Changes for page 08 Communication

Last modified by Iris on 2025/07/24 15:23

From version 8.1
edited by Stone Wu
on 2022/08/30 09:53
Change comment: There is no comment for this version
To version 4.13
edited by Stone Wu
on 2022/07/07 15:33
Change comment: (Autosaved)

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.Manual.02 VD2 SA Series.WebHome
1 +Servo.1 User Manual.02 VD2 SA Series.WebHome
Content
... ... @@ -11,7 +11,7 @@
11 11  
12 12  Figure 8-1 The position of RS485 communication port of VD2B drive
13 13  
14 -For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HCommunicationsignalwiring]]__.
14 +For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
15 15  
16 16  The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17 17  
... ... @@ -202,22 +202,6 @@
202 202  |**high byte**|**low byte**|**high byte**|**low byte**
203 203  |01|06|01|0A|0B|B8|AF, 76
204 204  
205 -**10 Function code write**
206 -
207 -P07-09 set the 1st segment position to 2000, and this variable corresponds to the Modbus address: 1801 (0x0709).
208 -
209 -Request format:
210 -
211 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of register**|(% rowspan="2" %)**Number of data**|(% colspan="2" %)**Data 1**|(% colspan="2" %)**Data 2**|(% colspan="2" %)**CRC check code**
212 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
213 -|01|10|07|09|00|02|04|00|00|07|D0|16|59
214 -
215 -The slave responds normally:
216 -
217 -|(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Register address**|(% colspan="2" %)**Data**|(% colspan="2" %)**CRC check code**
218 -|**high byte**|**low byte**|**high byte**|**low byte**|**high byte**|**low byte**
219 -|01|10|07|09|00|02|90|BE
220 -
221 221  = **Servo communication parameter setting** =
222 222  
223 223  (% style="text-align:center" %)
... ... @@ -237,11 +237,14 @@
237 237  
238 238  The data bit check methods of servo communication are:
239 239  
240 -* Odd parity
241 -* Even parity
242 -* No parity
243 -* The stop bit: 1 stop bit and 2 stop bits.
224 +Odd parity
244 244  
226 +Even parity
227 +
228 +No parity
229 +
230 +The stop bit: 1 stop bit and 2 stop bits.
231 +
245 245  The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
246 246  
247 247  **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
... ... @@ -269,12 +269,12 @@
269 269  **Setting method**
270 270  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
271 271  **Effective time**
272 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:252px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Unit**
259 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
273 273  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
274 274  Operation setting
275 275  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
276 276  Effective immediately
277 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:252px" %)(((
264 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
278 278  0-2400bps
279 279  
280 280  1-4800bps
... ... @@ -286,12 +286,12 @@
286 286  4-38400bps
287 287  
288 288  5-57600bp
289 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
276 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
290 290  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
291 291  Operation setting
292 292  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
293 293  Effective immediately
294 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:252px" %)(((
281 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
295 295  0: 1 stop bit, no parity
296 296  
297 297  1: 1 stop bit, odd parity
... ... @@ -299,16 +299,16 @@
299 299  2: 1 stop bit, even parity
300 300  
301 301  3: 2 stop bits, no parity
302 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
289 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
303 303  |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
304 304  Operation setting
305 305  )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
306 306  Effective immediately
307 -)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:252px" %)(((
294 +)))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
308 308  0: Do not write to EEPROM, and do not store after power failure;
309 309  
310 310  1: Write to EEPROM, power-down storage.
311 -)))|(% style="text-align:center; vertical-align:middle; width:85px" %)-
298 +)))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
312 312  
313 313  = **Modbus communication variable address and value** =
314 314  
... ... @@ -316,21 +316,24 @@
316 316  
317 317  Modbus registers are divided into two categories:
318 318  
319 -1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
320 -1. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
306 +~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
321 321  
308 +2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
309 +
322 322  **Servo function code representation: PXX-YY.**
323 323  
324 -* XX: represents the function code group number,
325 -* YY: represents the bias within the function code group;;
312 +XX: represents the function code group number,
326 326  
314 +YY: represents the bias within the function code group;;
315 +
327 327  During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
328 328  
329 329  **Servo monitor volume representation: Uxx-yy.**
330 330  
331 -* xx: represents the monitoring volume group number,
332 -* yy: represents the bias within the monitoring volume group;
320 +xx: represents the monitoring volume group number,
333 333  
322 +yy: represents the bias within the monitoring volume group;
323 +
334 334  During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
335 335  
336 336  For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
... ... @@ -349,26 +349,24 @@
349 349  )))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
350 350  |(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
351 351  
352 -For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/11%20Appendix/#HListsofparameters]]__
342 +For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
353 353  
354 354  == **Variable value type description** ==
355 355  
356 356  When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
357 357  
358 -1. The data is positive or 0: complement code = original code
359 -1. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
348 +~1. The data is positive or 0: complement code = original code
360 360  
361 -For example:
350 +2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
362 362  
363 -* The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064.
364 -* The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
365 -* If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
352 +For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
366 366  
354 +If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
355 +
367 367  == **Numerical unit description** ==
368 368  
369 369  Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
370 370  
371 -1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
372 -1. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms;
360 +~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
373 373  
374 -The other units can be deduced by this, and integer remains unchanged.
362 +2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.