Wiki source code of 08 Communication

Version 4.7 by Stone Wu on 2022/07/07 15:15

Show last authors
1 The VD2 series servo drive has Modbus communication function, which could cooperate with the host computer for parameter modification, parameter query, monitoring volume servo status query and control. The servo drive is used as a slave device.
2
3 = **Modbus communication** =
4
5 == **Hardware wiring** ==
6
7 The position of RS485 communication port (take VD2B as an example) is as the figure below.
8
9 (% style="text-align:center" %)
10 [[image:image-20220608154248-1.png]]
11
12 Figure 8-1 The position of RS485 communication port of VD2B drive
13
14 For the position of the RS485 communication port of other models, see __[[4.5 Communication signal wiring>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HCommunicationsignalwiring]]__.
15
16 The servo drive adopts RS485 half-duplex communication mode. The 485 bus should adopt the hand-in-hand structure instead of the star structure or the bifurcated structure. The star structure or bifurcation structure will produce reflected signals, which will affect the 485 communication.
17
18 (% class="table-bordered" %)
19 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153134-1.png]]
20 |(((
21 ✎The wiring must use shielded twisted pair, stay away from strong electricity, do not run in parallel with the power line, let alone bundle it together!
22
23 ✎In a half-duplex connection, only one servo drive can communicate with the host computer at the same time. If two or more servo drives upload data at the same time, bus competition will occur. Not only will it lead to communication failure, it may also cause some components to generate large currents and damage the components.
24 )))
25
26 (% style="text-align:center" %)
27 [[image:image-20220608174415-1.png]]
28
29 Figure 8-2 RS485 communication network wiring diagram
30
31 The terminal of RS485 network should use a terminating resistors of 120Ω to weaken the reflection of the signal. Intermediate networks cannot use terminating resistors.
32
33 No point in the RS485 network can be directly grounded. All devices in the network must be well grounded through their own grounding terminals.
34
35 (% class="table-bordered" %)
36 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153144-2.png]]
37 |Under no circumstances can the grounding wire form a closed loop.
38
39 When wiring, consider the drive capability of the computer/PLC and the distance between the computer/PLC and the servo drive. If the drive capacity is insufficient, a repeater is needed.
40
41 = **Modbus communication protocol analysis** =
42
43 == **Modbus data frame format** ==
44
45 The VD2 series servo drives currently support the RTU communication format. The typical data frame format is shown in the table.
46
47 (% class="table-bordered" %)
48 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:425px" %)**There should be a message interval not less than 3.5 characters at the beginning**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Address**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:155px" %)**Data**|(% style="text-align:center; vertical-align:middle; width:158px" %)**CRC check code**
49 |(% style="text-align:center; vertical-align:middle; width:166px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:189px" %)1 byte|(% style="text-align:center; vertical-align:middle; width:155px" %)N bytes|(% style="text-align:center; vertical-align:middle; width:158px" %)2 bytes
50
51 == **Description of supported function codes** ==
52
53 The host reads and writes data to the servo through Modbus RTU format (03, 06 function codes). The corresponding Modbus function codes are as follows:
54
55 (% class="table-bordered" %)
56 |(% style="text-align:center; vertical-align:middle" %)**Operate**|(% style="text-align:center; vertical-align:middle" %)**Command code**
57 |(% style="text-align:center; vertical-align:middle" %)Read 16-bit/32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x03
58 |(% style="text-align:center; vertical-align:middle" %)Write 16-bit function code|(% style="text-align:center; vertical-align:middle" %)0x06
59 |(% style="text-align:center; vertical-align:middle" %)Write 32-bit function code|(% style="text-align:center; vertical-align:middle" %)0x10
60
61 **Read function code: 0x03**
62
