Changes for page LX3V-2WT

Last modified by Mora Zhou on 2023/11/22 10:57

From version 2.2
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Update document after refactoring.
To version 4.1
edited by Stone Wu
on 2022/06/22 14:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.Stone
Content
... ... @@ -1,411 +1,417 @@
1 -= **1 Weighing module Operating principle** =
1 += **1 Operating principle** =
2 2  
3 -Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
3 +Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
4 4  
5 5  = **2 Introduction** =
6 6  
7 -1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration;
8 -1. Please read through the manual before powering on the module.
9 -1. This manual is only applicable for model number: LX3V-2WT. Please double check the mark on your module.
10 -1. Using FROM/TO command to read/write data on PLC LX3X.
7 +1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 +1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 +1. The LX3V-2WT weighing module can read and write data through the LX3V host program with the instruction FROM/TO.
11 11  
12 -== **2.1 Specification** ==
11 +**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
13 13  
14 -(% class="table-bordered" %)
15 -|**Item**|**Description**
16 -|Channel|Double channels
17 -|A/D converter|24 bit Δˉ∑ A/D
18 -|Resolution|24bit (signed)
19 -|Speed|7.5/10/25/50/60/150/300Hz available
20 -|Polarity|Unipolar and bipolar
21 -|Non-linearity|≤0.01% full scale(25^^o^^C)
22 -|Zero drift|≤0.2μV/^^ o^^C
23 -|Gain drift|≤10ppm/^^ o^^C
24 -|Excitation Voltage/ load|5V, load impedance≥200Ω
25 -|Sensor sensitivity|1mV/V-15mV/V
26 -|Isolation|Transformer (power supply) and the optical coupler (signal)
27 -|Lamp|Power supply lamp, communication lamp
28 -|Power supply|24V±20% 2VA
29 -|Operating temperature|0~~60^^ o^^C
30 -|Storage temperature|-20~~80^^ o^^C
31 -|Dimension|90(L)x58(W)x80(H) mm
13 +== **Specification** ==
32 32  
33 -== **2.2 Valid bits** ==
15 +|(% style="width:225px" %)**Item**|(% style="width:850px" %)**Description**
16 +|(% style="width:225px" %)Channel|(% style="width:850px" %)Dual channel
17 +|(% style="width:225px" %)A/D converter|(% style="width:850px" %)24 bit Δˉ∑ A/D
18 +|(% style="width:225px" %)Resolution|(% style="width:850px" %)24 bit (signed)
19 +|(% style="width:225px" %)Speed|(% style="width:850px" %)7.5/10/25/50/60/150/300Hz available
20 +|(% style="width:225px" %)Polarity|(% style="width:850px" %)Unipolar and bipolar
21 +|(% style="width:225px" %)Non-linearity|(% style="width:850px" %)≤0.01% full scale(25^^o^^C)
22 +|(% style="width:225px" %)Zero drift|(% style="width:850px" %)≤0.2μV/^^ o^^C
23 +|(% style="width:225px" %)Gain drift|(% style="width:850px" %)≤10ppm/^^ o^^C
24 +|(% style="width:225px" %)Excitation voltage/ load|(% style="width:850px" %)Dual 5V, single load impedance not less than 200 Ω
25 +|(% style="width:225px" %)Sensor sensitivity|(% style="width:850px" %)1mV/V to 15mV/V
26 +|(% style="width:225px" %)Isolation|(% style="width:850px" %)Transformer (power supply) and the optical coupler (signal)
27 +|(% style="width:225px" %)Indicator light|(% style="width:850px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
28 +|(% style="width:225px" %)Power supply|(% style="width:850px" %)24V±20% 2VA
29 +|(% style="width:225px" %)Operating temperature|(% style="width:850px" %)0 to 60^^ o^^C
30 +|(% style="width:225px" %)Storage temperature|(% style="width:850px" %)-20 to 80^^ o^^C
31 +|(% style="width:225px" %)Dimension|(% style="width:850px" %)90(L)x58(W)x80(H) mm
34 34  
35 -Refer to sampling frequency in Section 5.2, Chapter 5 of this manual.
33 +== **Valid bits** ==
36 36  
35 +Refer to sampling frequency in BFM description, Chapter 5 of this manual.
36 +
37 37  = **3 Dimensions** =
38 38  
39 -(% style="text-align:center" %)
40 -[[image:LX3V-2WT V2.0_html_894c15a18e7135f3.png||class="img-thumbnail" height="384" width="1000"]]
39 +== **Dimensions** ==
41 41  
42 - Extension cable and connector
41 + [[image:图片1.jpg||height="358" width="301"]] [[image:图片2.jpg||height="365" width="351"]]
43 43  
44 -② LED COMM: Lit when communicating
43 +(% style="text-align:center" %)
44 +[[image:图片3.jpg||height="593" width="684"]]
45 45  
46 -③ Power LED: Lit when power present
46 +1. Extension cable
47 +1. COM light: Module internal data communication indicator
48 +1. 24V light: Always on when connected to external 24V power supply
49 +1. WT light: Channel input/output indicator
47 47  
48 - State LED: Lit when normal
51 +* WE light: Channel calibration indicator
49 49  
50 -⑤ Module number
53 +(% start="5" %)
54 +1. LINK: Communication indicator between PLC and module (LINK)
55 +1. Expansion module name
56 +1. Expansion module interface
57 +1. DIN rail mounting clip
58 +1. Hook for DIN rail
59 +1. Holes for direct mounting: 2 places (φ4.5)
51 51  
52 -⑥ Analog signal output terminal
61 +|(% style="width:121px" %)**Name**|(% style="width:346px" %)**Description**|(% style="width:126px" %)**Light status**|(% style="width:483px" %)**Event status**
62 +|(% rowspan="3" style="width:121px" %)(((
63 +
53 53  
54 -⑦ Extension module interface
65 +LINK light
66 +)))|(% rowspan="3" style="width:346px" %)Communication indicator between PLC and module|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
67 +|(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
68 +|(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
69 +|(% rowspan="3" style="width:121px" %)(((
70 +
55 55  
56 -⑧ DIN rail mounting slot
72 +COM light
73 +)))|(% rowspan="3" style="width:346px" %)Module internal data communication indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
74 +|(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
75 +|(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
76 +|(% rowspan="3" style="width:121px" %)(((
77 +
57 57  
58 -⑨ DIN rail hook
79 +WT light
80 +)))|(% rowspan="3" style="width:346px" %)Channel output/input indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Analog input is out of range
81 +|(% style="width:126px" %)Always ON|(% style="width:483px" %)Analog input is within the range
82 +|(% style="width:126px" %)Lights off|(% style="width:483px" %)Channel closed
83 +|(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:346px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|(% style="width:483px" %)Calibration succeeded
84 +|(% style="width:126px" %)Always ON|(% style="width:483px" %)Calibration failed or not calibrated
59 59  
60 - Mounting holes (φ4.5)
86 +== Use of blade terminals ==
61 61  
62 -
63 63  (% style="text-align:center" %)
64 -[[image:LX3V-2WT V2.0_html_6b5398f61ad44c3d.png||class="img-thumbnail" height="199" width="300"]]
89 +[[image:image-20220622145005-4.jpeg||height="220" width="366"]]
65 65  
66 -1. Use the crimp terminals that meet the dimensional requirements showed in the left figure.
