Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -11,7 +11,7 @@ 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 ... ... @@ -45,7 +45,7 @@ 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 51 == **Description of supported function codes** == ... ... @@ -53,7 +53,7 @@ 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -68,9 +68,10 @@ 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code** 73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 ... ... @@ -90,8 +90,8 @@ 90 90 91 91 If the setting is successful, the original is returned 92 92 93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 -|1 byte|1 byte|N bytes|2 bytes 94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 95 95 96 96 (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check** 97 97 ... ... @@ -150,13 +150,13 @@ 150 150 == **Error response frame** == 151 151 152 152 (% class="table-bordered" %) 153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 154 154 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 155 155 156 156 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 157 157 158 158 (% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 161 161 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 162 162 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -202,6 +202,22 @@ 202 202 |**high byte**|**low byte**|**high byte**|**low byte** 203 203 |01|06|01|0A|0B|B8|AF, 76 204 204 206 +**10 Function code write** 207 + 208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 209 + 210 +Request format: 211 + 212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 215 + 216 +The slave responds normally: 217 + 218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 220 +|01|10|07|09|00|02|90|BE 221 + 205 205 = **Servo communication parameter setting** = 206 206 207 207 (% style="text-align:center" %) ... ... @@ -209,29 +209,26 @@ 209 209 210 210 Figure 8-3 Modbus communication parameter setting process 211 211 212 -** (1)Set the servo address P12-1**229 +**Set the servo address P12-1** 213 213 214 214 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 215 215 216 -** (2)Set the serial port baud rate P12-2**233 +**Set the serial port baud rate P12-2** 217 217 218 218 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 219 219 220 -** (3)Set the serial port data format P12-3**237 +**Set the serial port data format P12-3** 221 221 222 222 The data bit check methods of servo communication are: 223 223 224 -Odd parity 241 +* Odd parity 242 +* Even parity 243 +* No parity 244 +* The stop bit: 1 stop bit and 2 stop bits. 225 225 226 -Even parity 227 - 228 -No parity 229 - 230 -The stop bit: 1 stop bit and 2 stop bits. 231 - 232 232 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 233 233 234 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 235 235 236 236 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 237 237 ... ... @@ -243,7 +243,7 @@ 243 243 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 244 244 |After the EEPROM is damaged, the servo will have an non resettable fault! 245 245 246 -** (5)Set the high and low order of the 32-bit monitoring data**260 +**Set the high and low order of the 32-bit monitoring data** 247 247 248 248 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 249 249 ... ... @@ -252,51 +252,42 @@ 252 252 The description of related function codes are as follows. 253 253 254 254 (% class="table-bordered" %) 255 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 256 256 **Setting method** 257 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 258 258 **Effective time** 259 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**260 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 261 261 Operation setting 262 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 263 263 Effective immediately 264 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 265 -0-2400bps 266 - 267 -1-4800bps 268 - 269 -2-9600bps 270 - 271 -3-19200bps 272 - 273 -4-38400bps 274 - 275 -5-57600bp 276 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 277 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 279 +* 0: 2400bps 280 +* 1: 4800bps 281 +* 2: 9600bps 282 +* 3: 19200bps 283 +* 4: 38400bps 284 +* 5: 57600bp 285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 278 278 Operation setting 279 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 280 280 Effective immediately 281 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 282 -0: 1 stop bit, no parity 283 - 284 -1: 1 stop bit, odd parity 285 - 286 -2: 1 stop bit, even parity 287 - 288 -3: 2 stop bits, no parity 289 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 290 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 291 +* 0: 1 stop bit, no parity 292 +* 1: 1 stop bit, odd parity 293 +* 2: 1 stop bit, even parity 294 +* 3: 2 stop bits, no parity 295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 291 291 Operation setting 292 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 293 293 Effective immediately 294 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 295 -0: Do not write to EEPROM, and do not store after power failure; 300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 301 +* 0: Do not write to EEPROM, and do not store after power failure; 302 +* 1: Write to EEPROM, power-down storage. 303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 296 296 297 -1: Write to EEPROM, power-down storage. 298 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 299 - 300 300 = **Modbus communication variable address and value** = 301 301 302 302 == **Variable address description** == ... ... @@ -303,24 +303,21 @@ 303 303 304 304 Modbus registers are divided into two categories: 305 305 306 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 307 307 308 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 309 - 310 310 **Servo function code representation: PXX-YY.** 311 311 312 -XX: represents the function code group number, 316 +* XX: represents the function code group number, 317 +* YY: represents the bias within the function code group;; 313 313 314 -YY: represents the bias within the function code group;; 315 - 316 316 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 317 317 318 318 **Servo monitor volume representation: Uxx-yy.** 319 319 320 -xx: represents the monitoring volume group number, 323 +* xx: represents the monitoring volume group number, 324 +* yy: represents the bias within the monitoring volume group; 321 321 322 -yy: represents the bias within the monitoring volume group; 323 - 324 324 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 325 325 326 326 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -328,35 +328,33 @@ 328 328 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 329 329 330 330 (% class="table-bordered" %) 331 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 332 -**Modbus address** 333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 334 +**Modbus address (Hexadecimal)** 335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 336 +**Modbus address (Decimal)** 337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 333 333 334 -**(Hexadecimal)** 335 -)))|(% style="text-align:center; vertical-align:middle" %)((( 336 -**Modbus address** 340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 337 337 338 -**(Decimal)** 339 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 340 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 341 - 342 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 343 - 344 344 == **Variable value type description** == 345 345 346 346 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 347 347 348 -~1. The data is positive or 0: complement code = original code 346 +1. The data is positive or 0: complement code = original code 347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 349 349 350 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001349 +For example: 351 351 352 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 353 353 354 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 355 - 356 356 == **Numerical unit description** == 357 357 358 358 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 359 359 360 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 361 361 362 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.362 +The other units can be deduced by this, and integer remains unchanged.