63 Request format:
64
65 |(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
66 |**high byte**|**low byte**|**high byte**|**low byte**
67 |1 byte|03|1 byte|1 byte|1 byte|1 byte|2 bytes
68
69 Correct response format:
70
71 |(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% rowspan="2" %)**Number of bytes of returned data**|(% colspan="2" %)**Register 1**|(% rowspan="2" %)**…**|(% rowspan="2" %)**CRC check code**
72 |**high byte**|**low byte**
73 |1 byte|03|1 byte|1 byte|1 byte|…|2 bytes
74
75 **Write function code: 0x06**
76
77 Request format:
78
79 |(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
80 |**high byte**|**low byte**|**high byte**|**low byte**
81 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
82
83 Response format:
84
85 |(% rowspan="2" %)**Address**|(% rowspan="2" %)**Function code**|(% colspan="2" %)**Initial address**|(% colspan="2" %)**Number of reads**|(% rowspan="2" %)**CRC check code**
86 |**high byte**|**low byte**|**high byte**|**low byte**
87 |1 byte|06|1 byte|1 byte|1 byte|1 byte|2 bytes
88
89 If the setting is successful, the original is returned
90
91 |(% rowspan="2" %)**There should be a message interval not less than 3.5 characters at the beginning**|**Address**|**Function code**|**Data**|**CRC check code**
92 |1 byte|1 byte|N bytes|2 bytes
93
94 (% style="color:inherit; font-family:inherit; font-size:26px" %)**CRC check**
95
96 The servo uses a 16-bit CRC check, and the host computer must also use the same check rule, otherwise the CRC check will make mistake. When transmitting, the low bit is in the front and the high bit is at the back. The CRC code are as follows:
97
98 {{code language="LUA"}}
99 {
100
101     Uint16 crc = 0xffff;
102
103     Uint16 i;
104
105
106
107   while(uLen--)
108
109   {
110
111     crc ^=(Uint16) *pBuf++;
112
113     for(i=0; i<8; i++)
114
115     {
116
117       if(crc & 0x0001)
118
119 {
120
121 crc = (crc >> 1) ^ 0xa001;
122
123 }
124
125 else
126
127 {
128
129 crc = crc >> 1;
130
131 }
132
133
134
135     }
136
137   }
138
139   return crc;
140
141 }
142
143 return crc;
144
145 }
146 {{/code}}
147
148 == **Error response frame** ==
149
150 (% class="table-bordered" %)
151 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
152 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)Command code+0x80|(% style="text-align:center; vertical-align:middle" %)Error code|(% style="text-align:center; vertical-align:middle" %)2 bytes
153
154 When an error occurs, set the function code bit7 issued by the host to 1, and return (for example, 0x03 returns 0x83, 0x06 returns 0x86); the description of the error code are as follows.
155
156 (% class="table-bordered" %)
157 |(% style="text-align:center; vertical-align:middle" %)**Error code**|(% style="text-align:center; vertical-align:middle" %)**Coding description**
158 |(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)Illegal command code
159 |(% style="text-align:center; vertical-align:middle" %)0x0002|(% style="text-align:center; vertical-align:middle" %)Illegal data address
160 |(% style="text-align:center; vertical-align:middle" %)0x0003|(% style="text-align:center; vertical-align:middle" %)Illegal data
161 |(% style="text-align:center; vertical-align:middle" %)0x0004|(% style="text-align:center; vertical-align:middle" %)Slave device failure
162
163 == **Communication example** ==
164
165 **03 Function Code Read**
166
167 Read the monitoring volume U0-31 bus voltage, the Modbus register address corresponding to this variable is 7716 (0x1E24)
168
169 Request format:
170
171 (% class="table-bordered" %)
172 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC check code**
173 |(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)1 byte|(% style="text-align:center; vertical-align:middle" %)2 bytes
174
175 The slave responds normally:
176
177 (% class="table-bordered" %)
178 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Number of bytes**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC high byte**
179 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)03|(% style="text-align:center; vertical-align:middle" %)02|(% style="text-align:center; vertical-align:middle" %)0C|(% style="text-align:center; vertical-align:middle" %)26|(% style="text-align:center; vertical-align:middle" %)3C|(% style="text-align:center; vertical-align:middle" %)9E
