Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -2,21 +2,21 @@ 2 2 3 3 = **Modbus communication** = 4 4 5 -== **Hardware wiring**==5 +== Hardware wiring == 6 6 7 7 The position of RS485 communication port (take VD2B as an example) is as the figure below. 8 8 9 9 (% style="text-align:center" %) 10 -[[image:image-20220608154248-1.png]] 10 +[[image:image-20220608154248-1.png||class="img-thumbnail"]] 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 18 18 (% class="table-bordered" %) 19 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 19 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 20 20 |((( 21 21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together! 22 22 ... ... @@ -24,7 +24,7 @@ 24 24 ))) 25 25 26 26 (% style="text-align:center" %) 27 -[[image:image-20220608174415-1.png]] 27 +[[image:image-20220608174415-1.png||class="img-thumbnail"]] 28 28 29 29 Figure 8-2 RS485 communication network wiring diagram 30 30 ... ... @@ -33,7 +33,7 @@ 33 33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals. 34 34 35 35 (% class="table-bordered" %) 36 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 36 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 37 37 |Under no circumstances can the grounding wire form a closed loop. 38 38 39 39 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed. ... ... @@ -40,20 +40,20 @@ 40 40 41 41 = **Modbus communication protocol analysis** = 42 42 43 -== **Modbus data frame format**==43 +== Modbus data frame format == 44 44 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 -== **Description of supported function codes**==51 +== Supported function codes == 52 52 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -62,15 +62,16 @@ 62 62 63 63 Request format: 64 64 65 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 66 -|**high byte**|**low byte**|**high byte**|**low byte** 65 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of reads**|=(% rowspan="2" %)**CRC check code** 66 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 67 67 |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" style="width: 279px;" %)**Number of bytes of returned data**|=(% colspan="2" style="width: 274px;" %)**Register 1**|=(% rowspan="2" style="width: 98px;" %)**…**|=(% rowspan="2" %)**CRC check code** 73 +|=(% style="width: 160px;" %)**high byte**|=(% style="width: 114px;" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 ... ... @@ -84,16 +84,16 @@ 84 84 85 85 Response format: 86 86 87 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 88 -|**high byte**|**low byte**|**high byte**|**low byte** 88 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 89 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 89 89 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 90 90 91 91 If the setting is successful, the original is returned 92 92 93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 -|1 byte|1 byte|N bytes|2 bytes 94 +|=(% rowspan="2" style="width: 551px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="width: 114px;" %)**Address**|=(% style="width: 127px;" %)**Function code**|=(% style="width: 104px;" %)**Data**|=(% style="width: 180px;" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 95 95 96 -(% style="color:inherit; font-family:inherit; font-size:26px" %) **CRC check**97 +== (% style="color:inherit; font-family:inherit; font-size:26px" %)CRC check(%%) == 97 97 98 98 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows: 99 99 ... ... @@ -150,13 +150,13 @@ 150 150 == **Error response frame** == 151 151 152 152 (% class="table-bordered" %) 153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 154 154 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 155 155 156 156 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 157 157 158 158 (% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 161 161 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 162 162 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -164,8 +164,6 @@ 164 164 165 165 == **Communication example** == 166 166 167 - 168 - 169 169 **03 Function code read** 170 170 171 171 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) ... ... @@ -172,20 +172,18 @@ 172 172 173 173 Request format: 174 174 175 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 176 -|**high byte**|**low byte**|**high byte**|**low byte** 174 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 175 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 177 177 |01|03|1E|24|00|01|C2 29 178 178 179 179 The slave responds normally: 180 180 181 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 182 -|**high byte**|**low byte** 180 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" %)**Number of bytes**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC high byte** 181 +|=**high byte**|=**low byte** 183 183 |01|03|02|0C|4F|FC B0 184 184 185 185 For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 186 186 187 - 188 - 189 189 **06 Function Code Write** 190 190 191 191 P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) ... ... @@ -192,18 +192,16 @@ 192 192 193 193 Request format: 194 194 195 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 -|**high byte**|**low byte**|**high byte**|**low byte** 192 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 193 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 197 197 |01|06|01|0A|0B|B8|AF, 76 198 198 199 199 The slave responds normally: 200 200 201 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 -|**high byte**|**low byte**|**high byte**|**low byte** 198 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 199 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 203 203 |01|06|01|0A|0B|B8|AF, 76 204 204 205 - 206 - 207 207 **10 Function code write** 208 208 209 209 P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). ... ... @@ -210,46 +210,44 @@ 210 210 211 211 Request format: 212 212 213 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 208 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of register**|=(% rowspan="2" %)**Number of data**|=(% colspan="2" %)**Data 1**|=(% colspan="2" %)**Data 2**|=(% colspan="2" %)**CRC check code** 209 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 215 215 |01|10|07|09|00|02|04|00|00|07|D0|16|59 216 216 217 217 The slave responds normally: 218 218 219 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% colspan="2" %)**CRC check code** 215 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 221 221 |01|10|07|09|00|02|90|BE 222 222 223 223 = **Servo communication parameter setting** = 224 224 225 225 (% style="text-align:center" %) 226 -[[image:image-20220608174504-2.png]] 221 +((( 222 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 223 +[[Figure 8-3 Modbus communication parameter setting process>>image:image-20220608174504-2.png||id="Iimage-20220608174504-2.png"]] 224 +))) 227 227 228 - Figure8-3 Modbus communicationparametersetting process226 +**Set the servo address P12-1** 229 229 230 -**(1) Set the servo address P12-1** 231 - 232 232 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 233 233 234 -** (2)Set the serial port baud rate P12-2**230 +**Set the serial port baud rate P12-2** 235 235 236 236 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 237 237 238 -** (3)Set the serial port data format P12-3**234 +**Set the serial port data format P12-3** 239 239 240 240 The data bit check methods of servo communication are: 241 241 242 -Odd parity 238 +* Odd parity 239 +* Even parity 240 +* No parity 241 +* The stop bit: 1 stop bit and 2 stop bits. 243 243 244 -Even parity 245 - 246 -No parity 247 - 248 -The stop bit: 1 stop bit and 2 stop bits. 249 - 250 250 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 251 251 252 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**245 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 253 253 254 254 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 255 255 ... ... @@ -258,10 +258,10 @@ 258 258 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM. 259 259 260 260 (% class="table-bordered" %) 261 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 254 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 262 262 |After the EEPROM is damaged, the servo will have an non resettable fault! 