67 -1. Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals against disoperation.
91 +Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
68 68  
69 -(% class="table-bordered" %)
70 -|**Terminals**|**Instruction**|**Terminals**|**Instruction**
71 -|24V+|Power supply+|24V-|Power supply-
72 -|GND|Grounding|FG1|CH1 sensor grounding
73 -|E1+|CH1 power supply+ (5V) for sensor|E1-|CH1 power supply- (5V) for sensor
74 -|S1+|CH1 signal output+ of sensor|S1-|CH1 signal output- of sensor
75 -|F1+|CH1 feedback+ of sensor|F1-|CH1 feedback- of sensor
76 -|E2+|CH2 power supply+ (5V) for sensor|E2-|CH2 power supply- (5V) for sensor
77 -|S2+|CH2 signal output+ of sensor|S2-|CH2 signal output- of sensor
78 -|F2+|CH2 feedback+ of sensor|F2-|CH2 feedback- of sensor
79 -|FG2|CH2 sensor grounding|(((
80 -*
81 -)))|
93 +== **Terminals** ==
82 82  
83 -= **4 Wiring** =
95 +|**Terminal**|**Terminal Instructions**
96 +|24V+|External DC24 power supply+
97 +|24V-|External DC24 power supply-
98 +|Ground|Ground
99 +|FG1|Sensor housing
100 +|E1+|First sensor 5V power +
101 +|E1-|First sensor 5V power -
102 +|F1+|First sensor power supply feedback +
103 +|F1-|First sensor power supply feedback -
104 +|S1+|First sensor signal output +
105 +|S1-|First sensor signal output -
106 +|E2+|Second sensor 5V power +
107 +|E2-|Second sensor 5V power -
108 +|F2+|Second sensor power supply feedback +
109 +|F2-|Second sensor power supply feedback -
110 +|S2+|Second sensor signal output +
111 +|S2-|Second sensor signal output -
112 +|FG2|Second sensor housing
113 +|Other empty terminals|Empty pin, not connect any wires
84 84  
115 += **4 Wiring ** =
116 +
85 85  (% style="text-align:center" %)
86 -[[image:LX3V-2WT V2.0_html_fca48acd721ccf71.png||class="img-thumbnail" height="468" width="600"]]
118 +[[image:image-20220622145005-5.jpeg||height="522" width="706"]]
87 87  
88 -**✎Note: **
120 +**✎Note:**
89 89  
90 -1. Impedance of the weighing sensor is greater than 50 Ω.
91 -1. Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
122 +* Impedance of the weighing sensor is greater than 20Ω.
123 +* Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
92 92  
93 -= **5 BFM instruction** =
125 += **5 Buffer register (BFM)** =
94 94  
95 -== **5.1 BFM list** ==
127 +== **BFM list** ==
96 96  
97 -(% class="table-bordered" %)
98 -|(% colspan="2" %)**BFM**|(% style="width:77px" %)**Latched**|(% style="width:101px" %)**Read/ Write**|(% style="width:159px" %)**Function**|(% style="width:82px" %)**Default**|(% style="width:92px" %)**Range**|(% style="width:486px" %)**Description**
99 -|(% colspan="2" %)0|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Model|(% style="width:82px" %)5012|(% style="width:92px" %) |(% style="width:486px" %)LX3V-2WT model number
100 -|(% colspan="2" %)1|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)System version|(% style="width:82px" %)15004|(% style="width:92px" %) |(% style="width:486px" %)Software & hardware version
101 -|2|42|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Unipolar/ Bipolar|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
102 -0: bipolar
129 +|(% colspan="2" %)**BFM number**|(% rowspan="2" %)**Power-off hold**|(% rowspan="2" %)(((
130 +**Read/**
103 103  
132 +**write**
133 +)))|(% rowspan="2" style="width:189px" %)**Register name**|(% rowspan="2" style="width:74px" %)**Default**|(% rowspan="2" style="width:128px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
134 +|**CH1**|**CH2**
135 +|(% colspan="2" %)#0|O|R|(% style="width:189px" %)Model type|(% style="width:74px" %)5012|(% style="width:128px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
136 +|(% colspan="2" %)#1|O|R|(% style="width:189px" %)Software version|(% style="width:74px" %)15004|(% style="width:128px" %)-|(% style="width:466px" %)Software version number
137 +|#2|#42|O|R/W|(% style="width:189px" %)Unipolar/Bipolar|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
138 +|#3|#43|O|R/W|(% style="width:189px" %)Sampling frequency|(% style="width:74px" %)1|(% style="width:128px" %)0 to 4800|(% style="width:466px" %)(((
139 +0: 7.5HZ
104 104  
105 -(((
106 -5: 150 Hz;
141 +1: 10HZ
107 107  
108 -6: 300 Hz;
143 +2: 25HZ
109 109  
110 -7: 600 Hz;
145 +3: 50HZ
111 111  
112 -8: 960 Hz;
147 +4: 60HZ
113 113  
114 -9: 2400 Hz;
149 +5: 150HZ
115 115  
116 -1: unipolar
117 -)))
118 -)))
119 -|3|43|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Frequency|(% style="width:82px" %)1|(% style="width:92px" %)0-9|(% style="width:486px" %)(((
120 -0: 7.55 Hz;
151 +6: 300HZ
121 121  
122 -1: 10 HZ;
153 +7: 600HZ
123 123  
124 -2: 25 Hz;
155 +8: 960HZ
125 125  
126 -3: 50 Hz;
157 +9: 2400HZ
127 127  
128 -4: 60 Hz;
159 +10 to 4800: 10Hz to 4800Hz
129 129  )))
130 -|4|44|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)State|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
131 -b0: CH1 no-load;
161 +|#4|#44|X|R|(% style="width:189px" %)Status code|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
162 +|#5|#45|X|R|(% style="width:189px" %)Error code|(% style="width:74px" %)0|(% style="width:128px" %)—|(% style="width:466px" %)(((
163 +A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
132 132  
133 -b1: CH2 no-load;
165 +#45: Reserved
134 134  
135 -b2: CH1 overload;
167 +b0: Abnormal power supply
136 136  
137 -b3: CH2 overload;
169 +b1: Hardware failure
138 138  
139 -b4: CH1 measured value is stable;
171 +b2: CH1 conversion error
140 140  
141 -b5: CH2 measured value is stable;
173 +b3: CH2 conversion error
142 142  
143 -b6-b15: Reserved;
175 +b4: CH1 input calibration parameter error
144 144  
145 -BFM 44: Reserved;
177 +b5: CH2 input calibration parameter error
178 +
179 +Others: Reserved
146 146  )))
147 -|5|45|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Error Code|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
148 -It is the data register for all error states, and each error status is displayed in the corresponding bit, possibly with multiple error states
181 +|#6|#46|X|R/W|(% style="width:189px" %)Tare reading|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
182 +Read the current average value as the tare weight value.
