Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -2,21 +2,21 @@ 2 2 3 3 = **Modbus communication** = 4 4 5 -== **Hardware wiring**==5 +== Hardware wiring == 6 6 7 7 The position of RS485 communication port (take VD2B as an example) is as the figure below. 8 8 9 9 (% style="text-align:center" %) 10 -[[image:image-20220608154248-1.png]] 10 +[[image:image-20220608154248-1.png||class="img-thumbnail"]] 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 18 18 (% class="table-bordered" %) 19 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 19 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 20 20 |((( 21 21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together! 22 22 ... ... @@ -24,7 +24,7 @@ 24 24 ))) 25 25 26 26 (% style="text-align:center" %) 27 -[[image:image-20220608174415-1.png]] 27 +[[image:image-20220608174415-1.png||class="img-thumbnail"]] 28 28 29 29 Figure 8-2 RS485 communication network wiring diagram 30 30 ... ... @@ -33,7 +33,7 @@ 33 33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals. 34 34 35 35 (% class="table-bordered" %) 36 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 36 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 37 37 |Under no circumstances can the grounding wire form a closed loop. 38 38 39 39 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed. ... ... @@ -40,20 +40,20 @@ 40 40 41 41 = **Modbus communication protocol analysis** = 42 42 43 -== **Modbus data frame format**==43 +== Modbus data frame format == 44 44 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 -== **Description of supported function codes**==51 +== Supported function codes == 52 52 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -62,36 +62,39 @@ 62 62 63 63 Request format: 64 64 65 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 66 -|**high byte**|**low byte**|**high byte**|**low byte** 65 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of reads**|=(% rowspan="2" %)**CRC check code** 66 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 67 67 |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" style="width: 279px;" %)**Number of bytes of returned data**|=(% colspan="2" style="width: 274px;" %)**Register 1**|=(% rowspan="2" style="width: 98px;" %)**…**|=(% rowspan="2" %)**CRC check code** 73 +|=(% style="width: 160px;" %)**high byte**|=(% style="width: 114px;" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 77 77 Request format: 78 78 79 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 80 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)((( 81 +**Register address** 82 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 80 80 |**high byte**|**low byte**|**high byte**|**low byte** 81 81 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 82 82 83 83 Response format: 84 84 85 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)** Initialaddress**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**86 -|**high byte**|**low byte**|**high byte**|**low byte** 88 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 89 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 87 87 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 88 88 89 89 If the setting is successful, the original is returned 90 90 91 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 92 -|1 byte|1 byte|N bytes|2 bytes 94 +|=(% rowspan="2" style="width: 551px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="width: 114px;" %)**Address**|=(% style="width: 127px;" %)**Function code**|=(% style="width: 104px;" %)**Data**|=(% style="width: 180px;" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 93 93 94 -(% style="color:inherit; font-family:inherit; font-size:26px" %) **CRC check**97 +== (% style="color:inherit; font-family:inherit; font-size:26px" %)CRC check(%%) == 95 95 96 96 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows: 97 97 ... ... @@ -148,13 +148,13 @@ 148 148 == **Error response frame** == 149 149 150 150 (% class="table-bordered" %) 151 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 152 152 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 153 153 154 154 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 155 155 156 156 (% class="table-bordered" %) 157 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 158 158 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 159 159 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -162,69 +162,84 @@ 162 162 163 163 == **Communication example** == 164 164 165 -**03 Function CodeRead**168 +**03 Function code read** 166 166 167 167 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) 168 168 169 169 Request format: 170 170 171 -(% class="table-bordered" %)172 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**173 -| (% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)2bytes174 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 175 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 176 +|01|03|1E|24|00|01|C2 29 174 174 175 175 The slave responds normally: 176 176 177 -(% class="table-bordered" %)178 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**179 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(%style="text-align:center; vertical-align:middle" %)9E180 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" %)**Number of bytes**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC high byte** 181 +|=**high byte**|=**low byte** 182 +|01|03|02|0C|4F|FC B0 180 180 181 -The value read is 0x0C 26, which means that the voltage is 311.0V.184 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 182 182 183 183 **06 Function Code Write** 184 184 185 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 188 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 186 186 187 187 Request format: 188 188 189 -(% class="table-bordered" %)190 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**191 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF192 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 193 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 194 +|01|06|01|0A|0B|B8|AF, 76 192 192 193 193 The slave responds normally: 194 194 195 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 196 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 198 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 199 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 200 +|01|06|01|0A|0B|B8|AF, 76 197 197 202 +**10 Function code write** 203 + 204 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 205 + 206 +Request format: 207 + 208 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of register**|=(% rowspan="2" %)**Number of data**|=(% colspan="2" %)**Data 1**|=(% colspan="2" %)**Data 2**|=(% colspan="2" %)**CRC check code** 209 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 210 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 211 + 212 +The slave responds normally: 213 + 214 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% colspan="2" %)**CRC check code** 215 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 216 +|01|10|07|09|00|02|90|BE 217 + 198 198 = **Servo communication parameter setting** = 199 199 200 200 (% style="text-align:center" %) 201 -[[image:image-20220608174504-2.png]] 221 +((( 222 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 223 +[[Figure 8-3 Modbus communication parameter setting process>>image:image-20220608174504-2.png||id="Iimage-20220608174504-2.png"]] 224 +))) 202 202 203 - Figure8-3 Modbus communicationparametersetting process226 +**Set the servo address P12-1** 204 204 205 -**(1) Set the servo address P12-1** 206 - 207 207 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 208 208 209 -** (2)Set the serial port baud rate P12-2**230 +**Set the serial port baud rate P12-2** 210 210 211 211 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 212 212 213 -** (3)Set the serial port data format P12-3**234 +**Set the serial port data format P12-3** 214 214 215 215 The data bit check methods of servo communication are: 216 216 217 -Odd parity 238 +* Odd parity 239 +* Even parity 240 +* No parity 241 +* The stop bit: 1 stop bit and 2 stop bits. 218 218 219 -Even parity 220 - 221 -No parity 222 - 223 -The stop bit: 1 stop bit and 2 stop bits. 224 - 225 225 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 226 226 227 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**245 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 228 228 229 229 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 230 230 ... ... @@ -233,10 +233,10 @@ 233 233 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM. 234 234 235 235 (% class="table-bordered" %) 236 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 254 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 237 237 |After the EEPROM is damaged, the servo will have an non resettable fault! 238 238 239 -** (5)Set the high and low order of the 32-bit monitoring data**257 +**Set the high and low order of the 32-bit monitoring data** 240 240 241 241 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 242 242 ... ... @@ -245,75 +245,63 @@ 245 245 The description of related function codes are as follows. 246 246 247 247 (% class="table-bordered" %) 248 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((266 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 249 249 **Setting method** 250 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((268 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 251 251 **Effective time** 252 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**253 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((270 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 271 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 254 254 Operation setting 255 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((273 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 256 256 Effective immediately 257 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 258 -0-2400bps 259 - 260 -1-4800bps 261 - 262 -2-9600bps 263 - 264 -3-19200bps 265 - 266 -4-38400bps 267 - 268 -5-57600bp 269 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 270 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 275 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 276 +* 0: 2400bps 277 +* 1: 4800bps 278 +* 2: 9600bps 279 +* 3: 19200bps 280 +* 4: 38400bps 281 +* 5: 57600bp 282 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 283 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 271 271 Operation setting 272 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((285 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 273 273 Effective immediately 274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 275 -0: 1 stop bit, no parity 276 - 277 -1: 1 stop bit, odd parity 278 - 279 -2: 1 stop bit, even parity 280 - 281 -3: 2 stop bits, no parity 282 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 283 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 287 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 288 +* 0: 1 stop bit, no parity 289 +* 1: 1 stop bit, odd parity 290 +* 2: 1 stop bit, even parity 291 +* 3: 2 stop bits, no parity 292 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 293 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 284 284 Operation setting 285 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((295 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 286 286 Effective immediately 287 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 288 -0: Do not write to EEPROM, and do not store after power failure; 297 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 298 +* 0: Do not write to EEPROM, and do not store after power failure; 299 +* 1: Write to EEPROM, power-down storage. 300 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 289 289 290 -1: Write to EEPROM, power-down storage. 291 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 292 - 293 293 = **Modbus communication variable address and value** = 294 294 295 -== **Variable address description** ==304 +== **Variable address** == 296 296 297 297 Modbus registers are divided into two categories: 298 298 299 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 308 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 309 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 300 300 301 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 302 - 303 303 **Servo function code representation: PXX-YY.** 304 304 305 -XX: represents the function code group number, 313 +* XX: represents the function code group number, 314 +* YY: represents the bias within the function code group;; 306 306 307 -YY: represents the bias within the function code group;; 308 - 309 309 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 310 310 311 311 **Servo monitor volume representation: Uxx-yy.** 312 312 313 -xx: represents the monitoring volume group number, 320 +* xx: represents the monitoring volume group number, 321 +* yy: represents the bias within the monitoring volume group; 314 314 315 -yy: represents the bias within the monitoring volume group; 316 - 317 317 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 318 318 319 319 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -321,35 +321,33 @@ 321 321 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 322 322 323 323 (% class="table-bordered" %) 324 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 325 -**Modbus address** 330 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 331 +**Modbus address (Hexadecimal)** 332 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 333 +**Modbus address (Decimal)** 334 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 335 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 326 326 327 -**(Hexadecimal)** 328 -)))|(% style="text-align:center; vertical-align:middle" %)((( 329 -**Modbus address** 337 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 330 330 331 -**(Decimal)** 332 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 333 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 339 +== **Variable value type** == 334 334 335 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 336 - 337 -== **Variable value type description** == 338 - 339 339 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 340 340 341 -~1. The data is positive or 0: complement code = original code 343 +1. The data is positive or 0: complement code = original code 344 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 342 342 343 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001346 +For example: 344 344 345 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 348 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 349 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 350 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 346 346 347 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 348 - 349 349 == **Numerical unit description** == 350 350 351 351 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 352 352 353 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 356 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 357 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 354 354 355 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.359 +The other units can be deduced by this, and integer remains unchanged.