Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.7
edited by Stone Wu
on 2022/07/07 15:15
Change comment: There is no comment for this version
To version 4.18
edited by Stone Wu
on 2022/07/07 15:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -76,13 +76,15 @@
76 76  
77 77  Request format:
78 78  
79 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
79 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)(((
80 +**Register address**
81 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
80 80  |**high byte**|**low byte**|**high byte**|**low byte**
81 81  |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
82 82  
83 83  Response format:
84 84  
85 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
87 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
86 86  |**high byte**|**low byte**|**high byte**|**low byte**
87 87  |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
88 88  
... ... @@ -162,39 +162,62 @@
162 162  
163 163  == **Communication example** ==
164 164  
165 -**03 Function Code Read**
166 166  
168 +
169 +**03 Function code read**
170 +
167 167  Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
168 168  
169 169  Request format:
170 170  
171 -(% class="table-bordered" %)
172 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
173 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
175 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
176 +|**high byte**|**low byte**|**high byte**|**low byte**
177 +|01|03|1E|24|00|01|C2 29
174 174  
175 175  The slave responds normally:
176 176  
177 -(% class="table-bordered" %)
178 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
179 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
181 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte**
182 +|**high byte**|**low byte**
183 +|01|03|02|0C|4F|FC B0
180 180  
181 -The value read is 0x0C26, which means that the voltage is 311.0V. 
185 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V.
182 182  
187 +
188 +
183 183  **06 Function Code Write**
184 184  
185 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
191 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
186 186  
187 187  Request format:
188 188  
189 -(% class="table-bordered" %)
190 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
191 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
196 +|**high byte**|**low byte**|**high byte**|**low byte**
197 +|01|06|01|0A|0B|B8|AF, 76
192 192  
193 193  The slave responds normally:
194 194  
195 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
196 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
202 +|**high byte**|**low byte**|**high byte**|**low byte**
203 +|01|06|01|0A|0B|B8|AF, 76
197 197  
205 +
206 +
207 +**10 Function code write**
208 +
209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
210 +
211 +Request format:
212 +
213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
216 +
217 +The slave responds normally:
218 +
219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
221 +|01|10|07|09|00|02|90|BE
222 +
198 198  = **Servo communication parameter setting** =
199 199  
200 200  (% style="text-align:center" %)
... ... @@ -214,14 +214,11 @@
214 214  
215 215  The data bit check methods of servo communication are:
216 216  
217 -Odd parity
242 +* Odd parity
243 +* Even parity
244 +* No parity
245 +* The stop bit: 1 stop bit and 2 stop bits.
218 218  
219 -Even parity
220 -
221 -No parity
222 -
223 -The stop bit: 1 stop bit and 2 stop bits.
224 -
225 225  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
226 226  
227 227  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -249,12 +249,12 @@
249 249  **Setting method**
250 250  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
251 251  **Effective time**
252 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
253 253  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
254 254  Operation setting
255 255  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
256 256  Effective immediately
257 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
258 258  0-2400bps
259 259  
260 260  1-4800bps
... ... @@ -266,12 +266,12 @@
266 266  4-38400bps
267 267  
268 268  5-57600bp
269 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
270 270  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
271 271  Operation setting
272 272  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
273 273  Effective immediately
274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
275 275  0: 1 stop bit, no parity
276 276  
277 277  1: 1 stop bit, odd parity
... ... @@ -279,16 +279,16 @@
279 279  2: 1 stop bit, even parity
280 280  
281 281  3: 2 stop bits, no parity
282 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
283 283  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
284 284  Operation setting
285 285  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
286 286  Effective immediately
287 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
288 288  0: Do not write to EEPROM, and do not store after power failure;
289 289  
290 290  1: Write to EEPROM, power-down storage.
291 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
292 292  
293 293  = **Modbus communication variable address and value** =
294 294  
... ... @@ -296,24 +296,21 @@
296 296  
297 297  Modbus registers are divided into two categories:
298 298  
299 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
300 300  
301 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
302 -
303 303  **Servo function code representation: PXX-YY.**
304 304  
305 -XX: represents the function code group number,
326 +* XX: represents the function code group number,
327 +* YY: represents the bias within the function code group;;
306 306  
307 -YY: represents the bias within the function code group;;
308 -
309 309  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
310 310  
311 311  **Servo monitor volume representation: Uxx-yy.**
312 312  
313 -xx: represents the monitoring volume group number,
333 +* xx: represents the monitoring volume group number,
334 +* yy: represents the bias within the monitoring volume group;
314 314  
315 -yy: represents the bias within the monitoring volume group;
316 -
317 317  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
318 318  
319 319  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -338,18 +338,20 @@
338 338  
339 339  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
340 340  
341 -~1. The data is positive or 0: complement code = original code
360 +1. The data is positive or 0: complement code = original code
361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
342 342  
343 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
363 +For example:
344 344  
345 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
346 346  
347 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
348 -
349 349  == **Numerical unit description** ==
350 350  
351 351  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
352 352  
353 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
354 354  
355 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
376 +The other units can be deduced by this, and integer remains unchanged.