149 149  
150 -0: No error;
184 +0: Normal (invalid).
151 151  
152 -1: Error;
186 +1: Execute tare setting, then reset to 0.
153 153  
154 -b0: Power supply error;
188 +Others: Invalid.
189 +)))
190 +|#7|#47|O|R/W|(% style="width:189px" %)(((
191 +Gross weight/ net weigh
155 155  
156 -b1: Hardware error;
193 +display
194 +)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
195 +Choose to display the current weight as gross weight (K0) or net weight (K1).
157 157  
158 -b2: CH1 conversion error;
197 +0: display gross weight.
159 159  
160 -b3: CH2 conversion error;
199 +1: display net weight.
161 161  
162 -B4 :CH1 input calibration parameter error
163 - B5 :CH2 input calibration parameter error
164 -
165 -Other bit: Reserved;
166 -
167 -BFM45: Reserved;
201 +0xF: Channel closed
168 168  )))
169 -|6|46|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Tare weight Preset|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
170 -Use average weight as tare weight:
203 +|#8|#48|X|R/W|(% style="width:189px" %)Calibration|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
204 +The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
171 171  
172 -0: Disabled
206 +0x0001: CHI zero instruction.
173 173  
174 -1: Set tare weight then reset to 0;
208 +0x0002: CH1 weight base point instruction.
175 175  
176 -Others : Reserved;
177 -)))
178 -|7|47|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Gross/Net weight|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
179 -Display gross weight or net weight
210 +0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
180 180  
181 -0: Gross weight;
212 +0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
182 182  
183 -1: Net weight;
184 -
185 -Others: Channels invalid;
214 +**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
186 186  )))
187 -|8|48|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Weight Calibration|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
188 -Defaulted to 0
216 +|#9|#49|X|R/W|(% style="width:189px" %)Reset|(% style="width:74px" %)0|(% style="width:128px" %)0 to 3|(% style="width:466px" %)(((
217 +#49: Reserved
189 189  
190 -0x0001:Channels 1 set to 0
219 +1: Reset CH1
191 191  
192 -0x0002:Channels 1 calibrating:
221 +2: Reset CH2
193 193  
194 -0x0003:CH1 without weight
223 +3: Reset all channels
195 195  
196 -calibration
197 - 0x0004:CH1 modified calibration
225 +Others: no action
226 +)))
227 +|#10|#50|O|R/W|(% style="width:189px" %)Filtering method|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
228 +|#11|#51|O|R/W|(% style="width:189px" %)Filter strength|(% style="width:74px" %)0|(% style="width:128px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
229 +|#12|#52|O|R/W|(% style="width:189px" %)Zero tracking intervals|(% style="width:74px" %)0|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
230 +|#13|#53|O|R/W|(% style="width:189px" %)Zero tracking range|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
231 +0: Disable the zero tracking function
198 198  
199 -parameter error
233 +Others: Set the zero tracking range (absolute value)
234 +)))
235 +|#14|#54|O|R/W|(% style="width:189px" %)Automatically reset after boot|(% style="width:74px" %)0|(% style="width:128px" %)0 to 4|(% style="width:466px" %)(((
236 +0: Disable automatic reset at startup
200 200  
201 -Step1: Remove all load ;
238 +1: ±2%MAX
202 202  
203 -Step2: BFM #8 (#48) set to 0x0001;
240 +2: ±5%MAX
204 204  
205 -Step3: Add known weight;
242 +3: ±10%MAX
206 206  
207 -Step4: Write known weight to BFM#23 (#63);
244 +4: ±20%MAX
245 +)))
246 +|#15|#55|O|R/W|(% style="width:189px" %)Sensor sensitivity setting (inside the module)|(% style="width:74px" %)4|(% style="width:128px" %)0 to 5|(% style="width:466px" %)(((
247 +0:<1V/V
208 208  
209 -Step5: BFM #8 (#48) set to 0x0002;Calibration without weight:
249 +1:<125mV/V
210 210  
211 -Step1: Do not put any weight on the load cell;
251 +2:<62.5mV/V
212 212  
213 -Step2: Write the maximum range of the sensor to #23;
253 +3:<31.25V/V
214 214  
215 -Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
255 +4:<15.625mV/V
216 216  
217 -Step4: The value of #8 is written as 0x0003.
257 +5:<7.812mV/V
218 218  
219 -Modify calibration parameters:
220 -
221 -Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
222 -
223 -Step2: The value of #8 is written as 0x0004.
224 -
225 -Remark: After writing the value to BFM#8 using the device monitoring, it will be automatically reset to 0.
259 +**✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
226 226  )))
227 -|9|49|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Reset to default|(% style="width:82px" %)0|(% style="width:92px" %)0-3|(% style="width:486px" %)(((
228 -#49: Keep unused
261 +|#16|#56|(% rowspan="2" %)(((
262 +
229 229  
230 -1: Reset CH1; 2: Reset CH2
264 +X
265 +)))|(% rowspan="2" %)(((
266 +
231 231  
232 -3: Reset all channels
268 +R
269 +)))|(% style="width:189px" %)Average weight L|(% style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
270 +-2147483648 to
233 233  
234 -Other: No action
235 -)))
236 -|10|50|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering mode|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)Recalibration required after change
237 -|11|51|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering strength|(% style="width:82px" %)3|(% style="width:92px" %)0-7|(% style="width:486px" %)Recalibration required after change
238 -|12|52|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking intensity|(% style="width:82px" %)0|(% style="width:92px" %)0-200|(% style="width:486px" %)(((
239 -0: Zero tracking disabled
272 +2147483647
273 +)))|(% style="width:466px" %)(((
274 +Average weight display value
240 240  
241 -Other: Intensity of zero tracking
276 +(low word)
242 242  )))
243 -|13|53|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking range|(% style="width:82px" %)0|(% style="width:92px" %)1-300|(% style="width:486px" %)(((
244 -0: No limit
278 +|#17|#57|(% style="width:189px" %)Average weight H|(% style="width:74px" %)0|(% style="width:466px" %)(((
279 +Average weight display value
245 245  
246 -Others: Up limit
281 +(high word)
247 247  )))
248 -|14|54|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No load Zeroing at startup|(% style="width:82px" %)0|(% style="width:92px" %)0-4|(% style="width:486px" %)(((
249 -0: Disabled;
283 +|#18|#58|O|R/W|(% style="width:189px" %)Sliding average|(% style="width:74px" %)5|(% style="width:128px" %)1 to 50|(% style="width:466px" %)(((
284 +The setting range is K1 to K50, and the default value is K5.
