Wiki source code of LX3V-2WT

Last modified by Mora Zhou on 2023/11/22 10:57

Show last authors
1 = **1 Operating principle** =
2
3 When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications.
4
5 = **2 Introduction** =
6
7 1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO  through LX3V or LX5V
10
11 (% class="box infomessage" %)
12 (((
13 **✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
14 )))
15
16 == **Specification** ==
17
18 |=(% scope="row" style="width: 254px;" %)**Item**|=(% style="width: 821px;" %)**Description**
19 |=(% style="width: 254px;" %)Channel|(% style="width:821px" %)Dual channel
20 |=(% style="width: 254px;" %)A/D converter|(% style="width:821px" %)24 bit Δˉ∑ A/D
21 |=(% style="width: 254px;" %)Resolution|(% style="width:821px" %)24 bit (signed)
22 |=(% style="width: 254px;" %)Speed|(% style="width:821px" %)7.5/10/25/50/60/150/300Hz available
23 |=(% style="width: 254px;" %)Polarity|(% style="width:821px" %)Unipolar and bipolar
24 |=(% style="width: 254px;" %)Non-linearity|(% style="width:821px" %)≤0.01% full scale(25^^o^^C)
25 |=(% style="width: 254px;" %)Zero drift|(% style="width:821px" %)≤0.2μV/^^ o^^C
26 |=(% style="width: 254px;" %)Gain drift|(% style="width:821px" %)≤10ppm/^^ o^^C
27 |=(% style="width: 254px;" %)Excitation voltage/ load|(% style="width:821px" %)Dual 5V, single load impedance not less than 200 Ω
28 |=(% style="width: 254px;" %)Sensor sensitivity|(% style="width:821px" %)1mV/V to 15mV/V
29 |=(% style="width: 254px;" %)Isolation|(% style="width:821px" %)Transformer (power supply) and the optical coupler (signal)
30 |=(% style="width: 254px;" %)Indicator light|(% style="width:821px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
31 |=(% style="width: 254px;" %)Power supply|(% style="width:821px" %)24V±20% 2VA
32 |=(% style="width: 254px;" %)Operating temperature|(% style="width:821px" %)0 to 60^^ o^^C
33 |=(% style="width: 254px;" %)Storage temperature|(% style="width:821px" %)-20 to 80^^ o^^C
34 |=(% style="width: 254px;" %)Dimension|(% style="width:821px" %)90(L)x58(W)x80(H) mm
35
36 == **Valid bits** ==
37
38 Refer to sampling frequency in BFM description, Chapter 5 of this manual.
39
40 = **3 Dimensions** =
41
42 == Dimensions ==
43
44 [[image:图片1.jpg||height="358" width="301" class="img-thumbnail"]] [[image:图片2.jpg||height="365" width="351" class="img-thumbnail"]]
45
46 (% style="text-align:center" %)
47 [[image:图片3.jpg||height="593" width="684" class="img-thumbnail"]]
48
49 1. Extension cable
50 1. COM light: Module internal data communication indicator
51 1. 24V light: Always on when connected to external 24V power supply
52 1. WT light: Channel input/output indicator; WE light: Channel calibration indicator
53 1. LINK: Communication indicator between PLC and module (LINK)
54 1. Expansion module name
55 1. Expansion module interface
56 1. DIN rail mounting clip
57 1. Hook for DIN rail
58 1. Holes for direct mounting: 2 places (φ4.5)
59
60 |=(% scope="row" style="width: 107px;" %)**Name**|=(% style="width: 374px;" %)**Description**|=(% style="width: 146px;" %)**Light status**|=(% style="width: 449px;" %)**Event status**
61 |(% rowspan="3" style="width:107px" %)(((
62
63
64 LINK light
65 )))|(% rowspan="3" style="width:374px" %)Communication indicator between PLC and module|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal)
66 |(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed
67 |(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure
68 |(% rowspan="3" style="width:107px" %)(((
69
70
71 COM light
72 )))|(% rowspan="3" style="width:374px" %)Module internal data communication indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal)
73 |(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed
74 |(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure
75 |(% rowspan="3" style="width:107px" %)(((
76
77
78 WT light
79 )))|(% rowspan="3" style="width:374px" %)Channel output/input indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Analog input is out of range
