Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
From version 4.6
edited by Joey
on 2022/06/18 21:59
on 2022/06/18 21:59
Change comment:
Update document after refactoring.
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Joey1 +XWiki.Stone - Content
-
... ... @@ -11,7 +11,7 @@ 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 ... ... @@ -45,7 +45,7 @@ 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 51 == **Description of supported function codes** == ... ... @@ -53,59 +53,48 @@ 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 57 -|(% style="text-align:center; vertical-align:middle" %)Read 16-bit 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 +|(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 +|(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 59 59 60 -** (1)Read function code: 0x03**61 +**Read function code: 0x03** 61 61 62 62 Request format: 63 63 64 -(% class="table-bordered" %) 65 -|(% style="text-align:center; vertical-align:middle; width:84px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:104px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:179px" %)((( 66 -**Initial address high byte** 67 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)((( 68 -**Initial address low byte** 69 -)))|(% style="text-align:center; vertical-align:middle; width:194px" %)((( 70 -**Number of reads high byte** 71 -)))|(% style="text-align:center; vertical-align:middle; width:195px" %)((( 72 -**Number of reads low byte** 73 -)))|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 74 -|(% style="text-align:center; vertical-align:middle; width:84px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:104px" %)03|(% style="text-align:center; vertical-align:middle; width:179px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:162px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:194px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:195px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 65 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 66 +|**high byte**|**low byte**|**high byte**|**low byte** 67 +|1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes 75 75 76 76 Correct response format: 77 77 78 -(% class="table-bordered" %) 79 -|(% style="text-align:center; vertical-align:middle; width:85px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:139px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:244px" %)((( 80 -**Return data number of bytes** 81 -)))|(% style="text-align:center; vertical-align:middle; width:203px" %)((( 82 -**Register 1 high byte** 83 -)))|(% style="text-align:center; vertical-align:middle; width:190px" %)((( 84 -**Register 1 low byte** 85 -)))|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)**CRC check code** 86 -|(% style="text-align:center; vertical-align:middle; width:85px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:139px" %)03|(% style="text-align:center; vertical-align:middle; width:244px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:203px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:190px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:72px" %)…|(% style="text-align:center; vertical-align:middle; width:143px" %)2 bytes 71 +(% style="width:1055px" %) 72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code** 73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 87 87 88 -** (2)Write function code: 0x06**76 +**Write function code: 0x06** 89 89 90 90 Request format: 91 91 92 -(% class="table-bordered" %) 93 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 94 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes 80 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)((( 81 +**Register address** 82 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 83 +|**high byte**|**low byte**|**high byte**|**low byte** 84 +|1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 95 95 96 96 Response format: 97 97 98 -(% class="table-bordered" %)99 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**100 -| (% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes88 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 89 +|**high byte**|**low byte**|**high byte**|**low byte** 90 +|1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 101 101 102 102 If the setting is successful, the original is returned 103 103 104 -(% class="table-bordered" %) 105 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Data**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 106 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)N bytes|(% style="text-align:center; vertical-align:middle" %)2 bytes 94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 107 107 108 -= =**CRC check**==97 +(% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check** 109 109 110 110 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows: 111 111 ... ... @@ -162,13 +162,13 @@ 162 162 == **Error response frame** == 163 163 164 164 (% class="table-bordered" %) 165 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 166 166 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 167 167 168 168 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 169 169 170 170 (% class="table-bordered" %) 171 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 172 172 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 173 173 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 174 174 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -176,39 +176,60 @@ 176 176 177 177 == **Communication example** == 178 178 179 -**03 Function Code Read** 180 180 169 + 170 +**03 Function code read** 171 + 181 181 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) 182 182 183 183 Request format: 184 184 185 -(% class="table-bordered" %)186 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**187 -| (% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)2bytes176 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 177 +|**high byte**|**low byte**|**high byte**|**low byte** 178 +|01|03|1E|24|00|01|C2 29 188 188 189 189 The slave responds normally: 190 190 191 -(% class="table-bordered" %)192 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**193 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(%style="text-align:center; vertical-align:middle" %)9E182 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 183 +|**high byte**|**low byte** 184 +|01|03|02|0C|4F|FC B0 194 194 195 -The value read is 0x0C 26, which means that the voltage is 311.0V.186 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 196 196 188 + 189 + 197 197 **06 Function Code Write** 198 198 199 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 192 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 200 200 201 201 Request format: 202 202 203 -(% class="table-bordered" %)204 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**205 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF196 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 197 +|**high byte**|**low byte**|**high byte**|**low byte** 198 +|01|06|01|0A|0B|B8|AF, 76 206 206 207 207 The slave responds normally: 208 208 209 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 210 