Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.14
edited by Stone Wu
on 2022/07/07 15:34
Change comment: There is no comment for this version
To version 4.16
edited by Stone Wu
on 2022/07/07 15:37
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -239,14 +239,11 @@
239 239  
240 240  The data bit check methods of servo communication are:
241 241  
242 -Odd parity
242 +* Odd parity
243 +* Even parity
244 +* No parity
245 +* The stop bit: 1 stop bit and 2 stop bits.
243 243  
244 -Even parity
245 -
246 -No parity
247 -
248 -The stop bit: 1 stop bit and 2 stop bits.
249 -
250 250  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
251 251  
252 252  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -274,12 +274,12 @@
274 274  **Setting method**
275 275  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
276 276  **Effective time**
277 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
278 278  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
279 279  Operation setting
280 280  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
281 281  Effective immediately
282 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
283 283  0-2400bps
284 284  
285 285  1-4800bps
... ... @@ -291,12 +291,12 @@
291 291  4-38400bps
292 292  
293 293  5-57600bp
294 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
295 295  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
296 296  Operation setting
297 297  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
298 298  Effective immediately
299 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
300 300  0: 1 stop bit, no parity
301 301  
302 302  1: 1 stop bit, odd parity
... ... @@ -304,16 +304,16 @@
304 304  2: 1 stop bit, even parity
305 305  
306 306  3: 2 stop bits, no parity
307 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
308 308  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
309 309  Operation setting
310 310  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
311 311  Effective immediately
312 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
313 313  0: Do not write to EEPROM, and do not store after power failure;
314 314  
315 315  1: Write to EEPROM, power-down storage.
316 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
317 317  
318 318  = **Modbus communication variable address and value** =
319 319  
... ... @@ -321,24 +321,21 @@
321 321  
322 322  Modbus registers are divided into two categories:
323 323  
324 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
325 325  
326 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
327 -
328 328  **Servo function code representation: PXX-YY.**
329 329  
330 -XX: represents the function code group number,
326 +* XX: represents the function code group number,
327 +* YY: represents the bias within the function code group;;
331 331  
332 -YY: represents the bias within the function code group;;
333 -
334 334  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
335 335  
336 336  **Servo monitor volume representation: Uxx-yy.**
337 337  
338 -xx: represents the monitoring volume group number,
333 +* xx: represents the monitoring volume group number,
334 +* yy: represents the bias within the monitoring volume group;
339 339  
340 -yy: represents the bias within the monitoring volume group;
341 -
342 342  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
343 343  
344 344  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -363,18 +363,20 @@
363 363  
364 364  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
365 365  
366 -~1. The data is positive or 0: complement code = original code
360 +1. The data is positive or 0: complement code = original code
361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
367 367  
368 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
363 +For example:
369 369  
370 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
371 371  
372 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
373 -
374 374  == **Numerical unit description** ==
375 375  
376 376  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
377 377  
378 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
379 379  
380 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
376 +The other units can be deduced by this, and integer remains unchanged.