Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -76,13 +76,15 @@ 76 76 77 77 Request format: 78 78 79 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 79 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)((( 80 +**Register address** 81 +)))|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 80 80 |**high byte**|**low byte**|**high byte**|**low byte** 81 81 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 82 82 83 83 Response format: 84 84 85 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)** Initialaddress**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**87 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 86 86 |**high byte**|**low byte**|**high byte**|**low byte** 87 87 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 88 88 ... ... @@ -162,39 +162,62 @@ 162 162 163 163 == **Communication example** == 164 164 165 -**03 Function Code Read** 166 166 168 + 169 +**03 Function code read** 170 + 167 167 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) 168 168 169 169 Request format: 170 170 171 -(% class="table-bordered" %)172 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**173 -| (% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)2bytes175 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 176 +|**high byte**|**low byte**|**high byte**|**low byte** 177 +|01|03|1E|24|00|01|C2 29 174 174 175 175 The slave responds normally: 176 176 177 -(% class="table-bordered" %)178 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**179 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(%style="text-align:center; vertical-align:middle" %)9E181 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 182 +|**high byte**|**low byte** 183 +|01|03|02|0C|4F|FC B0 180 180 181 -The value read is 0x0C 26, which means that the voltage is 311.0V.185 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 182 182 187 + 188 + 183 183 **06 Function Code Write** 184 184 185 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 191 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 186 186 187 187 Request format: 188 188 189 -(% class="table-bordered" %)190 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**191 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 +|**high byte**|**low byte**|**high byte**|**low byte** 197 +|01|06|01|0A|0B|B8|AF, 76 192 192 193 193 The slave responds normally: 194 194 195 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 196 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 +|**high byte**|**low byte**|**high byte**|**low byte** 203 +|01|06|01|0A|0B|B8|AF, 76 197 197 205 + 206 + 207 +**10 Function code write** 208 + 209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 210 + 211 +Request format: 212 + 213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 216 + 217 +The slave responds normally: 218 + 219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 221 +|01|10|07|09|00|02|90|BE 222 + 198 198 = **Servo communication parameter setting** = 199 199 200 200 (% style="text-align:center" %) ... ... @@ -214,14 +214,11 @@ 214 214 215 215 The data bit check methods of servo communication are: 216 216 217 -Odd parity 242 +* Odd parity 243 +* Even parity 244 +* No parity 245 +* The stop bit: 1 stop bit and 2 stop bits. 218 218 219 -Even parity 220 - 221 -No parity 222 - 223 -The stop bit: 1 stop bit and 2 stop bits. 224 - 225 225 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 226 226 227 227 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -249,12 +249,12 @@ 249 249 **Setting method** 250 250 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 251 251 **Effective time** 252 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 253 253 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 254 254 Operation setting 255 255 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 256 256 Effective immediately 257 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 335px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 258 258 0-2400bps 259 259 260 260 1-4800bps ... ... @@ -266,12 +266,12 @@ 266 266 4-38400bps 267 267 268 268 5-57600bp 269 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 270 270 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 271 271 Operation setting 272 272 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 273 273 Effective immediately 274 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 335px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 275 275 0: 1 stop bit, no parity 276 276 277 277 1: 1 stop bit, odd parity ... ... @@ -279,16 +279,16 @@ 279 279 2: 1 stop bit, even parity 280 280 281 281 3: 2 stop bits, no parity 282 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 283 283 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 284 284 Operation setting 285 285 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 286 286 Effective immediately 287 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 335px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 288 288 0: Do not write to EEPROM, and do not store after power failure; 289 289 290 290 1: Write to EEPROM, power-down storage. 291 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 292 292 293 293 = **Modbus communication variable address and value** = 294 294 ... ... @@ -296,24 +296,21 @@ 296 296 297 297 Modbus registers are divided into two categories: 298 298 299 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 300 300 301 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 302 - 303 303 **Servo function code representation: PXX-YY.** 304 304 305 -XX: represents the function code group number, 326 +* XX: represents the function code group number, 327 +* YY: represents the bias within the function code group;; 306 306 307 -YY: represents the bias within the function code group;; 308 - 309 309 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 310 310 311 311 **Servo monitor volume representation: Uxx-yy.** 312 312 313 -xx: represents the monitoring volume group number, 333 +* xx: represents the monitoring volume group number, 334 +* yy: represents the bias within the monitoring volume group; 314 314 315 -yy: represents the bias within the monitoring volume group; 316 - 317 317 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 318 318 319 319 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -338,18 +338,20 @@ 338 338 339 339 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 340 340 341 -~1. The data is positive or 0: complement code = original code 360 +1. The data is positive or 0: complement code = original code 361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 342 342 343 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001363 +For example: 344 344 345 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 346 346 347 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 348 - 349 349 == **Numerical unit description** == 350 350 351 351 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 352 352 353 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 354 354 355 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.376 +The other units can be deduced by this, and integer remains unchanged.