250 250  
251 -1: ±2%MAX;
252 -
253 -2: ±5%MAX;
254 -
255 -3: ±10%MAX;
256 -
257 -4: ±20%MAX;
286 +When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
258 258  )))
259 -|15|55|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Sensor sensitivity setting|(% style="width:82px" %)4|(% style="width:92px" %)0-5|(% style="width:486px" %)(((
260 -0: < 1V/V
288 +|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Tare weight value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
289 +-2147483648 to
261 261  
262 -1: < 125mV/V
291 +2147483647
292 +)))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
293 +|#20|#60|R/W|(% style="width:189px" %)Tare weight value H
294 +|#21|#61|O|R/W|(% style="width:189px" %)CH1 Stability check time|(% style="width:74px" %)200|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
295 +|#22|#62|O|R/W|(% style="width:189px" %)Stability check range|(% style="width:74px" %)1|(% style="width:128px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
296 +|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:189px" %)(((
297 +Weight value
263 263  
264 -2: < 62.5mV/V
299 +calibration L
300 +)))|(% rowspan="2" style="width:74px" %)1000|(% rowspan="2" style="width:128px" %)(((
301 +-2147483648 to
265 265  
266 -3: < 31.25V/V
303 +2147483647
304 +)))|(% rowspan="2" style="width:466px" %)(((
305 +Input weight base point weight with calibration weight
267 267  
268 -4: < 15.625mV/V
269 -
270 -5: <7.812 mV/V
271 -
272 -Note: Please recalibrate after setting
273 -
274 -(This function only is available in Software & hardware version 13904 or later)
307 +Input sensor range without calibration weight
275 275  )))
276 -|16|56|(% rowspan="2" style="width:77px" %)X|(% rowspan="2" style="width:101px" %)R|(% style="width:159px" %)Average weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)Signed 32-bit integer|(% style="width:486px" %)Average weight (Low word)
277 -|17|57|(% style="width:159px" %)Average weight H|(% style="width:486px" %)Average weight (High word)
278 -|18|58|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sliding average|(% style="width:82px" %)5|(% style="width:92px" %)1-50|(% style="width:486px" %)Setting range: K1~~K50; settings outside of this range will be changed to the nearest value in the range.
279 -|19|59|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Tare weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
280 --2147483648~~
309 +|#24|#64|R/W|(% style="width:189px" %)(((
310 +Weight value
281 281  
282 -2147483647
283 -)))|(% rowspan="2" style="width:486px" %)User can write or read tare weight by command #7
284 -|20|60|(% style="width:159px" %)Tare weight H
285 -|21|61|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)CH1 stability check time|(% style="width:82px" %)200|(% style="width:92px" %)0-20000|(% style="width:486px" %)Stability inspection time, used in conjunction with the stability inspection range, unit: ms
286 -|22|62|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Stability inspection range|(% style="width:82px" %)1|(% style="width:92px" %)1-100|(% style="width:486px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, then the current weight fluctuation range is within 100 and lasts for 200ms, then the value is considered stable, otherwise it is considered unstable, and the stability flag is displayed on BFM#4
287 -|23|63|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Weight value adjustment L|(% rowspan="2" style="width:82px" %)1000|(% rowspan="2" style="width:92px" %)(((
288 --2147483648~~
289 -
290 -2147483647
291 -)))|(% rowspan="2" style="width:486px" %)(((
292 -Please refer to #8
293 -
294 -With weight calibration, enter the weight base point weight, without weight calibration enter the sensor range
312 +calibration H
295 295  )))
296 -|24|64|(% style="width:159px" %)Weight value adjustment H
297 -|25|65|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Maximum L|(% rowspan="2" style="width:82px" %)32767|(% rowspan="2" style="width:92px" %)(((
298 --2147483648~~
314 +|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Weight upper limit L|(% rowspan="2" style="width:74px" %)32767|(% rowspan="2" style="width:128px" %)(((
315 +-2147483648 to
299 299  
300 300  2147483647
301 -)))|(% rowspan="2" style="width:486px" %)User can set the max value, it will record the error code when measured value exceed set value
302 -|26|66|(% style="width:159px" %)Maximum H
303 -|27|67|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection up limit|(% rowspan="2" style="width:82px" %)10|(% rowspan="2" style="width:92px" %)(((
304 --2147483648~~
318 +)))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
319 +|#26|#66|R/W|(% style="width:189px" %)Weight upper limit H
320 +|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checupper limit L|(% rowspan="2" style="width:74px" %)10|(% rowspan="2" style="width:128px" %)(((
321 +-2147483648 to
305 305  
306 306  2147483647
307 -)))|(% rowspan="4" style="width:486px" %)(((
308 -Zero weight detection function, used to tell if all loads have been removed.
324 +)))|(% rowspan="4" style="width:466px" %)(((
325 +Zero point judgment function:
309 309  
310 -Reading of the bit to indicate stable reading becoming 0 means all loads have been removed.
327 +You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
311 311  )))
312 -|28|68
313 -|29|69|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection down limit|(% rowspan="2" style="width:82px" %)-10|(% rowspan="2" style="width:92px" %)(((
314 --2147483648~~
329 +|#28|#68|R/W|(% style="width:189px" %)Zero judgment check upper limit H
330 +|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checklower limit L|(% rowspan="2" style="width:74px" %)-10|(% rowspan="2" style="width:128px" %)(((
331 +-2147483648 to
315 315  
316 316  2147483647
317 317  )))
318 -|30|70
319 -|31|71|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function options|(% style="width:82px" %)0|(% style="width:92px" %)0~~1|(% style="width:486px" %)(((
320 -0: Default, disable additional functions;
335 +|#30|#70|R/W|(% style="width:189px" %)Zero judgment check lower limit H
336 +|#31|#71|X|R/W|(% style="width:189px" %)Additional function options|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
337 +0: Default value. Additional functions are not enabled
321 321  
322 322  1: Enable filter reset function.