80 |(% style="width:146px" %)Always ON|(% style="width:449px" %)Analog input is within the range
81 |(% style="width:146px" %)Lights off|(% style="width:449px" %)Channel closed
82 |(% rowspan="2" style="width:107px" %)WE light|(% rowspan="2" style="width:374px" %)Calibration indicator for the channel|(% style="width:146px" %)Lights off|(% style="width:449px" %)Calibration succeeded
83 |(% style="width:146px" %)Always ON|(% style="width:449px" %)Calibration failed or not calibrated
84
85 == Use of blade terminals ==
86
87 (% style="text-align:center" %)
88 [[image:image-20220705162505-2.jpeg||height="218" width="375" class="img-thumbnail"]]
89
90 Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
91
92 == Terminals ==
93
94 |=**Terminal**|=**Terminal Instructions**
95 |24V+|External DC24 power supply+
96 |24V-|External DC24 power supply-
97 |Ground|Ground
98 |FG1|Sensor housing
99 |E1+|First sensor 5V power +
100 |E1-|First sensor 5V power -
101 |F1+|First sensor power supply feedback +
102 |F1-|First sensor power supply feedback -
103 |S1+|First sensor signal output +
104 |S1-|First sensor signal output -
105 |E2+|Second sensor 5V power +
106 |E2-|Second sensor 5V power -
107 |F2+|Second sensor power supply feedback +
108 |F2-|Second sensor power supply feedback -
109 |S2+|Second sensor signal output +
110 |S2-|Second sensor signal output -
111 |FG2|Second sensor housing
112 |Other empty terminals|Empty pin, not connect any wires
113
114 = **4 Wiring ** =
115
116 (% style="text-align:center" %)
117 [[image:image-20220705162452-1.jpeg||height="508" width="740" class="img-thumbnail"]]
118
119 **✎Note:**
120
121 * Impedance of the weighing sensor is greater than 200 Ω.
122 * Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
123
124 = **5 Buffer register (BFM)** =
125
126 == BFM list ==
127
128 |=(% colspan="2" %)**BFM number**|=(% rowspan="2" %)**Power-off hold**|=(% rowspan="2" %)(((
129 **Read/**
130
131 **write**
132 )))|=(% rowspan="2" style="width: 182px;" %)**Register name**|=(% rowspan="2" style="width: 75px;" %)**Default**|=(% rowspan="2" style="width: 134px;" %)**Range**|=(% rowspan="2" style="width: 466px;" %)**Illustrate**
133 |**CH1**|**CH2**
134 |(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
135 |(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number
136 |#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
137 * 0: Bipolar
138 * 1: Unipolar
139 )))
140 |#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)(((
141 * 0: 7.5HZ
142 * 1: 10HZ
143 * 2: 25HZ
144 * 3: 50HZ
145 * 4: 60HZ
146 * 5: 150HZ
147 * 6: 300HZ
148 * 7: 600HZ
149 * 8: 960HZ
150 * 9: 2400HZ
151 * 10 to 4800: 10Hz to 4800Hz
152 )))
153 |#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
154 |#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)(((
155 A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time.
156
157 * 0 means normal without error
158 * 1 means there is an error state.
159 * #45: Reserved
160 * b0: Abnormal power supply
161 * b1: Hardware failure
162 * b2: CH1 conversion error
163 * b3: CH2 conversion error
164 * b4: CH1 input calibration parameter error
165 * b5: CH2 input calibration parameter error
166 * Others: Reserved
167 )))
168 |#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
169 Read the current average value as the tare weight value.
170
171 * 0: Normal (invalid).
172 * 1: Execute tare setting, then reset to 0.
173 * Others: Invalid.
174 )))
175 |#7|#47|O|R/W|(% style="width:182px" %)(((
176 Gross weight/ net weigh
177
178 display
179 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
180 Choose to display the current weight as gross weight (K0) or net weight (K1).
181
182 * 0: display gross weight.
183 * 1: display net weight.
184 * 0xF: Channel closed
185 )))
186 |#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
187 The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
188
189 * 0x0001: CHI zero instruction.
