Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.15
edited by Stone Wu
on 2022/07/07 15:37
Change comment: There is no comment for this version
To version 4.14
edited by Stone Wu
on 2022/07/07 15:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -239,11 +239,14 @@
239 239  
240 240  The data bit check methods of servo communication are:
241 241  
242 -* Odd parity
243 -* Even parity
244 -* No parity
245 -* The stop bit: 1 stop bit and 2 stop bits.
242 +Odd parity
246 246  
244 +Even parity
245 +
246 +No parity
247 +
248 +The stop bit: 1 stop bit and 2 stop bits.
249 +
247 247  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
248 248  
249 249  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -271,12 +271,12 @@
271 271  **Setting method**
272 272  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
273 273  **Effective time**
274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
277 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
275 275  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
276 276  Operation setting
277 277  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
278 278  Effective immediately
279 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
280 280  0-2400bps
281 281  
282 282  1-4800bps
... ... @@ -288,12 +288,12 @@
288 288  4-38400bps
289 289  
290 290  5-57600bp
291 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
294 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
292 292  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
293 293  Operation setting
294 294  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
295 295  Effective immediately
296 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
299 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
297 297  0: 1 stop bit, no parity
298 298  
299 299  1: 1 stop bit, odd parity
... ... @@ -301,16 +301,16 @@
301 301  2: 1 stop bit, even parity
302 302  
303 303  3: 2 stop bits, no parity
304 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
307 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
305 305  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
306 306  Operation setting
307 307  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
308 308  Effective immediately
309 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
312 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
310 310  0: Do not write to EEPROM, and do not store after power failure;
311 311  
312 312  1: Write to EEPROM, power-down storage.
313 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
316 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
314 314  
315 315  = **Modbus communication variable address and value** =
316 316  
... ... @@ -318,21 +318,24 @@
318 318  
319 319  Modbus registers are divided into two categories:
320 320  
321 -1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 -1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
324 +~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
323 323  
326 +2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
327 +
324 324  **Servo function code representation: PXX-YY.**
325 325  
326 -* XX: represents the function code group number,
327 -* YY: represents the bias within the function code group;;
330 +XX: represents the function code group number,
328 328  
332 +YY: represents the bias within the function code group;;
333 +
329 329  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
330 330  
331 331  **Servo monitor volume representation: Uxx-yy.**
332 332  
333 -* xx: represents the monitoring volume group number,
334 -* yy: represents the bias within the monitoring volume group;
338 +xx: represents the monitoring volume group number,
335 335  
340 +yy: represents the bias within the monitoring volume group;
341 +
336 336  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
337 337  
338 338  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -357,18 +357,18 @@
357 357  
358 358  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
359 359  
360 -1. The data is positive or 0: complement code = original code
361 -1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
366 +~1. The data is positive or 0: complement code = original code
362 362  
363 -For example:
368 +2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
364 364  
365 -* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
366 -* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 -* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
370 +For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
368 368  
372 +If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
373 +
369 369  == **Numerical unit description** ==
370 370  
371 371  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
372 372  
373 -1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 -1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
378 +~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
379 +
380 +2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.