Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 7.1
edited by Stone Wu
on 2022/08/30 09:52
Change comment: There is no comment for this version
To version 4.12
edited by Stone Wu
on 2022/07/07 15:28
Change comment: (Autosaved)

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.Manual.02 VD2 SA Series.WebHome
1 +Servo.1 User Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -202,23 +202,6 @@
202 202  |**high byte**|**low byte**|**high byte**|**low byte**
203 203  |01|06|01|0A|0B|B8|AF, 76
204 204  
205 -
206 -**10 Function code write**
207 -
208 -P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
209 -
210 -Request format:
211 -
212 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
213 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
214 -|01|10|07|09|00|02|04|00|00|07|D0|16|59
215 -
216 -The slave responds normally:
217 -
218 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
219 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
220 -|01|10|07|09|00|02|90|BE
221 -
222 222  = **Servo communication parameter setting** =
223 223  
224 224  (% style="text-align:center" %)
... ... @@ -238,11 +238,14 @@
238 238  
239 239  The data bit check methods of servo communication are:
240 240  
241 -* Odd parity
242 -* Even parity
243 -* No parity
244 -* The stop bit: 1 stop bit and 2 stop bits.
224 +Odd parity
245 245  
226 +Even parity
227 +
228 +No parity
229 +
230 +The stop bit: 1 stop bit and 2 stop bits.
231 +
246 246  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
247 247  
248 248  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -270,12 +270,12 @@
270 270  **Setting method**
271 271  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
272 272  **Effective time**
273 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
259 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
274 274  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
275 275  Operation setting
276 276  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
277 277  Effective immediately
278 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
264 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
279 279  0-2400bps
280 280  
281 281  1-4800bps
... ... @@ -287,12 +287,12 @@
287 287  4-38400bps
288 288  
289 289  5-57600bp
290 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
276 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
291 291  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
292 292  Operation setting
293 293  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
294 294  Effective immediately
295 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
281 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
296 296  0: 1 stop bit, no parity
297 297  
298 298  1: 1 stop bit, odd parity
... ... @@ -300,16 +300,16 @@
300 300  2: 1 stop bit, even parity
301 301  
302 302  3: 2 stop bits, no parity
303 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
289 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
304 304  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
305 305  Operation setting
306 306  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
307 307  Effective immediately
308 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
294 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
309 309  0: Do not write to EEPROM, and do not store after power failure;
310 310  
311 311  1: Write to EEPROM, power-down storage.
312 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
298 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
313 313  
314 314  = **Modbus communication variable address and value** =
315 315  
... ... @@ -317,21 +317,24 @@
317 317  
318 318  Modbus registers are divided into two categories:
319 319  
320 -1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 -1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
306 +~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
322 322  
308 +2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
309 +
323 323  **Servo function code representation: PXX-YY.**
324 324  
325 -* XX: represents the function code group number,
326 -* YY: represents the bias within the function code group;;
312 +XX: represents the function code group number,
327 327  
314 +YY: represents the bias within the function code group;;
315 +
328 328  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
329 329  
330 330  **Servo monitor volume representation: Uxx-yy.**
331 331  
332 -* xx: represents the monitoring volume group number,
333 -* yy: represents the bias within the monitoring volume group;
320 +xx: represents the monitoring volume group number,
334 334  
322 +yy: represents the bias within the monitoring volume group;
323 +
335 335  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
336 336  
337 337  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -350,26 +350,24 @@
350 350  )))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
351 351  |(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
352 352  
353 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__
342 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
354 354  
355 355  == **Variable value type description** ==
356 356  
357 357  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
358 358  
359 -1. The data is positive or 0: complement code = original code
360 -1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
348 +~1. The data is positive or 0: complement code = original code
361 361  
362 -For example:
350 +2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
363 363  
364 -* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
365 -* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
366 -* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
352 +For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
367 367  
354 +If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
355 +
368 368  == **Numerical unit description** ==
369 369  
370 370  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
371 371  
372 -1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
373 -1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
360 +~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
374 374  
375 -The other units can be deduced by this, and integer remains unchanged.
362 +2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.