190 * 0x0002: CH1 weight base point instruction.
191 * 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
192 * 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
193
194 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
195 )))
196 |#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)(((
197 * #49: Reserved
198 * 1: Reset CH1
199 * 2: Reset CH2
200 * 3: Reset all channels
201 * Others: no action
202 )))
203 |#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
204 |#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
205 |#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
206 |#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
207 * 0: Disable the zero tracking function
208 * Others: Set the zero tracking range (absolute value)
209 )))
210 |#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)(((
211 * 0: Disable automatic reset at startup
212 * 1: ±2%MAX
213 * 2: ±5%MAX
214 * 3: ±10%MAX
215 * 4: ±20%MAX
216 )))
217 |#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)(((
218 * 0:<1V/V
219 * 1:<125mV/V
220 * 2:<62.5mV/V
221 * 3:<31.25V/V
222 * 4:<15.625mV/V
223 * 5:<7.812mV/V
224
225 **✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
226 )))
227 |#16|#56|(% rowspan="2" %)(((
228
229
230 X
231 )))|(% rowspan="2" %)(((
232
233
234 R
235 )))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
236 -2147483648 to
237
238 2147483647
239 )))|(% style="width:466px" %)(((
240 Average weight display value (low word)
241 )))
242 |#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)(((
243 Average weight display value (high word)
244 )))
245 |#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)(((
246 The setting range is K1 to K50, and the default value is K5.
247
248 When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
249 )))
250 |#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
251 -2147483648 to
252
253 2147483647
254 )))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
255 |#20|#60|R/W|(% style="width:182px" %)Tare weight value H
256 |#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
257 |#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
258 |#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
259 Weight value calibration L
260 )))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)(((
261 -2147483648 to
262
263 2147483647
264 )))|(% rowspan="2" style="width:466px" %)(((
265 Input weight base point weight with calibration weight
266
267 Input sensor range without calibration weight
268 )))
269 |#24|#64|R/W|(% style="width:182px" %)(((
270 Weight value calibration H
271 )))
272 |#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)(((
273 -2147483648 to
274
275 2147483647
276 )))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
277 |#26|#66|R/W|(% style="width:182px" %)Weight upper limit H
278 |#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
279 Zero judgment check
280
281 upper limit L
282 )))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)(((
283 -2147483648 to
284
285 2147483647
286 )))|(% rowspan="4" style="width:466px" %)(((
287 Zero point judgment function:
288
289 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
290 )))
291 |#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H
292 |#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((
293 -2147483648 to
294
295 2147483647
296 )))
297 |#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H
298 |#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
299 * 0: Default value. Additional functions are not enabled
300 * 1: Enable filter reset function.
301 * Others: Reserved
302 )))
303 |#32|#72|X|R/W|(% style="width:182px" %)(((
304 Additional functions
305
306 Parameter 1
307 )))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
308 Enable filter reset function:
309
310 * 0: The default value does not work
311 * 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
312 )))
313 |#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
314 |#34|#74|X|R|(% style="width:182px" %)Digital value H
315 |#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((
316 -3.402823E+38
317
318 to 3.402823E+38
319 )))|(% rowspan="4" style="width:466px" %)Described in CH1:
320 After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
321 |#36|#76
322 |#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
323 -3.402823E+38
324
325 to 3.402823E+38
326 )))
327 |#38|#78
328 |#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
329 For example: Modified to 1942 represent 1.942mV/V.
330 |#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
331 Write:
332
333 * 0: not displayed
334 * 1: Display the current sensor feedback voltage in real time
335 * 2: Display the zero-point voltage during calibration
336 * 3: Display the voltage reading of the applied weight during calibration:
337
338 Displays the low bit of the voltage value. Unit: uV.
339 )))
340 |#41|#81|X|R|(% style="width:182px" %)(((
341 Sensor feedback
342
343 voltage H
344 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
345
346 **✎Note:**
347
348 * O means retentive type.
349 * X means non-retentive type.
350 * R means readable data.
351 * W means writable data.