263 263 264 -** (5)Set the high and low order of the 32-bit monitoring data**257 +**Set the high and low order of the 32-bit monitoring data** 265 265 266 266 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 267 267 ... ... @@ -270,75 +270,63 @@ 270 270 The description of related function codes are as follows. 271 271 272 272 (% class="table-bordered" %) 273 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((266 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 274 274 **Setting method** 275 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((268 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 276 276 **Effective time** 277 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**278 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((270 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 271 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 279 279 Operation setting 280 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((273 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 281 281 Effective immediately 282 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 283 -0-2400bps 284 - 285 -1-4800bps 286 - 287 -2-9600bps 288 - 289 -3-19200bps 290 - 291 -4-38400bps 292 - 293 -5-57600bp 294 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 295 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 275 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 276 +* 0: 2400bps 277 +* 1: 4800bps 278 +* 2: 9600bps 279 +* 3: 19200bps 280 +* 4: 38400bps 281 +* 5: 57600bp 282 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 283 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 296 296 Operation setting 297 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((285 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 298 298 Effective immediately 299 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 300 -0: 1 stop bit, no parity 301 - 302 -1: 1 stop bit, odd parity 303 - 304 -2: 1 stop bit, even parity 305 - 306 -3: 2 stop bits, no parity 307 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 308 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 287 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 288 +* 0: 1 stop bit, no parity 289 +* 1: 1 stop bit, odd parity 290 +* 2: 1 stop bit, even parity 291 +* 3: 2 stop bits, no parity 292 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 293 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 309 309 Operation setting 310 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((295 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 311 311 Effective immediately 312 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 313 -0: Do not write to EEPROM, and do not store after power failure; 297 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 298 +* 0: Do not write to EEPROM, and do not store after power failure; 299 +* 1: Write to EEPROM, power-down storage. 300 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 314 314 315 -1: Write to EEPROM, power-down storage. 316 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 317 - 318 318 = **Modbus communication variable address and value** = 319 319 320 -== **Variable address description** ==304 +== **Variable address** == 321 321 322 322 Modbus registers are divided into two categories: 323 323 324 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 308 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 309 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 325 325 326 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 327 - 328 328 **Servo function code representation: PXX-YY.** 329 329 330 -XX: represents the function code group number, 313 +* XX: represents the function code group number, 314 +* YY: represents the bias within the function code group;; 331 331 332 -YY: represents the bias within the function code group;; 333 - 334 334 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 335 335 336 336 **Servo monitor volume representation: Uxx-yy.** 337 337 338 -xx: represents the monitoring volume group number, 320 +* xx: represents the monitoring volume group number, 321 +* yy: represents the bias within the monitoring volume group; 339 339 340 -yy: represents the bias within the monitoring volume group; 341 - 342 342 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 343 343 344 344 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -346,35 +346,33 @@ 346 346 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 347 347 348 348 (% class="table-bordered" %) 349 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 350 -**Modbus address** 330 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 331 +**Modbus address (Hexadecimal)** 332 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 333 +**Modbus address (Decimal)** 334 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 335 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 351 351 352 -**(Hexadecimal)** 353 -)))|(% style="text-align:center; vertical-align:middle" %)((( 354 -**Modbus address** 337 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 355 355 356 -**(Decimal)** 357 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 358 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 339 +== **Variable value type** == 359 359 360 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 361 - 362 -== **Variable value type description** == 363 - 364 364 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 365 365 366 -~1. The data is positive or 0: complement code = original code 343 +1. The data is positive or 0: complement code = original code 344 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 367 367 368 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001346 +For example: 369 369 370 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 348 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 349 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 350 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 371 371 372 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 373 - 374 374 == **Numerical unit description** == 375 375 376 376 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 377 377 378 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 356 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 357 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 379 379 380 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.359 +The other units can be deduced by this, and integer remains unchanged.