Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.7
edited by Stone Wu
on 2022/07/07 15:15
Change comment: There is no comment for this version
To version 10.1
edited by Stone Wu
on 2022/09/23 14:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.1 User Manual.02 VD2 SA Series.WebHome
1 +Servo.Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -2,21 +2,21 @@
2 2  
3 3  = **Modbus communication** =
4 4  
5 -== **Hardware wiring** ==
5 +== Hardware wiring ==
6 6  
7 7  The position of RS485 communication port (take VD2B as an example) is as the figure below.
8 8  
9 9  (% style="text-align:center" %)
10 -[[image:image-20220608154248-1.png]]
10 +[[image:image-20220608154248-1.png||class="img-thumbnail"]]
11 11  
12 12  Figure 8-1 The position of RS485 communication port of VD2B drive
13 13  
14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__.
15 15  
16 16  The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17 17  
18 18  (% class="table-bordered" %)
19 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]
19 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]
20 20  |(((
21 21  ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together!
22 22  
... ... @@ -24,7 +24,7 @@
24 24  )))
25 25  
26 26  (% style="text-align:center" %)
27 -[[image:image-20220608174415-1.png]]
27 +[[image:image-20220608174415-1.png||class="img-thumbnail"]]
28 28  
29 29  Figure 8-2 RS485 communication network wiring diagram
30 30  
... ... @@ -33,7 +33,7 @@
33 33  No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.
34 34  
35 35  (% class="table-bordered" %)
36 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]]
36 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]]
37 37  |Under no circumstances can the grounding wire form a closed loop.
38 38  
39 39  When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.
... ... @@ -40,20 +40,20 @@
40 40  
41 41  = **Modbus communication protocol analysis** =
42 42  
43 -== **Modbus data frame format** ==
43 +== Modbus data frame format ==
44 44  
45 45  The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.
46 46  
47 47  (% class="table-bordered" %)
48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code**
49 49  |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
50 50  
51 -== **Description of supported function codes** ==
51 +== Supported function codes ==
52 52  
53 53  The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:
54 54  
55 55  (% class="table-bordered" %)
56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code**
57 57  |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
58 58  |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59 59  |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10
... ... @@ -62,36 +62,39 @@
62 62  
63 63  Request format:
64 64  
65 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
66 -|**high byte**|**low byte**|**high byte**|**low byte**
65 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of reads**|=(% rowspan="2" %)**CRC check code**
66 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**
67 67  |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes
68 68  
69 69  Correct response format:
70 70  
71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code**
72 -|**high byte**|**low byte**
73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes
71 +(% style="width:1055px" %)
72 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" style="width: 279px;" %)**Number of bytes of returned data**|=(% colspan="2" style="width: 274px;" %)**Register 1**|=(% rowspan="2" style="width: 98px;" %)**…**|=(% rowspan="2" %)**CRC check code**
73 +|=(% style="width: 160px;" %)**high byte**|=(% style="width: 114px;" %)**low byte**
74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes
74 74  
75 75  **Write function code: 0x06**
76 76  
77 77  Request format:
78 78  
79 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
80 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)(((
81 +**Register address**
82 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
80 80  |**high byte**|**low byte**|**high byte**|**low byte**
81 81  |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
82 82  
83 83  Response format:
84 84  
85 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
86 -|**high byte**|**low byte**|**high byte**|**low byte**
88 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**
89 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**
87 87  |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
88 88  
89 89  If the setting is successful, the original is returned
90 90  
91 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code**
92 -|1 byte|1 byte|N bytes|2 bytes
94 +|=(% rowspan="2" style="width: 551px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="width: 114px;" %)**Address**|=(% style="width: 127px;" %)**Function code**|=(% style="width: 104px;" %)**Data**|=(% style="width: 180px;" %)**CRC check code**
95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes
93 93  
94 -(% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check**
97 +== (% style="color:inherit; font-family:inherit; font-size:26px" %)CRC check(%%) ==
95 95  
96 96  The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:
97 97  
... ... @@ -148,13 +148,13 @@
148 148  == **Error response frame** ==
149 149  
150 150  (% class="table-bordered" %)
151 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code**
152 152  |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes
153 153  
154 154  When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.
155 155  
156 156  (% class="table-bordered" %)
157 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description**
160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description**
158 158  |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code
159 159  |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address
160 160  |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data
... ... @@ -162,69 +162,84 @@
162 162  
163 163  == **Communication example** ==
164 164  
165 -**03 Function Code Read**
168 +**03 Function code read**
166 166  
167 167  Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
168 168  
169 169  Request format:
170 170  
171 -(% class="table-bordered" %)
172 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
173 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
174 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**
175 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**
176 +|01|03|1E|24|00|01|C2 29
174 174  
175 175  The slave responds normally:
176 176  
177 -(% class="table-bordered" %)
178 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
179 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
180 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" %)**Number of bytes**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC high byte**
181 +|=**high byte**|=**low byte**
182 +|01|03|02|0C|4F|FC B0
180 180  
181 -The value read is 0x0C26, which means that the voltage is 311.0V. 
184 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V.
