Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 4.9
edited by Stone Wu
on 2022/07/07 15:18
Change comment: There is no comment for this version
To version 9.1
edited by Stone Wu
on 2022/08/30 09:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.1 User Manual.02 VD2 SA Series.WebHome
1 +Servo.Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -11,7 +11,7 @@
11 11  
12 12  Figure 8-1 The position of RS485 communication port of VD2B drive
13 13  
14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__.
15 15  
16 16  The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17 17  
... ... @@ -45,7 +45,7 @@
45 45  The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.
46 46  
47 47  (% class="table-bordered" %)
48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code**
49 49  |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
50 50  
51 51  == **Description of supported function codes** ==
... ... @@ -53,7 +53,7 @@
53 53  The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:
54 54  
55 55  (% class="table-bordered" %)
56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code**
57 57  |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
58 58  |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59 59  |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10
... ... @@ -68,9 +68,10 @@
68 68  
69 69  Correct response format:
70 70  
71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code**
72 -|**high byte**|**low byte**
73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes
71 +(% style="width:1055px" %)
72 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" style="width:279px" %)**Number of bytes of returned data**|(% colspan="2" style="width:274px" %)**Register 1**|(% rowspan="2" style="width:98px" %)**…**|(% rowspan="2" %)**CRC check code**
73 +|(% style="width:160px" %)**high byte**|(% style="width:114px" %)**low byte**
74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes
74 74  
75 75  **Write function code: 0x06**
76 76  
... ... @@ -90,8 +90,8 @@
90 90  
91 91  If the setting is successful, the original is returned
92 92  
93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code**
94 -|1 byte|1 byte|N bytes|2 bytes
94 +|(% rowspan="2" style="width:551px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="width:114px" %)**Address**|(% style="width:127px" %)**Function code**|(% style="width:104px" %)**Data**|(% style="width:180px" %)**CRC check code**
95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes
95 95  
96 96  (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check**
97 97  
... ... @@ -150,13 +150,13 @@
150 150  == **Error response frame** ==
151 151  
152 152  (% class="table-bordered" %)
153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code**
154 154  |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes
155 155  
156 156  When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.
157 157  
158 158  (% class="table-bordered" %)
159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description**
160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description**
160 160  |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code
161 161  |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address
162 162  |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data
... ... @@ -164,39 +164,60 @@
164 164  
165 165  == **Communication example** ==
166 166  
167 -**03 Function Code Read**
168 168  
169 +
170 +**03 Function code read**
171 +
169 169  Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
170 170  
171 171  Request format:
172 172  
173 -(% class="table-bordered" %)
174 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
175 -|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
176 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
177 +|**high byte**|**low byte**|**high byte**|**low byte**
178 +|01|03|1E|24|00|01|C2 29
176 176  
177 177  The slave responds normally:
178 178  
179 -(% class="table-bordered" %)
180 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
181 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
182 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte**
183 +|**high byte**|**low byte**
184 +|01|03|02|0C|4F|FC B0
182 182  
183 -The value read is 0x0C26, which means that the voltage is 311.0V. 
186 +For example: The value read is 0x0C4F, which means that the voltage is 315.1V.
184 184  
188 +
189 +
185 185  **06 Function Code Write**
186 186  
187 -P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
192 +P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
188 188  
189 189  Request format:
190 190  
191 -(% class="table-bordered" %)
192 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
193 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
196 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
197 +|**high byte**|**low byte**|**high byte**|**low byte**
198 +|01|06|01|0A|0B|B8|AF, 76
194 194  
195 195  The slave responds normally:
196 196  
197 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
198 -|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
202 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code**
203 +|**high byte**|**low byte**|**high byte**|**low byte**
204 +|01|06|01|0A|0B|B8|AF, 76
199 199  
206 +**10 Function code write**
207 +
208 +P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
209 +
210 +Request format:
211 +
212 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
213 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
214 +|01|10|07|09|00|02|04|00|00|07|D0|16|59
215 +
216 +The slave responds normally:
217 +
218 +|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
219 +|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
220 +|01|10|07|09|00|02|90|BE
221 +
200 200  = **Servo communication parameter setting** =
201 201  
202 202  (% style="text-align:center" %)
... ... @@ -204,29 +204,26 @@
204 204  
205 205  Figure 8-3 Modbus communication parameter setting process
206 206  
207 -**(1) Set the servo address P12-1**
229 +**Set the servo address P12-1**
208 208  
209 209  When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.
210 210  
211 -**(2) Set the serial port baud rate P12-2**
233 +**Set the serial port baud rate P12-2**
212 212  
213 213  The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.
