Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 1 UserManual.02 VD2 SA Series.WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Content
-
... ... @@ -11,7 +11,7 @@ 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/ 2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__. 15 15 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 ... ... @@ -45,7 +45,7 @@ 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 51 == **Description of supported function codes** == ... ... @@ -53,7 +53,7 @@ 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -68,9 +68,10 @@ 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code** 73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 ... ... @@ -90,8 +90,8 @@ 90 90 91 91 If the setting is successful, the original is returned 92 92 93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 -|1 byte|1 byte|N bytes|2 bytes 94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 95 95 96 96 (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check** 97 97 ... ... @@ -150,13 +150,13 @@ 150 150 == **Error response frame** == 151 151 152 152 (% class="table-bordered" %) 153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 154 154 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 155 155 156 156 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 157 157 158 158 (% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 161 161 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 162 162 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -164,39 +164,60 @@ 164 164 165 165 == **Communication example** == 166 166 167 -**03 Function Code Read** 168 168 169 + 170 +**03 Function code read** 171 + 169 169 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) 170 170 171 171 Request format: 172 172 173 -(% class="table-bordered" %)174 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**175 -| (% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)2bytes176 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 177 +|**high byte**|**low byte**|**high byte**|**low byte** 178 +|01|03|1E|24|00|01|C2 29 176 176 177 177 The slave responds normally: 178 178 179 -(% class="table-bordered" %)180 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**181 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(%style="text-align:center; vertical-align:middle" %)9E182 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 183 +|**high byte**|**low byte** 184 +|01|03|02|0C|4F|FC B0 182 182 183 -The value read is 0x0C 26, which means that the voltage is 311.0V.186 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 184 184 188 + 189 + 185 185 **06 Function Code Write** 186 186 187 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 192 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 188 188 189 189 Request format: 190 190 191 -(% class="table-bordered" %)192 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**193 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF196 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 197 +|**high byte**|**low byte**|**high byte**|**low byte** 198 +|01|06|01|0A|0B|B8|AF, 76 194 194 195 195 The slave responds normally: 196 196 197 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 198 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 202 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 203 +|**high byte**|**low byte**|**high byte**|**low byte** 204 +|01|06|01|0A|0B|B8|AF, 76 199 199 206 +**10 Function code write** 207 + 208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 209 + 210 +Request format: 211 + 212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 215 + 216 +The slave responds normally: 217 + 218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 220 +|01|10|07|09|00|02|90|BE 221 + 200 200 = **Servo communication parameter setting** = 201 201 202 202 (% style="text-align:center" %) ... ... @@ -204,29 +204,26 @@ 204 204 205 205 Figure 8-3 Modbus communication parameter setting process 206 206 207 -** (1)Set the servo address P12-1**229 +**Set the servo address P12-1** 208 208 209 209 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 210 210 211 -** (2)Set the serial port baud rate P12-2**233 +**Set the serial port baud rate P12-2** 212 212 213 213 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 214 214 215 -** (3)Set the serial port data format P12-3**237 +**Set the serial port data format P12-3** 216 216 217 217 The data bit check methods of servo communication are: 218 218 219 -Odd parity 241 +* Odd parity 242 +* Even parity 243 +* No parity 244 +* The stop bit: 1 stop bit and 2 stop bits. 220 220 221 -Even parity 222 - 223 -No parity 224 - 225 -The stop bit: 1 stop bit and 2 stop bits. 226 - 227 227 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 228 228 229 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 230 230 231 231 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 232 232 ... ... @@ -238,7 +238,7 @@ 238 238 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 239 239 |After the EEPROM is damaged, the servo will have an non resettable fault! 240 240 241 -** (5)Set the high and low order of the 32-bit monitoring data**260 +**Set the high and low order of the 32-bit monitoring data** 242 242 243 243 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 244 244 ... ... @@ -247,51 +247,42 @@ 247 247 The description of related function codes are as follows. 248 248 249 249 (% class="table-bordered" %) 250 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 251 251 **Setting method** 252 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 253 253 **Effective time** 254 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**255 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 256 256 Operation setting 257 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 258 258 Effective immediately 259 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)((( 260 -0-2400bps 261 - 262 -1-4800bps 263 - 264 -2-9600bps 265 - 266 -3-19200bps 267 - 268 -4-38400bps 269 - 270 -5-57600bp 271 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 272 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 279 +* 0: 2400bps 280 +* 1: 4800bps 281 +* 2: 9600bps 282 +* 3: 19200bps 283 +* 4: 38400bps 284 +* 5: 57600bp 285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 273 273 Operation setting 274 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 275 275 Effective immediately 276 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)((( 277 -0: 1 stop bit, no parity 278 - 279 -1: 1 stop bit, odd parity 280 - 281 -2: 1 stop bit, even parity 282 - 283 -3: 2 stop bits, no parity 284 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 285 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 291 +* 0: 1 stop bit, no parity 292 +* 1: 1 stop bit, odd parity 293 +* 2: 1 stop bit, even parity 294 +* 3: 2 stop bits, no parity 295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 286 286 Operation setting 287 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 288 288 Effective immediately 289 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)((( 290 -0: Do not write to EEPROM, and do not store after power failure; 300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 301 +* 0: Do not write to EEPROM, and do not store after power failure; 302 +* 1: Write to EEPROM, power-down storage. 303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 291 291 292 -1: Write to EEPROM, power-down storage. 293 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)- 294 - 295 295 = **Modbus communication variable address and value** = 296 296 297 297 == **Variable address description** == ... ... @@ -298,24 +298,21 @@ 298 298 299 299 Modbus registers are divided into two categories: 300 300 301 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 302 302 303 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 304 - 305 305 **Servo function code representation: PXX-YY.** 306 306 307 -XX: represents the function code group number, 316 +* XX: represents the function code group number, 317 +* YY: represents the bias within the function code group;; 308 308 309 -YY: represents the bias within the function code group;; 310 - 311 311 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 312 312 313 313 **Servo monitor volume representation: Uxx-yy.** 314 314 315 -xx: represents the monitoring volume group number, 323 +* xx: represents the monitoring volume group number, 324 +* yy: represents the bias within the monitoring volume group; 316 316 317 -yy: represents the bias within the monitoring volume group; 318 - 319 319 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 320 320 321 321 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -323,35 +323,33 @@ 323 323 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 324 324 325 325 (% class="table-bordered" %) 326 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 327 -**Modbus address** 333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 334 +**Modbus address (Hexadecimal)** 335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 336 +**Modbus address (Decimal)** 337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 328 328 329 -**(Hexadecimal)** 330 -)))|(% style="text-align:center; vertical-align:middle" %)((( 331 -**Modbus address** 340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 332 332 333 -**(Decimal)** 334 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 335 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 336 - 337 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__ 338 - 339 339 == **Variable value type description** == 340 340 341 341 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 342 342 343 -~1. The data is positive or 0: complement code = original code 346 +1. The data is positive or 0: complement code = original code 347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 344 344 345 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001349 +For example: 346 346 347 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 348 348 349 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 350 - 351 351 == **Numerical unit description** == 352 352 353 353 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 354 354 355 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 356 356 357 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.362 +The other units can be deduced by this, and integer remains unchanged.