Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -164,39 +164,62 @@ 164 164 165 165 == **Communication example** == 166 166 167 -**03 Function Code Read** 168 168 168 + 169 +**03 Function code read** 170 + 169 169 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) 170 170 171 171 Request format: 172 172 173 -(% class="table-bordered" %)174 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**175 -| (% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1byte|(% style="text-align:center; vertical-align:middle" %)2bytes175 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 176 +|**high byte**|**low byte**|**high byte**|**low byte** 177 +|01|03|1E|24|00|01|C2 29 176 176 177 177 The slave responds normally: 178 178 179 -(% class="table-bordered" %)180 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**181 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(%style="text-align:center; vertical-align:middle" %)9E181 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 182 +|**high byte**|**low byte** 183 +|01|03|02|0C|4F|FC B0 182 182 183 -The value read is 0x0C 26, which means that the voltage is 311.0V.185 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 184 184 187 + 188 + 185 185 **06 Function Code Write** 186 186 187 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus 191 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) 188 188 189 189 Request format: 190 190 191 -(% class="table-bordered" %)192 -| (% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register addresshigh byte**|(% style="text-align:center; vertical-align:middle" %)**Register addresslow byte**|(% style="text-align:center; vertical-align:middle" %)**Datahigh byte**|(% style="text-align:center; vertical-align:middle" %)**Datalow byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**193 -| (% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF195 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 +|**high byte**|**low byte**|**high byte**|**low byte** 197 +|01|06|01|0A|0B|B8|AF, 76 194 194 195 195 The slave responds normally: 196 196 197 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte** 198 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF 201 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 +|**high byte**|**low byte**|**high byte**|**low byte** 203 +|01|06|01|0A|0B|B8|AF, 76 199 199 205 + 206 + 207 +**10 Function code write** 208 + 209 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709). 210 + 211 +Request format: 212 + 213 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 214 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 215 +|01|10|07|09|00|02|04|00|00|07|D0|16|59 216 + 217 +The slave responds normally: 218 + 219 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 220 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 221 +|01|10|07|09|00|02|90|BE 222 + 200 200 = **Servo communication parameter setting** = 201 201 202 202 (% style="text-align:center" %) ... ... @@ -216,14 +216,11 @@ 216 216 217 217 The data bit check methods of servo communication are: 218 218 219 -Odd parity 242 +* Odd parity 243 +* Even parity 244 +* No parity 245 +* The stop bit: 1 stop bit and 2 stop bits. 220 220 221 -Even parity 222 - 223 -No parity 224 - 225 -The stop bit: 1 stop bit and 2 stop bits. 226 - 227 227 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 228 228 229 229 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** ... ... @@ -251,12 +251,12 @@ 251 251 **Setting method** 252 252 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 253 253 **Effective time** 254 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width: 335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**274 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit** 255 255 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 256 256 Operation setting 257 257 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 258 258 Effective immediately 259 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width: 335px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 260 260 0-2400bps 261 261 262 262 1-4800bps ... ... @@ -268,12 +268,12 @@ 268 268 4-38400bps 269 269 270 270 5-57600bp 271 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-291 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 272 272 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 273 273 Operation setting 274 274 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 275 275 Effective immediately 276 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width: 335px" %)(((296 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 277 277 0: 1 stop bit, no parity 278 278 279 279 1: 1 stop bit, odd parity ... ... @@ -281,16 +281,16 @@ 281 281 2: 1 stop bit, even parity 282 282 283 283 3: 2 stop bits, no parity 284 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-304 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 285 285 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 286 286 Operation setting 287 287 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)((( 288 288 Effective immediately 289 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width: 335px" %)(((309 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 290 290 0: Do not write to EEPROM, and do not store after power failure; 291 291 292 292 1: Write to EEPROM, power-down storage. 293 -)))|(% style="text-align:center; vertical-align:middle; width: 189px" %)-313 +)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 294 294 295 295 = **Modbus communication variable address and value** = 296 296 ... ... @@ -298,24 +298,21 @@ 298 298 299 299 Modbus registers are divided into two categories: 300 300 301 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 321 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported); 322 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 302 302 303 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported). 304 - 305 305 **Servo function code representation: PXX-YY.** 306 306 307 -XX: represents the function code group number, 326 +* XX: represents the function code group number, 327 +* YY: represents the bias within the function code group;; 308 308 309 -YY: represents the bias within the function code group;; 310 - 311 311 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01. 312 312 313 313 **Servo monitor volume representation: Uxx-yy.** 314 314 315 -xx: represents the monitoring volume group number, 333 +* xx: represents the monitoring volume group number, 334 +* yy: represents the bias within the monitoring volume group; 316 316 317 -yy: represents the bias within the monitoring volume group; 318 - 319 319 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code. 320 320 321 321 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01. ... ... @@ -340,18 +340,20 @@ 340 340 341 341 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 342 342 343 -~1. The data is positive or 0: complement code = original code 360 +1. The data is positive or 0: complement code = original code 361 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001 344 344 345 - 2.Thedata is negative: complement code = 0xFFFF-absolute value of data + 0x0001363 +For example: 346 346 347 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 365 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. 366 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C. 367 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 348 348 349 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly. 350 - 351 351 == **Numerical unit description** == 352 352 353 353 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows: 354 354 355 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 373 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%; 374 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; 356 356 357 - 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms.Therefore,writing 1000 means setting to10.00ms; onthecontrary,if 1000 is read, it means 10.00ms; The otherunits can be deduced by this, and integer remains unchanged.376 +The other units can be deduced by this, and integer remains unchanged.