180
181 The value read is 0x0C26, which means that the voltage is 311.0V. 
182
183 **06 Function Code Write**
184
185 P1-10 the maximum speed threshold is set to 3000rpm. This variable corresponds to the Modbus address: 266 (0x010A)
186
187 Request format:
188
189 (% class="table-bordered" %)
190 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
191 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
192
193 The slave responds normally:
194
195 |(% style="text-align:center; vertical-align:middle" %)**Address**|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Register address high byte**|(% style="text-align:center; vertical-align:middle" %)**Register address low byte**|(% style="text-align:center; vertical-align:middle" %)**Data high byte**|(% style="text-align:center; vertical-align:middle" %)**Data low byte**|(% style="text-align:center; vertical-align:middle" %)**CRC low byte**
196 |(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)06|(% style="text-align:center; vertical-align:middle" %)01|(% style="text-align:center; vertical-align:middle" %)0A|(% style="text-align:center; vertical-align:middle" %)0B|(% style="text-align:center; vertical-align:middle" %)B8|(% style="text-align:center; vertical-align:middle" %)AF
197
198 = **Servo communication parameter setting** =
199
200 (% style="text-align:center" %)
201 [[image:image-20220608174504-2.png]]
202
203 Figure 8-3 Modbus communication parameter setting process
204
205 **(1) Set the servo address P12-1**
206
207 When multiple servos are in network communication, each servo can only have a unique address, otherwise it will cause abnormal communication and fail to communicate.
208
209 **(2) Set the serial port baud rate P12-2**
210
211 The communication rate of the servo and the communication rate of the host computer must be set consistently, otherwise the communication cannot be carried out.
212
213 **(3) Set the serial port data format P12-3**
214
215 The data bit check methods of servo communication are:
216
217 Odd parity
218
219 Even parity
220
221 No parity
222
223 The stop bit: 1 stop bit and 2 stop bits.
224
225 The data frame format of the servo and the host computer must be consistent, otherwise the communication cannot be carried out.
226
227 **(4) Set that whether the function code changed by Modbus communication is written into EEPROM in real time [P12-4]**
228
229 When the host computer modifies the servo function code through communication, it can choose to store it in EEPROM in real time, which has the function of power-off storage.
230
231 If the value of the function code only needs to be rewritten once, and the value is used later, the function of real-time writing of the function code to EEPROM can be enabled.
232
233 If you need to change the value of the function code frequently, it is recommended to turn off the function of real-time writing to EERPOM of function code, otherwise the EEPROM will be shortened due to frequent erasing and writing of the EEPROM.
234
235 (% class="table-bordered" %)
236 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611153214-3.png]]
237 |After the EEPROM is damaged, the servo will have an non resettable fault!
238
239 **(5) Set the high and low order of the 32-bit monitoring data**
240
241 Part of the monitoring volume is 32-bit length and occupies 2 consecutive bias numbers. The user needs to set the order of the data high bit and low bit correctly, otherwise it will cause data reading and writing errors!
242
243 For example, U0-54 (position within 1 circle of absolute encoder) occupies two consecutive offset numbers, which are 0x1E3D and 0x1E3E respectively. Assuming the value of U0-54 is 0x12345678, the correct data sequence bit should be 0x1E3D=0x5678 , 0x1E3E=0x1234 (little endian mode: low byte first, high byte behind.)
244
245 The description of related function codes are as follows.
246
247 (% class="table-bordered" %)
248 |(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
249 **Setting method**
250 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
251 **Effective time**
252 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:132px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:189px" %)**Unit**
253 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-02|(% style="text-align:center; vertical-align:middle; width:205px" %)Baud rate|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
254 Operation setting
255 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
256 Effective immediately
257 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)2|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 5|(% style="width:335px" %)(((
258 0-2400bps
259
260 1-4800bps
261
262 2-9600bps
263
264 3-19200bps
265
266 4-38400bps
267
268 5-57600bp
269 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
270 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-03|(% style="text-align:center; vertical-align:middle; width:205px" %)Serial data format|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
271 Operation setting
272 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
273 Effective immediately
274 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 3|(% style="width:335px" %)(((
275 0: 1 stop bit, no parity
276
277 1: 1 stop bit, odd parity
278
279 2: 1 stop bit, even parity
280
281 3: 2 stop bits, no parity
282 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
283 |(% style="text-align:center; vertical-align:middle; width:121px" %)P12-04|(% style="text-align:center; vertical-align:middle; width:205px" %)Modbus communication data is written into EEPROM|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
284 Operation setting
285 )))|(% style="text-align:center; vertical-align:middle; width:186px" %)(((
286 Effective immediately
287 )))|(% style="text-align:center; vertical-align:middle; width:130px" %)0|(% style="text-align:center; vertical-align:middle; width:132px" %)0 to 1|(% style="width:335px" %)(((
288 0: Do not write to EEPROM, and do not store after power failure;
289
290 1: Write to EEPROM, power-down storage.