323 323  
324 -Other: Reserved
341 +Others: Reserved
325 325  )))
326 -|32|72|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function parameters|(% style="width:82px" %)0|(% style="width:92px" %)0~~100|(% style="width:486px" %)(((
343 +|#32|#72|X|R/W|(% style="width:189px" %)(((
344 +Additional functions
345 +
346 +Parameter 1
347 +)))|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
327 327  Enable filter reset function:
328 328  
329 -0: Default;
350 +0: The default value does not work
330 330  
331 -0~~100: The number of sampling cycles to wait for the filter to restart.
332 -
333 -The value collected during the accumulation of the average, as the initial value of filtering
352 +0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
334 334  )))
335 -|33|73|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)The number of ADC acquisitions
336 -|34|74|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value H|(% style="width:82px" %) |(% style="width:92px" %) |(% style="width:486px" %)
337 -|35|75|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter A|(% rowspan="2" style="width:82px" %)1|(% rowspan="2" style="width:92px" %)(((
338 --3.402823E+38~~
354 +|#33|#73|X|R|(% style="width:189px" %)Digital value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
355 +|#34|#74|X|R|(% style="width:189px" %)Digital value H
356 +|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter A|(% rowspan="2" style="width:74px" %)1|(% rowspan="2" style="width:128px" %)(((
357 +-3.402823E+38
339 339  
340 -3.402823E+38
341 -)))|(% rowspan="4" style="width:486px" %)(((
342 -Explain by CH1:
359 +to 3.402823E+38
360 +)))|(% rowspan="4" style="width:466px" %)Described in CH1:
361 +After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
362 +|#36|#76
363 +|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter B|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
364 +-3.402823E+38
343 343  
344 -After modifying the calibration parameters, #8 does not write 4, which is only displayed, not used for weight value calculation, and does not save after power off; #8 After writing 4, if the parameter range is correct, write and save it for weight value calculation 4 Error code Bit4 is set to 0, if the parameter range is wrong, no write operation will be performed, #4 error code Bit4 is set to 1.
366 +to 3.402823E+38
345 345  )))
346 -|36|76
347 -|37|77|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter B|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
348 --3.402823E+38~~
349 -
350 -3.402823E+38
351 -)))
352 -|38|78
353 -|39|79|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor sensitivity (specification)|(% style="width:82px" %)2000|(% style="width:92px" %)0-32767|(% style="width:486px" %)(((
354 -The default setting of 2000 represents 2mV/V, and calibration without weights needs to set the sensor sensitivity accuracy. The sensitivity range can be set to 0~~32.767mV/V, the sensor sensitivity BFM#39 enters a negative value, and it is directly converted to 32767 for execution.
355 -
356 -Example: Modified to 1942 means 1.942mV/V.
357 -)))
358 -|40|80|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor feedback voltage L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
368 +|#38|#78
369 +|#39|#79|O|R/W|(% style="width:189px" %)Sensor sensitivity (specification)|(% style="width:74px" %)2000|(% style="width:128px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
370 +For example: Modified to 1942 represent 1.942mV/V.
371 +|#40|#80|X|R/W|(% style="width:189px" %)Sensor feedback voltage L|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
359 359  Write:
360 360  
361 -0: do not display
374 +0: not displayed
362 362  
363 -1: Real-time display of current sensor feedback voltage
376 +1: Display the current sensor feedback voltage in real time
364 364  
365 -2: Display the zero point voltage during calibration
378 +2: Display the zero-point voltage during calibration
366 366  
367 -3: Display the voltage of the weight applied during calibration
380 +3: Display the voltage reading of the applied weight during calibration:
368 368  
369 -Read:
370 -
371 -Display the low digit of the voltage value in uV.
382 +Displays the low bit of the voltage value. Unit: uV.
372 372  )))
373 -|41|81|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Sensor feedback voltage H|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
374 -Read:
384 +|#41|#81|X|R|(% style="width:189px" %)(((
385 +Sensor feedback
375 375  
376 -Display the high digit of the voltage value in uV.
377 -)))
387 +voltage H
388 +)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
378 378  
379 -**✎Note: **
390 +**✎Note:**
380 380  
381 -1. O: yes;
382 -1. X: no;
383 -1. R: read;
384 -1. W: write;
392 +* O means retentive type.
393 +* X means non-retentive type.
394 +* R means readable data.
395 +* W means writable data.
385 385  
386 -== **5.2 Buffer (BFM) description** ==
397 +== **BFM description** ==
387 387  
388 -* **BFM0: Module code**
399 +**BFM0: Module code**
389 389  
390 -LX3V-2WT V3 code: 5012
401 +LX3V-2WT model code: 5012
391 391  
392 -* **BFM1: module version**
403 +**BFM1: module version**
393 393  
394 -Module version (decimal)
405 +The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
395 395  
396 -**Example**
407 +**BFM2: Polarity**
397 397  
398 -BFM1=120, means V1.2.0
399 -
400 -* **BFM2: Polarity**
401 -
402 402  For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
403 403  
404 -* **BFM3: Sampling frequency**
411 +**BFM3: Sampling frequency**
405 405  
406 -The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
413 +The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
407 407  
408 -(% class="table-bordered" %)
409 409  |**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
410 410  |0|7.5|23.5|5|150|21.5
411 411  |1|10|23.5|6|300|21
... ... @@ -413,288 +413,247 @@
413 413  |3|50|22|8|960|20
414 414  |4|60|22|9|2400|17.5
415 415  
416 -* **BFM4: State code**
422 +**BFM4: State code**
417 417  
418 -(% class="table-bordered" %)
419 -|(% rowspan="2" %)**Bit No.**|(% colspan="2" %)**Description**
424 +|(% rowspan="2" %)**Bit NO.**|(% colspan="2" %)**Status code**
420 420  |**1**|**0**
421 -|Bit 0|CH1 no-load|CH1 load
422 -|Bit 2|CH1 over-load|CH1 not over-load
423 -|Bit 4|CH1 stable|CH1 unstable
424 -|Bit 6|CH1 uncalibrated/calibrated error|CH1 calibration successful
426 +|Bit0|CH1 zero weight (no load)|CH1 is not empty
427 +|Bit1|CH2 zero weight (no load)|CH2 is not empty
428 +|Bit2|(((
429 +CH1 exceeds weight upper limit (overload)
430 +
431 +**✎Note: **The upper limit weight is set by #27 and #28.
