Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -239,14 +239,11 @@ 239 239 240 240 The data bit check methods of servo communication are: 241 241 242 -Odd parity 242 +* Odd parity 243 +* Even parity 244 +* No parity 245 +* The stop bit: 1 stop bit and 2 stop bits. 243 243 244 -Even parity 245 - 246 -No parity 247 - 248 -The stop bit: 1 stop bit and 2 stop bits. 249 - 250 250 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 251 251 252 252 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -274,12 +274,12 @@ 274 274 **Setting method** 275 275 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 276 276 **Effective time** 277 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 278 278 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 279 279 Operation setting 280 280 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 281 281 Effective immediately 282 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 335px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 283 283 0-2400bps 284 284 285 285 1-4800bps ... ... @@ -291,12 +291,12 @@ 291 291 4-38400bps 292 292 293 293 5-57600bp 294 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 295 295 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 296 296 Operation setting 297 297 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 298 298 Effective immediately 299 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 335px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 300 300 0: 1 stop bit, no parity 301 301 302 302 1: 1 stop bit, odd parity ... ... @@ -304,16 +304,16 @@ 304 304 2: 1 stop bit, even parity 305 305 306 306 3: 2 stop bits, no parity 307 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 308 308 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 309 309 Operation setting 310 310 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 311 311 Effective immediately 312 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 335px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 313 313 0: Do not write to EEPROM, and do not store after power failure; 314 314 315 315 1: Write to EEPROM, power-down storage. 316 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 317 317 318 318 = **Modbus communication variable address and value** = 319 319 ... ... @@ -321,24 +321,21 @@ 321 321 322 322 Modbus registers are divided into two categories: 323 323 324 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 325 325 326 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 327 - 328 328 **Servo function code representation: PXX-YY.** 329 329 330 -XX: represents the function code group number, 326 +* XX: represents the function code group number, 327 +* YY: represents the bias within the function code group;; 331 331 332 -YY: represents the bias within the function code group;; 333 - 334 334 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 335 335 336 336 **Servo monitor volume representation: Uxx-yy.** 337 337 338 -xx: represents the monitoring volume group number, 333 +* xx: represents the monitoring volume group number, 334 +* yy: represents the bias within the monitoring volume group; 339 339 340 -yy: represents the bias within the monitoring volume group; 341 - 342 342 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 343 343 344 344 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -363,18 +363,18 @@ 363 363 364 364 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 365 365 366 -~1. The data is positive or 0: complement code = original code 360 +1. The data is positive or 0: complement code = original code 361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 367 367 368 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001363 +For example: 369 369 370 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 371 371 372 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 373 - 374 374 == **Numerical unit description** == 375 375 376 376 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 377 377 378 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 379 - 380 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged. 373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.