214 214  
215 -**(3) Set the serial port data format P12-3**
237 +**Set the serial port data format P12-3**
216 216  
217 217  The data bit check methods of servo communication are:
218 218  
219 -Odd parity
241 +* Odd parity
242 +* Even parity
243 +* No parity
244 +* The stop bit: 1 stop bit and 2 stop bits.
220 220  
221 -Even parity
222 -
223 -No parity
224 -
225 -The stop bit: 1 stop bit and 2 stop bits.
226 -
227 227  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
228 228  
229 -**(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
248 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
230 230  
231 231  When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.
232 232  
... ... @@ -238,7 +238,7 @@
238 238  |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
239 239  |After the EEPROM is damaged, the servo will have an non resettable fault!
240 240  
241 -**(5) Set the high and low order of the 32-bit monitoring data**
260 +**Set the high and low order of the 32-bit monitoring data**
242 242  
243 243  Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!
244 244  
... ... @@ -247,51 +247,42 @@
247 247  The description of related function codes are as follows.
248 248  
249 249  (% class="table-bordered" %)
250 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
269 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)(((
251 251  **Setting method**
252 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
271 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)(((
253 253  **Effective time**
254 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
255 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
273 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit**
274 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
256 256  Operation setting
257 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
276 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
258 258  Effective immediately
259 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
260 -0-2400bps
261 -
262 -1-4800bps
263 -
264 -2-9600bps
265 -
266 -3-19200bps
267 -
268 -4-38400bps
269 -
270 -5-57600bp
271 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
272 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
278 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)(((
279 +* 0: 2400bps
280 +* 1: 4800bps
281 +* 2: 9600bps
282 +* 3: 19200bps
283 +* 4: 38400bps
284 +* 5: 57600bp
285 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
286 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
273 273  Operation setting
274 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
288 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
275 275  Effective immediately
276 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
277 -0: 1 stop bit, no parity
278 -
279 -1: 1 stop bit, odd parity
280 -
281 -2: 1 stop bit, even parity
282 -
283 -3: 2 stop bits, no parity
284 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
285 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
290 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)(((
291 +* 0: 1 stop bit, no parity
292 +* 1: 1 stop bit, odd parity
293 +* 2: 1 stop bit, even parity
294 +* 3: 2 stop bits, no parity
295 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
296 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)(((
286 286  Operation setting
287 -)))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
298 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
288 288  Effective immediately
289 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
290 -0: Do not write to EEPROM, and do not store after power failure;
300 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)(((
301 +* 0: Do not write to EEPROM, and do not store after power failure;
302 +* 1: Write to EEPROM, power-down storage.
303 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)-
291 291  
292 -1: Write to EEPROM, power-down storage.
293 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
294 -
295 295  = **Modbus communication variable address and value** =
296 296  
297 297  == **Variable address description** ==
... ... @@ -298,24 +298,21 @@
298 298  
299 299  Modbus registers are divided into two categories:
300 300  
301 -~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
311 +1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
312 +1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
302 302  
303 -2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
304 -
305 305  **Servo function code representation: PXX-YY.**
306 306  
307 -XX: represents the function code group number,
316 +* XX: represents the function code group number,
317 +* YY: represents the bias within the function code group;;
308 308  
309 -YY: represents the bias within the function code group;;
310 -
311 311  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
312 312  
313 313  **Servo monitor volume representation: Uxx-yy.**
314 314  
315 -xx: represents the monitoring volume group number,
323 +* xx: represents the monitoring volume group number,
324 +* yy: represents the bias within the monitoring volume group;
316 316  
317 -yy: represents the bias within the monitoring volume group;
318 -
319 319  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
320 320  
321 321  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -323,35 +323,33 @@
323 323  In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:
324 324  
325 325  (% class="table-bordered" %)
326 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)(((
327 -**Modbus address**
333 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)(((
334 +**Modbus address (Hexadecimal)**
335 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)(((
336 +**Modbus address (Decimal)**
337 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name**
338 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode
328 328  
329 -**(Hexadecimal)**
330 -)))|(% style="text-align:center; vertical-align:middle" %)(((
331 -**Modbus address**
340 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__
332 332  
333 -**(Decimal)**
334 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
335 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
336 -
337 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
338 -
339 339  == **Variable value type description** ==
340 340  
341 341  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
342 342  
343 -~1. The data is positive or 0: complement code = original code
346 +1. The data is positive or 0: complement code = original code
347 +1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
344 344  
345 -2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
349 +For example:
346 346  
347 -For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
351 +* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
352 +* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
353 +* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
348 348  
349 -If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
350 -
351 351  == **Numerical unit description** ==
352 352  
353 353  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
354 354  
355 -~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
359 +1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
360 +1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
356 356  
357 -2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.
362 +The other units can be deduced by this, and integer remains unchanged.