432 +)))|CH1 is not overloaded
433 +|Bit3|(((
434 +CH2 exceeds weight upper limit (overload)
435 +
436 +**✎Note: **The upper limit weight is set by #27 and #28.
437 +)))|CH2 is not overloaded
438 +|Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
439 +|Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
440 +|Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
441 +|Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
425 425  |(((
426 -Bit 8
443 +Bit8
427 427  
428 -Bit 9
445 +Bit9
429 429  )))|(((
430 430  00: no error
431 431  
432 -10: The base point of the weight is too heavy
449 +10: The weight of the base point of weight is too large
433 433  )))|(((
434 434  01: No-load calibration
435 435  
436 -11: Not calibrated
453 +11: Uncalibrated
437 437  )))
438 -|Bit 12|(((
439 -CH1 exceeds the sensor range
455 +|(((
456 +Bit10
440 440  
441 -Note: Determined by sensor feedback voltage
442 -)))|CH1 within the sensor range
458 +Bit11
459 +)))|(((
460 +00: no error
443 443  
444 -* **BFM5: Error code**
462 +10: The weight of the base point of weight is too large
463 +)))|(((
464 +01: No-load calibration
445 445  
446 -(% class="table-bordered" %)
447 -|**Bit No.**|**Value**|**Error**|(% colspan="2" %)**Bit No.**|**Value**|**Error**
448 -|bit 0|K1(H0001)|Power failure|(% colspan="2" %)bit 1|K1(H0001)|Hardware failure
449 -|bit 2|K4(H0004)|CH1 conversion error|(% colspan="2" %)bit 3|K8(H0008)|CH2 conversion error
450 -|bit 4|K16(H0010)|CH1 write calibration parameter error|(% colspan="2" %)bit 5|K32(H0020)|CH2 write calibration parameter error
451 -|Other|(% colspan="3" %)Reserved|(% colspan="2" %)BFM#45|Reserved
452 -|(% colspan="7" %)**✎Note: **The data register that stores all error states. Each error state is determined by a corresponding bit. More than two error states may occur at the same time. 0 means normal and no error, and 1 means there is a state.
466 +11: Uncalibrated
467 +)))
468 +|Bit12|(((
469 +CH1 exceeds the sensor range
453 453  
454 -* **BFM6: Tare weight setting**
471 +**✎Note:** Determined by sensor feedback voltage
472 +)))|CH1 is within the sensor range
473 +|Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
474 +|Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
455 455  
456 -Set the current weight value (BFM16-17) as a tare (BFM19-20) weight. Every bit represents a different channel, which is set to 1 to mean enabled, reset to 0 after being set.
476 +**BFM5: Error code**
457 457  
458 -**Use CH1 as example**
478 +|**Bit NO.**|**Content**|**Error state**
479 +|Bit0|K1 (H0001)|Abnormal power supply
480 +|Bit1|K2 (H0002)|Hardware fault
481 +|Bit2|K4 (H0004)|CH1 conversion error
482 +|Bit3|K8 (H0008)|CH2 conversion error
483 +|Bit4|K16 (H0010)|CH1 write calibration parameter error
484 +|Bit5|K32 (H0020)|CH2 write calibration parameter error
485 +|Others|(% colspan="2" %)Reserved
486 +|BFM#45|(% colspan="2" %)Reserved
487 +|(% colspan="3" %)(((
488 +**✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
489 +)))
459 459  
460 -The current weight is 100, after setting tare weight;
491 +**Tare setting: **CH1-BFM6, CH2-BFM46
461 461  
462 -If it displays gross weight (BFM7 = 0) currently, the tare weight (BFM19-20) will become 100, the current weight is still 100;
493 +Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
463 463  
464 -If it displays net weight (BFM7 = 1), the tare weight (BFM19-20) will be original value + current weight value, the current weight value becomes zero;
495 +The current weight value is 100, after tare setting:
465 465  
466 -* **BFM8: Adjust the weight command. User adjustment steps: (describe with CH1)**
497 +* If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
498 +* If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
467 467  
468 -There is a weight calibration:
500 +**BFM8: Weight calibration instruction**
469 469  
470 -Step1: Do not put any weight on the load cell;
502 +Steps are as follows. (Described with CH1)
471 471  
472 -Step2: #8 value is written as 0x0001;
504 +* Calibration with weights
505 +** Step1: Do not put any weights on the load cell.
506 +** Step2: #8 value is written as 0x0001.
507 +** Step3: Add standard weights to the load cell.
508 +** Step4: Write the weight of the current weight on the chassis into #23.
509 +** Step5: #8 value is written as 0x0002.
510 +* Weightless calibration
511 +** Step1: Do not put any weights on the load cell.
512 +** Step2: Write the maximum range of the sensor into #23.
513 +** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
514 +** Step4: #8 value is written as 0x0003.
515 +* Modify calibration parameters:
516 +** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
517 +** Step2: #8 value is written as 0x0004.
473 473  
474 -Step3: Add standard weights to the load cell;
519 +**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
475 475  
476 -Step4: Write the weight of the current weight on the chassis to #23;
521 +**BFM11: filtering strength**
477 477  
478 -Step5: The #8 value is written as 0x0002.
479 -
480 -Calibration without weight:
481 -
482 -Step1: Do not put any weight on the load cell;
483 -
484 -Step2: Write the maximum range of the sensor to #23;
485 -
486 -Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
487 -
488 -Step4: The #8 value is written as 0x0003.
489 -
490 -Modify calibration parameters:
491 -
492 -Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
493 -
494 -Step2: The #8 value is written as 0x0004.
495 -
496 -Remarks: After using the device monitoring to write a value to BFM#8 or BFM#48, it will automatically reset to 0.
497 -
498 -* **BFM11: filtering strength**
499 -
500 500  The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
501 501  
502 -* **BFM12: zero tracking strength**
525 +**BFM12: zero tracking interval**
503 503  
504 -Zero-tracking is to have a constant 0 when there’s no load. Zero tracking intensity means the weight counts 0 when it’s within the range to reduce the influence of temperature drift.
527 +BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
505 505  
506 -(% class="table-bordered" %)
507 -|**Setting**|**Description**|**Note**
508 -|0|Zero tracking OFF|Default
509 -|1-200|Range of weight value|10 means ± 10
510 -|Others|Reserved|
511 -|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
529 +**✎Note:** This function is generally used to correct sensor temperature drift.
