Changes for page 08 Communication
Last modified by Iris on 2025/07/24 15:23
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.Mora - Content
-
... ... @@ -2,12 +2,12 @@ 2 2 3 3 = **Modbus communication** = 4 4 5 -== **Hardware wiring**==5 +== Hardware wiring == 6 6 7 7 The position of RS485 communication port (take VD2B as an example) is as the figure below. 8 8 9 9 (% style="text-align:center" %) 10 -[[image:image-20220608154248-1.png]] 10 +[[image:image-20220608154248-1.png||class="img-thumbnail"]] 11 11 12 12 Figure 8-1 The position of RS485 communication port of VD2B drive 13 13 ... ... @@ -16,7 +16,7 @@ 16 16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication. 17 17 18 18 (% class="table-bordered" %) 19 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 19 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]] 20 20 |((( 21 21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together! 22 22 ... ... @@ -24,7 +24,7 @@ 24 24 ))) 25 25 26 26 (% style="text-align:center" %) 27 -[[image:image-20220608174415-1.png]] 27 +[[image:image-20220608174415-1.png||class="img-thumbnail"]] 28 28 29 29 Figure 8-2 RS485 communication network wiring diagram 30 30 ... ... @@ -33,7 +33,7 @@ 33 33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals. 34 34 35 35 (% class="table-bordered" %) 36 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 36 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]] 37 37 |Under no circumstances can the grounding wire form a closed loop. 38 38 39 39 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed. ... ... @@ -40,20 +40,20 @@ 40 40 41 41 = **Modbus communication protocol analysis** = 42 42 43 -== **Modbus data frame format**==43 +== Modbus data frame format == 44 44 45 45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table. 46 46 47 47 (% class="table-bordered" %) 48 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code** 48 +|=(% rowspan="2" scope="row" style="text-align: center; vertical-align: middle; width: 425px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="text-align: center; vertical-align: middle; width: 166px;" %)**Address**|=(% style="text-align: center; vertical-align: middle; width: 189px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Data**|=(% style="text-align: center; vertical-align: middle; width: 158px;" %)**CRC check code** 49 49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes 50 50 51 -== **Description of supported function codes**==51 +== Supported function codes == 52 52 53 53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows: 54 54 55 55 (% class="table-bordered" %) 56 -|(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code** 56 +|=(% style="text-align: center; vertical-align: middle;" %)**Operate**|=(% style="text-align: center; vertical-align: middle;" %)**Command code** 57 57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03 58 58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06 59 59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10 ... ... @@ -62,15 +62,16 @@ 62 62 63 63 Request format: 64 64 65 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code** 66 -|**high byte**|**low byte**|**high byte**|**low byte** 65 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of reads**|=(% rowspan="2" %)**CRC check code** 66 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 67 67 |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes 68 68 69 69 Correct response format: 70 70 71 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code** 72 -|**high byte**|**low byte** 73 -|1 byte|03|1 byte|1 byte|1 byte|…|2 bytes 71 +(% style="width:1055px" %) 72 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" style="width: 279px;" %)**Number of bytes of returned data**|=(% colspan="2" style="width: 274px;" %)**Register 1**|=(% rowspan="2" style="width: 98px;" %)**…**|=(% rowspan="2" %)**CRC check code** 73 +|=(% style="width: 160px;" %)**high byte**|=(% style="width: 114px;" %)**low byte** 74 +|1 byte|03|(% style="width:279px" %)1 byte|(% style="width:160px" %)1 byte|(% style="width:114px" %)1 byte|(% style="width:98px" %)…|2 bytes 74 74 75 75 **Write function code: 0x06** 76 76 ... ... @@ -84,16 +84,16 @@ 84 84 85 85 Response format: 86 86 87 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 88 -|**high byte**|**low byte**|**high byte**|**low byte** 88 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 89 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 89 89 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes 90 90 91 91 If the setting is successful, the original is returned 92 92 93 -|(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code** 94 -|1 byte|1 byte|N bytes|2 bytes 94 +|=(% rowspan="2" style="width: 551px;" %)**There should be a message interval not less than 3.5 characters at the beginning**|=(% style="width: 114px;" %)**Address**|=(% style="width: 127px;" %)**Function code**|=(% style="width: 104px;" %)**Data**|=(% style="width: 180px;" %)**CRC check code** 95 +|(% style="width:114px" %)1 byte|(% style="width:127px" %)1 byte|(% style="width:104px" %)N bytes|(% style="width:180px" %)2 bytes 95 95 96 -(% style="color:inherit; font-family:inherit; font-size:26px" %) **CRC check**97 +== (% style="color:inherit; font-family:inherit; font-size:26px" %)CRC check(%%) == 97 97 98 98 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows: 99 99 ... ... @@ -150,13 +150,13 @@ 150 150 == **Error response frame** == 151 151 152 152 (% class="table-bordered" %) 153 -|(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code** 154 +|=(% style="text-align: center; vertical-align: middle;" %)**Address**|=(% style="text-align: center; vertical-align: middle;" %)**Function code**|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**CRC check code** 154 154 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes 155 155 156 156 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows. 157 157 158 158 (% class="table-bordered" %) 159 -|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description** 160 +|=(% style="text-align: center; vertical-align: middle;" %)**Error code**|=(% style="text-align: center; vertical-align: middle;" %)**Coding description** 160 160 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code 161 161 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address 162 162 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data ... ... @@ -164,8 +164,6 @@ 164 164 165 165 == **Communication example** == 166 166 167 - 168 - 169 169 **03 Function code read** 170 170 171 171 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24) ... ... @@ -172,20 +172,18 @@ 172 172 173 173 Request format: 174 174 175 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 176 -|**high byte**|**low byte**|**high byte**|**low byte** 174 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 175 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 177 177 |01|03|1E|24|00|01|C2 29 178 178 179 179 The slave responds normally: 180 180 181 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC high byte** 182 -|**high byte**|**low byte** 180 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% rowspan="2" %)**Number of bytes**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC high byte** 181 +|=**high byte**|=**low byte** 183 183 |01|03|02|0C|4F|FC B0 184 184 185 185 For example: The value read is 0x0C4F, which means that the voltage is 315.1V. 186 186 187 - 188 - 189 189 **06 Function Code Write** 190 190 191 191 P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A) ... ... @@ -192,14 +192,14 @@ 192 192 193 193 Request format: 194 194 195 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 196 -|**high byte**|**low byte**|**high byte**|**low byte** 192 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 193 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 197 197 |01|06|01|0A|0B|B8|AF, 76 198 198 199 199 The slave responds normally: 200 200 201 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% rowspan="2" %)**CRC check code** 202 -|**high byte**|**low byte**|**high byte**|**low byte** 198 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% rowspan="2" %)**CRC check code** 199 +|=**high byte**|=**low byte**|=**high byte**|=**low byte** 203 203 |01|06|01|0A|0B|B8|AF, 76 204 204 205 205 **10 Function code write** ... ... @@ -208,32 +208,33 @@ 208 208 209 209 Request format: 210 210 211 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code** 212 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 208 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Initial address**|=(% colspan="2" %)**Number of register**|=(% rowspan="2" %)**Number of data**|=(% colspan="2" %)**Data 1**|=(% colspan="2" %)**Data 2**|=(% colspan="2" %)**CRC check code** 209 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 213 213 |01|10|07|09|00|02|04|00|00|07|D0|16|59 214 214 215 215 The slave responds normally: 216 216 217 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code** 218 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte** 214 +|=(% rowspan="2" %)**Address**|=(% rowspan="2" %)**Function code**|=(% colspan="2" %)**Register address**|=(% colspan="2" %)**Data**|=(% colspan="2" %)**CRC check code** 215 +|=**high byte**|=**low byte**|=**high byte**|=**low byte**|=**high byte**|=**low byte** 219 219 |01|10|07|09|00|02|90|BE 220 220 221 221 = **Servo communication parameter setting** = 222 222 223 223 (% style="text-align:center" %) 224 -[[image:image-20220608174504-2.png]] 221 +((( 222 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 223 +[[Figure 8-3 Modbus communication parameter setting process>>image:image-20220608174504-2.png||id="Iimage-20220608174504-2.png"]] 224 +))) 225 225 226 - Figure8-3 Modbus communicationparametersetting process226 +**Set the servo address P12-1** 227 227 228 -**(1) Set the servo address P12-1** 229 - 230 230 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate. 231 231 232 -** (2)Set the serial port baud rate P12-2**230 +**Set the serial port baud rate P12-2** 233 233 234 234 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out. 235 235 236 -** (3)Set the serial port data format P12-3**234 +**Set the serial port data format P12-3** 237 237 238 238 The data bit check methods of servo communication are: 239 239 ... ... @@ -244,7 +244,7 @@ 244 244 245 245 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out. 246 246 247 -** (4)Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**245 +**Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]** 248 248 249 249 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage. 250 250 ... ... @@ -253,10 +253,10 @@ 253 253 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM. 254 254 255 255 (% class="table-bordered" %) 256 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 254 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]] 257 257 |After the EEPROM is damaged, the servo will have an non resettable fault! 