182 182  
183 183  **06 Function Code Write**
184 184  
185 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
188 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
186 186  
187 187  Request format:
188 188  
189 -(% class="table-bordered" %)
190 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
191 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
192 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**
193 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**
194 +|01|06|01|0A|0B|B8|AF, 76
192 192  
193 193  The slave responds normally:
194 194  
195 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
196 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
198 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code**
199 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**
200 +|01|06|01|0A|0B|B8|AF, 76
197 197  
202 +**10 Function code write**
203 +
204 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
205 +
206 +Request format:
207 +
208 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of register**|=(% rowspan="2" %)**Number of data**|=(% colspan="2" %)**Data 1**|=(% colspan="2" %)**Data 2**|=(% colspan="2" %)**CRC check code**
209 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**
210 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
211 +
212 +The slave responds normally:
213 +
214 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% colspan="2" %)**CRC check code**
215 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**
216 +|01|10|07|09|00|02|90|BE
217 +
198 198  = **Servo communication parameter setting** =
199 199  
200 200  (% style="text-align:center" %)
201 -[[image:image-20220608174504-2.png]]
221 +(((
222 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
223 +[[Figure 8-3 Modbus communication parameter setting process>>image:image-20220608174504-2.png||id="Iimage-20220608174504-2.png"]]
224 +)))
202 202  
203 -Figure 8-3 Modbus communication parameter setting process
226 +**Set the servo address P12-1**
204 204  
205 -**(1) Set the servo address P12-1**
206 -
207 207  When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.
208 208  
209 -**(2) Set the serial port baud rate P12-2**
230 +**Set the serial port baud rate P12-2**
210 210  
211 211  The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.
212 212  
213 -**(3) Set the serial port data format P12-3**
234 +**Set the serial port data format P12-3**
214 214  
215 215  The data bit check methods of servo communication are:
216 216  
217 -Odd parity
238 +* Odd parity
239 +* Even parity
240 +* No parity
241 +* The stop bit: 1 stop bit and 2 stop bits.
218 218  
219 -Even parity
220 -
221 -No parity
222 -
223 -The stop bit: 1 stop bit and 2 stop bits.
224 -
225 225  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
226 226  
227 -**(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
245 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
228 228  
229 229  When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.
230 230  
... ... @@ -233,10 +233,10 @@
233 233  If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.
234 234  
235 235  (% class="table-bordered" %)
236 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
254 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
237 237  |After the EEPROM is damaged, the servo will have an non resettable fault!
238 238  
239 -**(5) Set the high and low order of the 32-bit monitoring data**
257 +**Set the high and low order of the 32-bit monitoring data**
240 240  
241 241  Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!
242 242  
... ... @@ -245,75 +245,63 @@
245 245  The description of related function codes are as follows.
246 246  
247 247  (% class="table-bordered" %)
248 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
266 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)(((
249 249  **Setting method**
250 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
268 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)(((
251 251  **Effective time**
252 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
253 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
270 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit**
271 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
254 254  Operation setting
255 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
273 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
256 256  Effective immediately
257 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
258 -0-2400bps
259 -
260 -1-4800bps
261 -
262 -2-9600bps
263 -
264 -3-19200bps
265 -
266 -4-38400bps
267 -
268 -5-57600bp
269 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
270 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
275 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)(((
276 +* 0: 2400bps
277 +* 1: 4800bps
278 +* 2: 9600bps
279 +* 3: 19200bps
280 +* 4: 38400bps
281 +* 5: 57600bp
282 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
283 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
271 271  Operation setting
272 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
285 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
273 273  Effective immediately
274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
275 -0: 1 stop bit, no parity
276 -
277 -1: 1 stop bit, odd parity
278 -
279 -2: 1 stop bit, even parity
280 -
281 -3: 2 stop bits, no parity
282 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
283 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
287 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)(((
288 +* 0: 1 stop bit, no parity
289 +* 1: 1 stop bit, odd parity
290 +* 2: 1 stop bit, even parity
291 +* 3: 2 stop bits, no parity
292 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
293 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
284 284  Operation setting
285 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
295 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
286 286  Effective immediately
287 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
288 -0: Do not write to EEPROM, and do not store after power failure;
297 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)(((
298 +* 0: Do not write to EEPROM, and do not store after power failure;
299 +* 1: Write to EEPROM, power-down storage.
300 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
289 289  
290 -1: Write to EEPROM, power-down storage.
291 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
292 -
293 293  = **Modbus communication variable address and value** =
294 294  
295 -== **Variable address description** ==
304 +== **Variable address** ==
296 296  
297 297  Modbus registers are divided into two categories:
298 298  
299 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
308 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
309 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
300 300  
301 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
302 -
303 303  **Servo function code representation: PXX-YY.**
304 304  
305 -XX: represents the function code group number,
313 +* XX: represents the function code group number,
314 +* YY: represents the bias within the function code group;;
306 306  
307 -YY: represents the bias within the function code group;;
308 -
309 309  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
310 310  
311 311  **Servo monitor volume representation: Uxx-yy.**
312 312  
313 -xx: represents the monitoring volume group number,
320 +* xx: represents the monitoring volume group number,
321 +* yy: represents the bias within the monitoring volume group;
314 314  
315 -yy: represents the bias within the monitoring volume group;
316 -
317 317  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
318 318  
319 319  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -321,35 +321,33 @@
321 321  In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:
322 322  
323 323  (% class="table-bordered" %)
324 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)(((
325 -**Modbus address**
330 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)(((
331 +**Modbus address (Hexadecimal)**
332 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)(((
333 +**Modbus address (Decimal)**
334 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name**
335 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode
326 326  
327 -**(Hexadecimal)**
328 -)))|(% style="text-align:center; vertical-align:middle" %)(((
329 -**Modbus address**
337 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__
330 330  
331 -**(Decimal)**
332 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
333 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
339 +== **Variable value type** ==
334 334  
335 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
336 -
337 -== **Variable value type description** ==
338 -
339 339  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
340 340  
341 -~1. The data is positive or 0: complement code = original code
343 +1. The data is positive or 0: complement code = original code
344 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
342 342  
343 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
346 +For example:
344 344  
345 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
348 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
349 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
350 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
346 346  
347 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
348 -
349 349  == **Numerical unit description** ==
350 350  
351 351  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
352 352  
353 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
356 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
357 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
354 354  
355 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
359 +The other units can be deduced by this, and integer remains unchanged.