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 202 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 203 +|**high byte**|**low byte**|**high byte**|**low byte** 204 +|01|06|01|0A|0B|B8|AF, 76 211 211 206 +**10 Function code write** 207 + 208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 209 + 210 +Request format: 211 + 212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 215 + 216 +The slave responds normally: 217 + 218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 220 +|01|10|07|09|00|02|90|BE 221 + 212 212 = **Servo communication parameter setting** = 213 213 214 214 (% style="text-align:center" %) ... ... @@ -216,29 +216,26 @@ 216 216 217 217 Figure 8-3 Modbus communication parameter setting process 218 218 219 -** (1)Set the servo address P12-1**229 +**Set the servo address P12-1** 220 220 221 221 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 222 222 223 -** (2)Set the serial port baud rate P12-2**233 +**Set the serial port baud rate P12-2** 224 224 225 225 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 226 226 227 -** (3)Set the serial port data format P12-3**237 +**Set the serial port data format P12-3** 228 228 229 229 The data bit check methods of servo communication are: 230 230 231 -Odd parity 241 +* Odd parity 242 +* Even parity 243 +* No parity 244 +* The stop bit: 1 stop bit and 2 stop bits. 232 232 233 -Even parity 234 - 235 -No parity 236 - 237 -The stop bit: 1 stop bit and 2 stop bits. 238 - 239 239 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 240 240 241 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 242 242 243 243 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 244 244 ... ... @@ -250,7 +250,7 @@ 250 250 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 251 251 |After the EEPROM is damaged, the servo will have an non resettable fault! 252 252 253 -** (5)Set the high and low order of the 32-bit monitoring data**260 +**Set the high and low order of the 32-bit monitoring data** 254 254 255 255 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 256 256 ... ... @@ -259,51 +259,42 @@ 259 259 The description of related function codes are as follows. 260 260 261 261 (% class="table-bordered" %) 262 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 263 263 **Setting method** 264 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 265 265 **Effective time** 266 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**267 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 268 268 Operation setting 269 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 270 270 Effective immediately 271 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 272 -0-2400bps 273 - 274 -1-4800bps 275 - 276 -2-9600bps 277 - 278 -3-19200bps 279 - 280 -4-38400bps 281 - 282 -5-57600bp 283 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 284 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 279 +* 0: 2400bps 280 +* 1: 4800bps 281 +* 2: 9600bps 282 +* 3: 19200bps 283 +* 4: 38400bps 284 +* 5: 57600bp 285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 285 285 Operation setting 286 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 287 287 Effective immediately 288 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 289 -0: 1 stop bit, no parity 290 - 291 -1: 1 stop bit, odd parity 292 - 293 -2: 1 stop bit, even parity 294 - 295 -3: 2 stop bits, no parity 296 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 297 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 291 +* 0: 1 stop bit, no parity 292 +* 1: 1 stop bit, odd parity 293 +* 2: 1 stop bit, even parity 294 +* 3: 2 stop bits, no parity 295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 298 298 Operation setting 299 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 300 300 Effective immediately 301 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 302 -0: Do not write to EEPROM, and do not store after power failure; 300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 301 +* 0: Do not write to EEPROM, and do not store after power failure; 302 +* 1: Write to EEPROM, power-down storage. 303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 303 303 304 -1: Write to EEPROM, power-down storage. 305 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 306 - 307 307 = **Modbus communication variable address and value** = 308 308 309 309 == **Variable address description** == ... ... @@ -310,24 +310,21 @@ 310 310 311 311 Modbus registers are divided into two categories: 312 312 313 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 314 314 315 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 316 - 317 317 **Servo function code representation: PXX-YY.** 318 318 319 -XX: represents the function code group number, 316 +* XX: represents the function code group number, 317 +* YY: represents the bias within the function code group;; 320 320 321 -YY: represents the bias within the function code group;; 322 - 323 323 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 324 324 325 325 **Servo monitor volume representation: Uxx-yy.** 326 326 327 -xx: represents the monitoring volume group number, 323 +* xx: represents the monitoring volume group number, 324 +* yy: represents the bias within the monitoring volume group; 328 328 329 -yy: represents the bias within the monitoring volume group; 330 - 331 331 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 332 332 333 333 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -335,35 +335,33 @@ 335 335 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 336 336 337 337 (% class="table-bordered" %) 338 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 339 -**Modbus address** 333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 334 +**Modbus address (Hexadecimal)** 335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 336 +**Modbus address (Decimal)** 337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 340 340 341 -**(Hexadecimal)** 342 -)))|(% style="text-align:center; vertical-align:middle" %)((( 343 -**Modbus address** 340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 344 344 345 -**(Decimal)** 346 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 347 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 348 - 349 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 350 - 351 351 == **Variable value type description** == 352 352 353 353 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 354 354 355 -~1. The data is positive or 0: complement code = original code 346 +1. The data is positive or 0: complement code = original code 347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 356 356 357 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001349 +For example: 358 358 359 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 360 360 361 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 362 - 363 363 == **Numerical unit description** == 364 364 365 365 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 366 366 367 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 368 368 369 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.362 +The other units can be deduced by this, and integer remains unchanged.