258 258 259 -** (5)Set the high and low order of the 32-bit monitoring data**257 +**Set the high and low order of the 32-bit monitoring data** 260 260 261 261 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors! 262 262 ... ... @@ -265,54 +265,45 @@ 265 265 The description of related function codes are as follows. 266 266 267 267 (% class="table-bordered" %) 268 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((266 +|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 148px;" %)((( 269 269 **Setting method** 270 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((268 +)))|=(% style="text-align: center; vertical-align: middle; width: 165px;" %)((( 271 271 **Effective time** 272 -)))|(% style="text-align:center; vertical-align:middle; width:1 30px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**273 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width: 205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((270 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 85px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 224px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 69px;" %)**Unit** 271 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:165px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 274 274 Operation setting 275 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((273 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 276 276 Effective immediately 277 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)((( 278 -0-2400bps 279 - 280 -1-4800bps 281 - 282 -2-9600bps 283 - 284 -3-19200bps 285 - 286 -4-38400bps 287 - 288 -5-57600bp 289 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 290 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 275 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)2|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 5|(% style="width:224px" %)((( 276 +* 0: 2400bps 277 +* 1: 4800bps 278 +* 2: 9600bps 279 +* 3: 19200bps 280 +* 4: 38400bps 281 +* 5: 57600bp 282 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 283 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:165px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 291 291 Operation setting 292 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((285 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 293 293 Effective immediately 294 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)((( 295 -0: 1 stop bit, no parity 296 - 297 -1: 1 stop bit, odd parity 298 - 299 -2: 1 stop bit, even parity 300 - 301 -3: 2 stop bits, no parity 302 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 303 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)((( 287 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 3|(% style="width:224px" %)((( 288 +* 0: 1 stop bit, no parity 289 +* 1: 1 stop bit, odd parity 290 +* 2: 1 stop bit, even parity 291 +* 3: 2 stop bits, no parity 292 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 293 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:165px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:148px" %)((( 304 304 Operation setting 305 -)))|(% style="text-align:center; vertical-align:middle; width:1 86px" %)(((295 +)))|(% style="text-align:center; vertical-align:middle; width:165px" %)((( 306 306 Effective immediately 307 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)((( 308 -0: Do not write to EEPROM, and do not store after power failure; 297 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 1|(% style="width:224px" %)((( 298 +* 0: Do not write to EEPROM, and do not store after power failure; 299 +* 1: Write to EEPROM, power-down storage. 300 +)))|(% style="text-align:center; vertical-align:middle; width:69px" %)- 309 309 310 -1: Write to EEPROM, power-down storage. 311 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)- 312 - 313 313 = **Modbus communication variable address and value** = 314 314 315 -== **Variable address description** ==304 +== **Variable address** == 316 316 317 317 Modbus registers are divided into two categories: 318 318 ... ... @@ -338,20 +338,16 @@ 338 338 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table: 339 339 340 340 (% class="table-bordered" %) 341 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)((( 342 -**Modbus address** 330 +|=(% style="text-align: center; vertical-align: middle; width: 162px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 302px;" %)((( 331 +**Modbus address (Hexadecimal)** 332 +)))|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)((( 333 +**Modbus address (Decimal)** 334 +)))|=(% style="text-align: center; vertical-align: middle; width: 192px;" %)**Category**|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Name** 335 +|(% style="text-align:center; vertical-align:middle; width:162px" %)P0-1|(% style="text-align:center; vertical-align:middle; width:302px" %)0x0001|(% style="text-align:center; vertical-align:middle; width:278px" %)1|(% style="text-align:center; vertical-align:middle; width:192px" %)Basic settings|(% style="text-align:center; vertical-align:middle; width:142px" %)Control mode 343 343 344 -**(Hexadecimal)** 345 -)))|(% style="text-align:center; vertical-align:middle" %)((( 346 -**Modbus address** 347 - 348 -**(Decimal)** 349 -)))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name** 350 -|(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode 351 - 352 352 For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__ 353 353 354 -== **Variable value type description** ==339 +== **Variable value type** == 355 355 356 356 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows: 357 357