512 512  
513 -* **BFM13:Range of Zero tracking**
531 +**BFM13: Zero tracking range**
514 514  
515 -Accumulated range of zero tracking, stop tracking when out of range
533 +The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
516 516  
517 -Table 5‑6
535 +|**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
536 +|0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
537 +|1 to 100|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
538 +If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
539 +)))
540 +|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
518 518  
519 -(% class="table-bordered" %)
520 -|**Setting**|**Description**|**Note**
521 -|0|Disable zero tracking|Default
522 -|1-300|Range of weight value|10 means ±10
523 -|Others|Reserved|
524 -|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
542 +E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
525 525  
526 -**Example**
544 +**BFM15: Set the AD chip gain**
527 527  
528 -Setting value is 100, when the position within ± 100, it will be read as no-load.
546 +**I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
529 529  
530 -* **BFM15: Set AD chip gain**
548 +|**BFM15**|**voltage range**|**Sensor sensitivity**
549 +|0|±5V|<1V/V
550 +|1|±625mV|<125mV/V
551 +|2|±312.5mV|<62.5mV/V
552 +|3|±156.2mV|<31.25mV/V
553 +|4|±78.125mV|<15.625mV/V
554 +|5|±39.06mV|<7.812mV/V
531 531  
532 -It can be set according to the sensor range
556 +== **Function description** ==
533 533  
534 -(% class="table-bordered" %)
535 -|**BFM15**|**Voltage range**|**Sensor sensitivity**
536 -|0|± 5V|< 1V/V
537 -|1|± 625mV|< 125mV/V
538 -|2|±312.5 mV|< 62.5mV/V
539 -|3|±156.2 mV|< 31.25V/V
540 -|4|±78.125 mV|< 15.625mV/V
541 -|5|±39.06 mV|<7.812 mV/V
558 +**Net weight measurement function**
542 542  
543 -== **5.3 Function Instructions** ==
560 +You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
544 544  
545 -**Net weight measurement**
562 +* Tare weigh:t Refers to the weight of the outer packaging.
563 +* Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
564 +* Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
565 +* Gross weight = net weight + tare weight
546 546  
547 -It can be set to measure net weight or gross weight. The Net weight means the weight of the product itself, that is, the actual weight of the product without its external packaging.
567 +E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
548 548  
549 -The weight of the packaging is called the tare weight. The gross weight is the total weight, namely the net weight plus the tare weight.
569 +* Net weight=10KG
570 +* Tare weight=0.2KG
571 +* Gross weight=10.2KG
550 550  
551 -1. Tare weight: weight of the packaging
552 -1. Net weight: the weight of the product, excluding the packaging.
553 -1. Gross weight: the net weight plus the tare of the product.
554 -1. Gross weight= net weight + tare weight.
573 +E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
555 555  
556 -**Example 1**
575 +* Read the tare value
576 +** Write H0000 in BFM7;
577 +** Place the package on the CH1 weighing module;
578 +** Write H0001 in BFM6, and take the current package weight as the tare weight.
579 +* Set BFM7=H0001
557 557  
558 -A product weighs 10kg and the carton contains it weighs 0.2kg, then its gross weight is 10.2 kg (net weight=10kg, tare weight=0.2kg, gross weight=10.2kg)
581 +**Stability check**
559 559  
560 -**Example2**
583 +When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
561 561  
562 -Use the measured value at CH1 as the net weight. If you know the weight of the packaging already, you can skip the step of reading tare weight.
585 +* If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
586 +* When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
563 563  
564 -* Read the tare weight
588 +E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
565 565  
566 -Step 1: Write H0000 into BFM7.
590 +**Zero point judgment**
567 567  
568 -Step 2: Place the packaging on the CH1 load cell.
592 +You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
569 569  
570 -Step 3: Write H0001 into BFM6 to take the weight of the packaging as the tare weight.
594 +**Filter function**
571 571  
572 -* Set BFM7 = H00F1.
596 +The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
573 573  
574 -**Standstill check function**
575 -
576 -When an object is placed on the load cell to measure its weight, you can use the standstill check function to know whether the current reading has been stabilized.
577 -
578 -* If the measured value shifts within the range (BFM 22) of standstill check set up by the user, BFM4’bit 4 will be set to “1”.
579 -* If the measured value shifts beyond the range for standstill check set up by the user, bit4 will be set to “0”. They will be set to “1” again when the range is returned to the set range.
580 -
581 -**Example**
582 -
583 -The measuring time is 10ms, the times of standstill check is 10, and the range for standstill check is 1,000. When the range for standstill check exceeds 1,000, the reading is considered unstable, i.e. BFM4’bit4 will be set to 0. When the measuring time is within 100ms (10 × 10ms) and the range returns to be within 1,000, BFM4’bit4 will be set to 1 again. We recommend you check if the measured value is stable enough before operating it.
584 -
585 -* **Zero detection function**
586 -
587 -Users can use this function to know whether the object has been removed from the load cell. If the BFM4’bit4 is 1, and the BFM4’bit0 and bit1 are 1 as well, the object has been removed from the load cell already, and you can proceed to the next step.
588 -
589 -* **Filtering**
590 -
591 -This setting is used to exclude noises from the readings, which are introduced by environmental factors.
592 -
593 593  = **6 Example** =
594 594  
595 -* **Current state of weight**
600 +**Current state of weight**
596 596  
597 597  (% style="text-align:center" %)
598 -[[image:LX3V-2WT V2.0_html_6bc45b23c2b79282.png||class="img-thumbnail" height="77" width="500"]]
603 +[[image:image-20220622145646-14.png||height="51" width="330"]]
599 599  
600 -Read the current state BFM4. More information, please refer to __[[5.2>>path:#_5.2_Buffer_(BFM)]]__
605 +Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
601 601  
602 -* **Get current weight value**
607 +**Get current weight value**
603 603  
604 604  (% style="text-align:center" %)
605 -[[image:LX3V-2WT V2.0_html_5f4a500276a0a3a0.png||class="img-thumbnail" height="66" width="500"]]
610 +[[image:image-20220622145005-7.png||height="51" width="385"]]
606 606  
607 -Write average weight value (BFM16) to D0
612 +Write the average weight value (BFM16) of CH1 in the weighing module into D0.
608 608  
609 -* **Calibrating weight**
614 +**Calibrating weight**
610 610  
611 -(% style="text-align:center" %)
612 -[[image:LX3V-2WT V2.0_html_c4b24548535207d3.png||class="img-thumbnail" height="252" width="500"]]
616 +*In the new version, the first step can also be used for manual reset.
613 613  
614 -Step 1: Remove all weights;
618 +The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
615 615  
616 -Step 2: Write 0x0001 to #8;
617 -
618 -Step 3: Add known weights;
619 -
620 -Step 4: Write known weights (D2) to #23;
621 -
622 -Step 5: Write 0x0002 to #8
623 -
624 -*In the new version, the step 1 can be used for manual reset.
