Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -239,11 +239,14 @@ 239 239 240 240 The data bit check methods of servo communication are: 241 241 242 -* Odd parity 243 -* Even parity 244 -* No parity 245 -* The stop bit: 1 stop bit and 2 stop bits. 242 +Odd parity 246 246 244 +Even parity 245 + 246 +No parity 247 + 248 +The stop bit: 1 stop bit and 2 stop bits. 249 + 247 247 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 248 248 249 249 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -271,12 +271,12 @@ 271 271 **Setting method** 272 272 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 273 273 **Effective time** 274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**277 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit** 275 275 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 276 276 Operation setting 277 277 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 278 278 Effective immediately 279 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 252px" %)(((282 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 280 280 0-2400bps 281 281 282 282 1-4800bps ... ... @@ -288,12 +288,12 @@ 288 288 4-38400bps 289 289 290 290 5-57600bp 291 -)))|(% style="text-align:center; vertical-align:middle; width:8 5px" %)-294 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 292 292 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 293 293 Operation setting 294 294 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 295 295 Effective immediately 296 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 252px" %)(((299 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 297 297 0: 1 stop bit, no parity 298 298 299 299 1: 1 stop bit, odd parity ... ... @@ -301,16 +301,16 @@ 301 301 2: 1 stop bit, even parity 302 302 303 303 3: 2 stop bits, no parity 304 -)))|(% style="text-align:center; vertical-align:middle; width:8 5px" %)-307 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 305 305 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 306 306 Operation setting 307 307 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 308 308 Effective immediately 309 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 252px" %)(((312 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 310 310 0: Do not write to EEPROM, and do not store after power failure; 311 311 312 312 1: Write to EEPROM, power-down storage. 313 -)))|(% style="text-align:center; vertical-align:middle; width:8 5px" %)-316 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 314 314 315 315 = **Modbus communication variable address and value** = 316 316 ... ... @@ -318,21 +318,24 @@ 318 318 319 319 Modbus registers are divided into two categories: 320 320 321 -1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 -1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 324 +~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 323 323 326 +2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 327 + 324 324 **Servo function code representation: PXX-YY.** 325 325 326 -* XX: represents the function code group number, 327 -* YY: represents the bias within the function code group;; 330 +XX: represents the function code group number, 328 328 332 +YY: represents the bias within the function code group;; 333 + 329 329 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 330 330 331 331 **Servo monitor volume representation: Uxx-yy.** 332 332 333 -* xx: represents the monitoring volume group number, 334 -* yy: represents the bias within the monitoring volume group; 338 +xx: represents the monitoring volume group number, 335 335 340 +yy: represents the bias within the monitoring volume group; 341 + 336 336 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 337 337 338 338 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -357,18 +357,18 @@ 357 357 358 358 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 359 359 360 -1. The data is positive or 0: complement code = original code 361 -1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 366 +~1. The data is positive or 0: complement code = original code 362 362 363 - Forexample:368 +2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 364 364 365 -* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 -* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 -* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 370 +For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 368 368 372 +If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 373 + 369 369 == **Numerical unit description** == 370 370 371 371 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 372 372 373 -1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 -1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged. 378 +~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 379 + 380 +2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.