352
353 == **BFM description** ==
354
355 **BFM0: Module code**
356
357 LX3V-2WT model code: 5012
358
359 **BFM1: module version**
360
361 The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
362
363 **BFM2: Polarity**
364
365 For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
366
367 **BFM3: Sampling frequency**
368
369 The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
370
371 |=(% scope="row" %)**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**|=**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**
372 |=0|7.5|23.5|5|150|21.5
373 |=1|10|23.5|6|300|21
374 |=2|25|23|7|600|20.5
375 |=3|50|22|8|960|20
376 |=4|60|22|9|2400|17.5
377 |=4800|4800|15|-|-|-
378
379 **BFM4: State code**
380
381 |=(% rowspan="2" scope="row" %)**Bit NO.**|(% colspan="2" %)**Status code**
382 |=**1**|**0**
383 |=Bit0|CH1 zero weight (no load)|CH1 is not empty
384 |=Bit1|CH2 zero weight (no load)|CH2 is not empty
385 |=Bit2|(((
386 CH1 exceeds weight upper limit (overload)
387
388 **✎Note: **The upper limit weight is set by #27 and #28.
389 )))|CH1 is not overloaded
390 |=Bit3|(((
391 CH2 exceeds weight upper limit (overload)
392
393 **✎Note: **The upper limit weight is set by #27 and #28.
394 )))|CH2 is not overloaded
395 |=Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
396 |=Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
397 |=Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
398 |=Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
399 |=(((
400 Bit8
401
402 Bit9
403 )))|(((
404 * 00: no error
405 * 10: The weight of the base point of weight is too large
406 )))|(((
407 * 01: No-load calibration
408 * 11: Uncalibrated
409 )))
410 |=(((
411 Bit10
412
413 Bit11
414 )))|(((
415 * 00: no error
416 * 10: The weight of the base point of weight is too large
417 )))|(((
418 * 01: No-load calibration
419 * 11: Uncalibrated
420 )))
421 |=Bit12|(((
422 CH1 exceeds the sensor range
423
424 **✎Note:** Determined by sensor feedback voltage
425 )))|CH1 is within the sensor range
426 |=Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
427 |=Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
428
429 **BFM5: Error code**
430
431 |=**Bit NO.**|=**Content**|=**Error state**
432 |Bit0|K1 (H0001)|Abnormal power supply
433 |Bit1|K2 (H0002)|Hardware fault
434 |Bit2|K4 (H0004)|CH1 conversion error
435 |Bit3|K8 (H0008)|CH2 conversion error
436 |Bit4|K16 (H0010)|CH1 write calibration parameter error
437 |Bit5|K32 (H0020)|CH2 write calibration parameter error
438 |Others|(% colspan="2" %)Reserved
439 |BFM#45|(% colspan="2" %)Reserved
440 (% class="info" %)|(% colspan="3" %)(((
441 **✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
442 )))
443
444 **Tare setting: **CH1-BFM6, CH2-BFM46
445
446 Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
447
448 The current weight value is 100, after tare setting:
449
450 * If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
451 * If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
452
453 **BFM8: Weight calibration instruction**
454
455 Steps are as follows. (Described with CH1)
456
457 * Calibration with weights
458 ** Step1: Do not put any weights on the load cell.
459 ** Step2: Write 0x0001 to #8.
460 ** Step3: Add standard weights to the load cell.
461 ** Step4: Write the weight of the current weight on the chassis into #23.
462 ** Step5: Write 0x0002 to #8.
463 * Weightless calibration
464 ** Step1: Do not put any weights on the load cell.
465 ** Step2: Write the maximum range of the sensor into #23.
466 ** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
467 ** Step4: Write 0x0003 to #8.
468 * Modify calibration parameters:
469 ** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
470 ** Step2: Write 0x0004 to #8.
471
472 (% class="box infomessage" %)
473 (((
474 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
475 )))
476
477 **BFM11: filtering strength**
478
479 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
480
481 **BFM12: zero tracking interval**
482
483 BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
484
485 (% class="box infomessage" %)
486 (((
487 **✎Note:** This function is generally used to correct sensor temperature drift.