291 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)-
292
293 = **Modbus communication variable address and value** =
294
295 == **Variable address description** ==
296
297 Modbus registers are divided into two categories:
298
299 ~1. The first category is servo function code parameters (address: 0x0001 to 0x0D08), this part of the register is readable and writable (that is, 0x03 and 0x06 are supported);
300
301 2. The second category is the monitoring volume of the servo (address: 0x1E01 to 0x2010), this part of the register is only readable (0x03 function is supported).
302
303 **Servo function code representation: PXX-YY.**
304
305 XX: represents the function code group number,
306
307 YY: represents the bias within the function code group;;
308
309 During servo communication, the communication address of the function code is a 16-bit address, which is composed of the function code group number (high 8 bits) + group bias (low 8 bits), for example, the Modbus address corresponding to P12-1 (servo address) is 0x0C01.
310
311 **Servo monitor volume representation: Uxx-yy.**
312
313 xx: represents the monitoring volume group number,
314
315 yy: represents the bias within the monitoring volume group;
316
317 During Modbus communication, the starting address of the monitoring volume is 0x1E01, and the conversion relationship of the address is similar to the representation way of the function code.
318
319 For example, U0-01 (servo status) corresponds to the Modbus address is 0x1E01.
320
321 In order to facilitate actual use, this manual provides both decimal and hexadecimal address identification, it is shown in the following table:
322
323 (% class="table-bordered" %)
324 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)(((
325 **Modbus address**
326
327 **(Hexadecimal)**
328 )))|(% style="text-align:center; vertical-align:middle" %)(((
329 **Modbus address**
330
331 **(Decimal)**
332 )))|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**
333 |(% style="text-align:center; vertical-align:middle" %)P0-1|(% style="text-align:center; vertical-align:middle" %)0x0001|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Basic settings|(% style="text-align:center; vertical-align:middle" %)Control mode
334
335 For detailed parameter addresses, please refer to __[["11.1 Lists of parameters".>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/11%20Appendix/#HListsofparameters]]__
336
337 == **Variable value type description** ==
338
339 When writing function codes with signed numbers, you need to convert the pre-written data into hexadecimal complements. The conversion rules are as follows:
340
341 ~1. The data is positive or 0: complement code = original code
342
343 2. The data is negative: complement code = 0xFFFF-absolute value of data + 0x0001
344
345 For example,The 16-bit signed positive number +100, the original code is 0x0064, and the complement is: 0x0064. The 16-bit signed positive number -100, its hexadecimal complement is: 0xFFFF-0x0064 + 0x0001 = 0xFF9C.
346
347 If it is an unsigned number, just pass it directly according to its original code. For example, if the decimal number is 32768, write 0x8000 directly.
348
349 == **Numerical unit description** ==
350
351 Some values have units and decimals, such as 0.1%, 0.1Hz, 0.01ms, and the corresponding value conversion is required when reading and writing. The methods are as follows:
352
353 ~1. When the unit is 0.1%: 1 represents 0.1%, 10 represents 1.0%, 1000 represents 100.0%. Therefore, writing 1000 means setting to 100.0%; on the contrary, if it is reading 1000, it means that the value is 100.0%;
354
355 2. When the unit is 0.01ms: 1 means 0.01ms, 50 means 0.5ms, 10000 means 100ms. Therefore, writing 1000 means setting to 10.00ms; on the contrary, if 1000 is read, it means 10.00ms; The other units can be deduced by this, and integer remains unchanged.