625 -
626 -Adjustment and calibration are to make sure the weight values of module and the heavy load units of module to be consistent.
627 -
628 -* **Tare weight and gross weight**
629 -
630 630  (% style="text-align:center" %)
631 -[[image:LX3V-2WT V2.0_html_5b9b9b62d33c4a7e.png||class="img-thumbnail" height="293" width="500"]]
621 +[[image:image-20220622145005-8.jpeg||height="193" width="797"]]
632 632  
633 -Set value as tare weight by writing K1 to BFM6
623 +**Tare weight and gross weight**
634 634  
635 -Set the value as Net weight by writing K1 to BFM7
636 -
637 -Set the value as gross weight by writing K0 to BFM7
638 -
639 -* **Filter method and strength**
640 -
641 641  (% style="text-align:center" %)
642 -[[image:LX3V-2WT V2.0_html_187c088ffaacd7f1.png||class="img-thumbnail" height="194" width="500"]]
626 +[[image:image-20220622145005-9.jpeg||height="274" width="749"]]
643 643  
644 -Set filtering by writing value to BFM10
628 +**Filter mode setting**
645 645  
646 -Set filtering by writing value to BFM11
630 +After setting the filtering mode and filtering strength, you need to calibrate it again.
647 647  
648 -After setting the filtering mode and filtering strength, need to calibrate again.
649 -
650 -* **Zero tracking**
651 -
652 652  (% style="text-align:center" %)
653 -[[image:LX3V-2WT V2.0_html_9b603f9448600b12.png||class="img-thumbnail" height="196" width="500"]]
633 +[[image:image-20220622145005-10.jpeg||height="196" width="791"]]
654 654  
635 +**Zero tracking**
636 +
655 655  Zero tracking is used to reduce the temperature drift interference;
656 656  
657 657  Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
658 658  
659 -* **Calibration without weights**
641 +(% style="text-align:center" %)
642 +[[image:image-20220622145005-11.jpeg||height="242" width="601"]]
660 660  
644 +**Calibration without weights**
645 +
661 661  Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
662 662  
663 663  Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
664 664  
665 665  (% style="text-align:center" %)
666 -[[image:LX3V-2WT V2.0_html_735f5d0ddc4d01c3.png||class="img-thumbnail" height="391" width="500"]]
651 +[[image:image-20220622145005-12.jpeg||height="323" width="774"]]
667 667  
668 -(((
669 -Step1: Write the sensor range in D8 to BFM23:
653 +**Modify calibration parameters**
670 670  
671 -Example: measuring range 3kg, D8 value setting 3000
672 -
673 -Step2: write the sensor sensitivity in D9 into BFM39:
674 -
675 -Example: Sensitivity: 1.942mV/V, D9 value set to 1942;
676 -
677 -Step3: write value K4 to BFM8 and confirm to write calibration parameters.
678 -)))
679 -
680 -* **Modify calibration parameters**
681 -
682 -Step1: Write the floating point number in D10 into BFM35~~BFM36;
683 -
684 -(((
685 -Step2: Write the floating point number in D11 into BFM37~~BFM38;
686 -
687 -Step3: Write value K4 to BFM8 and confirm to write calibration parameters.
688 -
689 689  (% style="text-align:center" %)
690 -[[image:LX3V-2WT V2.0_html_592dd08d03d2ad0d.png||class="img-thumbnail" height="259" width="700"]]
691 -)))
656 +[[image:image-20220622145005-13.jpeg||height="315" width="838"]]
692 692  
693 -**✎Note:** BFM35, BFM36, BFM37, and BFM38 are real number types (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
658 +**✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
694 694  
695 -= **7 Diagnosis** =
660 += **7 Diagnosis ** =
696 696  
697 -== **7.1 Check** ==
662 +== **Check** ==
698 698  
699 699  1. Make sure all cables are connected properly;
700 700  1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
... ... @@ -702,30 +702,17 @@
702 702  1. Make sure power supply is working properly;
703 703  1. LX3V CPU unit is in RUN mode;
704 704  
705 -== **7.2 Check the error** ==
670 +== **Check errors** ==
706 706  
707 -* If the special function module LX3V-2WT V3 does not operate normally, please check the following items.
672 +If the special function module LX3V-2WT does not operate normally, please check the following items.
708 708  
709 -Check the status of the LINK indicator
710 -
711 -Flashing: The extension cable is connected correctly
712 -
713 -Otherwise: Check the connection of the extension cable.
714 -
715 -* Check the status of the "24V" LED indicator (upper right corner of LX3V-2WT V3)
716 -
717 -Lit: LX3V-2WT V3 is normal, and the 24VDC power supply is normal.
718 -
719 -Otherwise: the 24V DC power supply may be faulty. If the power supply is normal, it is LX3V-2WT V3 fault.
720 -
721 -* Check the status of the "COM" LED indicator (upper right corner of LX3V-2WT V3)
722 -
723 -Flashing: Value conversion is operating normally.
724 -
725 -Otherwise: check buffer memory #5 (error status).
726 -
727 -If any bit (b0, b1, b2) is ON, that is why the COM indicator is off. Detailed description
728 -
729 -Please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
730 -
731 -* Check the sensor and measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv. The sensitivity of the sensor can be found on the sensor manual, and the unit is (mv/v). If the voltage at this point exceeds the range, it means the sensor Deformation or wiring error occurred. Measure whether the voltage between F+ and F- is 5V. If it is not 5V, check the sensor wiring.
674 +* Check the status of the LINK indicator
675 +** Blink: Expansion cables are properly connected.
676 +** Otherwise: Check the connection of the extension cable.
677 +* Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
678 +** Light on LX3V-2WT is normal, and 24VDC power is normal.
679 +** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
680 +* Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
681 +** Blink: Numeric conversion works fine.
682 +** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
683 +* Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.
image-20220622145005-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +15.0 KB
Content
image-20220622145005-10.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +62.9 KB
Content
image-20220622145005-11.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +67.0 KB
Content
image-20220622145005-12.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +209.0 KB
Content
image-20220622145005-13.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +183.1 KB
Content
image-20220622145005-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +14.2 KB
Content
image-20220622145005-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +83.4 KB
Content
image-20220622145005-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +36.7 KB
Content
image-20220622145005-5.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +151.7 KB
Content
image-20220622145005-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +26.0 KB
Content
image-20220622145005-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220622145005-8.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +125.2 KB
Content
image-20220622145005-9.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +123.2 KB
Content
image-20220622145646-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +65.8 KB
Content
图片1.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +39.1 KB
Content
图片2.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +36.2 KB
Content
图片3.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +142.9 KB
Content