Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -202,6 +202,24 @@ 202 202 |**high byte**|**low byte**|**high byte**|**low byte** 203 203 |01|06|01|0A|0B|B8|AF, 76 204 204 205 + 206 + 207 +**10 Function code write** 208 + 209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 210 + 211 +Request format: 212 + 213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 216 + 217 +The slave responds normally: 218 + 219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 221 +|01|10|07|09|00|02|90|BE 222 + 205 205 = **Servo communication parameter setting** = 206 206 207 207 (% style="text-align:center" %) ... ... @@ -221,14 +221,11 @@ 221 221 222 222 The data bit check methods of servo communication are: 223 223 224 -Odd parity 242 +* Odd parity 243 +* Even parity 244 +* No parity 245 +* The stop bit: 1 stop bit and 2 stop bits. 225 225 226 -Even parity 227 - 228 -No parity 229 - 230 -The stop bit: 1 stop bit and 2 stop bits. 231 - 232 232 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 233 233 234 234 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -256,12 +256,12 @@ 256 256 **Setting method** 257 257 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 258 258 **Effective time** 259 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 260 260 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 261 261 Operation setting 262 262 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 263 263 Effective immediately 264 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 335px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 265 265 0-2400bps 266 266 267 267 1-4800bps ... ... @@ -273,12 +273,12 @@ 273 273 4-38400bps 274 274 275 275 5-57600bp 276 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 277 277 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 278 278 Operation setting 279 279 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 280 280 Effective immediately 281 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 335px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 282 282 0: 1 stop bit, no parity 283 283 284 284 1: 1 stop bit, odd parity ... ... @@ -286,16 +286,16 @@ 286 286 2: 1 stop bit, even parity 287 287 288 288 3: 2 stop bits, no parity 289 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 290 290 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 291 291 Operation setting 292 292 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 293 293 Effective immediately 294 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 335px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 295 295 0: Do not write to EEPROM, and do not store after power failure; 296 296 297 297 1: Write to EEPROM, power-down storage. 298 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 299 299 300 300 = **Modbus communication variable address and value** = 301 301 ... ... @@ -303,24 +303,21 @@ 303 303 304 304 Modbus registers are divided into two categories: 305 305 306 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 307 307 308 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 309 - 310 310 **Servo function code representation: PXX-YY.** 311 311 312 -XX: represents the function code group number, 326 +* XX: represents the function code group number, 327 +* YY: represents the bias within the function code group;; 313 313 314 -YY: represents the bias within the function code group;; 315 - 316 316 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 317 317 318 318 **Servo monitor volume representation: Uxx-yy.** 319 319 320 -xx: represents the monitoring volume group number, 333 +* xx: represents the monitoring volume group number, 334 +* yy: represents the bias within the monitoring volume group; 321 321 322 -yy: represents the bias within the monitoring volume group; 323 - 324 324 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 325 325 326 326 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -345,18 +345,20 @@ 345 345 346 346 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 347 347 348 -~1. The data is positive or 0: complement code = original code 360 +1. The data is positive or 0: complement code = original code 361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 349 349 350 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001363 +For example: 351 351 352 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 353 353 354 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 355 - 356 356 == **Numerical unit description** == 357 357 358 358 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 359 359 360 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 361 361 362 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.376 +The other units can be deduced by this, and integer remains unchanged.