488 )))
489
490 **BFM13: Zero tracking range**
491
492 The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
493
494 |=(% scope="row" style="width: 95px;" %)**Settings**|=(% style="width: 612px;" %)**Description**|=(% style="width: 369px;" %)**Remark**
495 |(% style="width:95px" %)0|(% style="width:612px" %)Do not enable zero tracking|(% style="width:369px" %)Default
496 |(% style="width:95px" %)1 to 300|(% style="width:612px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:369px" %)(((
497 If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
498 )))
499 (% class="info" %)|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
500
501 E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
502
503 **BFM15: Set the AD chip gain**
504
505 **I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
506
507 |=**BFM15**|=**voltage range**|=**Sensor sensitivity**
508 |0|±5V|<1V/V
509 |1|±625mV|<125mV/V
510 |2|±312.5mV|<62.5mV/V
511 |3|±156.2mV|<31.25mV/V
512 |4|±78.125mV|<15.625mV/V
513 |5|±39.06mV|<7.812mV/V
514
515 == **Function description** ==
516
517 **Net weight measurement function**
518
519 You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
520
521 * Tare weigh:t Refers to the weight of the outer packaging.
522 * Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
523 * Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
524 * Gross weight = net weight + tare weight
525
526 E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
527
528 * Net weight=10KG
529 * Tare weight=0.2KG
530 * Gross weight=10.2KG
531
532 E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
533
534 * Read the tare value
535 ** Write H0000 in BFM7;
536 ** Place the package on the CH1 weighing module;
537 ** Write H0001 in BFM6, and take the current package weight as the tare weight.
538 * Set BFM7=H0001
539
540 **Stability check**
541
542 When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
543
544 * If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
545 * When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
546
547 E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
548
549 **Zero point judgment**
550
551 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
552
553 **Filter function**
554
555 The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
556
557 = **6 Example** =
558
559 **Current state of weight**
560
561 (% style="text-align:center" %)
562 [[image:image-20220622145646-14.png||height="51" width="330" class="img-thumbnail"]]
563
564 Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
565
566 **Get current weight value**
567
568 (% style="text-align:center" %)
569 [[image:image-20220622145005-7.png||height="51" width="385" class="img-thumbnail"]]
570
571 Write the average weight value (BFM16) of CH1 in the weighing module into D0.
572
573 **Calibrating weight**
574
575 *In the new version, the first step can also be used for manual reset.
576
577 The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
578
579 (% style="text-align:center" %)
580 [[image:image-20220705162540-3.jpeg||height="194" width="779" class="img-thumbnail"]]
581
582 **Tare weight and gross weight**
583
584 (% style="text-align:center" %)
585 [[image:image-20220705162551-4.jpeg||height="289" width="778" class="img-thumbnail"]]
586
587 **Filter mode setting**
588
589 After setting the filtering mode and filtering strength, you need to calibrate it again.
590
591 (% style="text-align:center" %)
592 [[image:image-20220705162602-5.jpeg||height="197" width="774" class="img-thumbnail"]]
593
594 **Zero tracking**
595
596 Zero tracking is used to reduce the temperature drift interference;
597
598 Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
599
600 (% style="text-align:center" %)
601 [[image:image-20220705162610-6.jpeg||class="img-thumbnail"]]
602
603 **Calibration without weights**
604
605 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
606
607 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
608
609 (% style="text-align:center" %)
610 [[image:image-20220705162619-7.jpeg||height="319" width="756" class="img-thumbnail"]]
611
612 **Modify calibration parameters**
613
614 (% style="text-align:center" %)
615 [[image:image-20220705162627-8.jpeg||height="291" width="761" class="img-thumbnail"]]
616
617 (% class="box infomessage" %)
618 (((
619 **✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
620 )))
621
622 = **7 Diagnosis ** =
623
624 == Check ==
625
626 1. Make sure all cables are connected properly;
627 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
628 1. Make sure to select the correct operating range in application;
629 1. Make sure power supply is working properly;
630 1. LX3V CPU unit is in RUN mode;
631
632 == Check errors ==
633
634 If the special function module LX3V-2WT does not operate normally, please check the following items.
635
636 * Check the status of the LINK indicator
637 ** Blink: Expansion cables are properly connected.
638 ** Otherwise: Check the connection of the extension cable.
639 * Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
640 ** Light on LX3V-2WT is normal, and 24VDC power is normal.
641 ** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
642 * Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
643 ** Blink: Numeric conversion works fine.
644 ** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
645 * Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.