302  
303 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
304 304  
305 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
306 -
307 307  **Servo function code representation: PXX-YY.**
308 308  
309 -XX: represents the function code group number,
316 +* XX: represents the function code group number,
317 +* YY: represents the bias within the function code group;;
310 310  
311 -YY: represents the bias within the function code group;;
312 -
313 313  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
314 314  
315 315  **Servo monitor volume representation: Uxx-yy.**
316 316  
317 -xx: represents the monitoring volume group number,
323 +* xx: represents the monitoring volume group number,
324 +* yy: represents the bias within the monitoring volume group;
318 318  
319 -yy: represents the bias within the monitoring volume group;
320 -
321 321  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
322 322  
323 323  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -325,35 +325,33 @@
325 325  In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:
326 326  
327 327  (% class="table-bordered" %)
328 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)(((
329 -**Modbus address**
333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)(((
334 +**Modbus address (Hexadecimal)**
335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)(((
336 +**Modbus address (Decimal)**
337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name**
338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode
330 330  
331 -**(Hexadecimal)**
332 -)))|(% style="text-align:center; vertical-align:middle" %)(((
333 -**Modbus address**
340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__
334 334  
335 -**(Decimal)**
336 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
337 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
338 -
339 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
340 -
341 341  == **Variable value type description** ==
342 342  
343 343  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
344 344  
345 -~1. The data is positive or 0: complement code = original code
346 +1. The data is positive or 0: complement code = original code
347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
346 346  
347 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
349 +For example:
348 348  
349 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
350 350  
351 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
352 -
353 353  == **Numerical unit description** ==
354 354  
355 355  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
356 356  
357 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
358 358  
359 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
362 +The other units can be deduced by this, and integer remains unchanged.