Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.11
edited by Stone Wu
on 2022/07/07 15:24
Change comment: There is no comment for this version
To version 4.17
edited by Stone Wu
on 2022/07/07 15:38
Change comment: (Autosaved)

Summary

Details

Page properties
Content
... ... @@ -202,6 +202,24 @@
202 202  |**high byte**|**low byte**|**high byte**|**low byte**
203 203  |01|06|01|0A|0B|B8|AF, 76
204 204  
205 +
206 +
207 +**10 Function code write**
208 +
209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
210 +
211 +Request format:
212 +
213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
216 +
217 +The slave responds normally:
218 +
219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
221 +|01|10|07|09|00|02|90|BE
222 +
205 205  = **Servo communication parameter setting** =
206 206  
207 207  (% style="text-align:center" %)
... ... @@ -221,14 +221,11 @@
221 221  
222 222  The data bit check methods of servo communication are:
223 223  
224 -Odd parity
242 +* Odd parity
243 +* Even parity
244 +* No parity
245 +* The stop bit: 1 stop bit and 2 stop bits.
225 225  
226 -Even parity
227 -
228 -No parity
229 -
230 -The stop bit: 1 stop bit and 2 stop bits.
231 -
232 232  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
233 233  
234 234  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -256,12 +256,12 @@
256 256  **Setting method**
257 257  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
258 258  **Effective time**
259 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
260 260  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
261 261  Operation setting
262 262  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
263 263  Effective immediately
264 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
265 265  0-2400bps
266 266  
267 267  1-4800bps
... ... @@ -273,12 +273,12 @@
273 273  4-38400bps
274 274  
275 275  5-57600bp
276 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
277 277  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
278 278  Operation setting
279 279  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
280 280  Effective immediately
281 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
282 282  0: 1 stop bit, no parity
283 283  
284 284  1: 1 stop bit, odd parity
... ... @@ -286,16 +286,16 @@
286 286  2: 1 stop bit, even parity
287 287  
288 288  3: 2 stop bits, no parity
289 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
290 290  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
291 291  Operation setting
292 292  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
293 293  Effective immediately
294 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
295 295  0: Do not write to EEPROM, and do not store after power failure;
296 296  
297 297  1: Write to EEPROM, power-down storage.
298 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
299 299  
300 300  = **Modbus communication variable address and value** =
301 301  
... ... @@ -303,24 +303,21 @@
303 303  
304 304  Modbus registers are divided into two categories:
305 305  
306 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
307 307  
308 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
309 -
310 310  **Servo function code representation: PXX-YY.**
311 311  
312 -XX: represents the function code group number,
326 +* XX: represents the function code group number,
327 +* YY: represents the bias within the function code group;;
313 313  
314 -YY: represents the bias within the function code group;;
315 -
316 316  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
317 317  
318 318  **Servo monitor volume representation: Uxx-yy.**
319 319  
320 -xx: represents the monitoring volume group number,
333 +* xx: represents the monitoring volume group number,
334 +* yy: represents the bias within the monitoring volume group;
321 321  
322 -yy: represents the bias within the monitoring volume group;
323 -
324 324  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
325 325  
326 326  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -345,18 +345,20 @@
345 345  
346 346  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
347 347  
348 -~1. The data is positive or 0: complement code = original code
360 +1. The data is positive or 0: complement code = original code
361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
349 349  
350 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
363 +For example:
351 351  
352 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
353 353  
354 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
355 -
356 356  == **Numerical unit description** ==
357 357  
358 358  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
359 359  
360 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
361 361  
362 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
376 +The other units can be deduced by this, and integer remains unchanged.