From version 2.2
edited by Leo Wei
on 2022/06/08 14:42
on 2022/06/08 14:42
Change comment:
Update document after refactoring.
To version 9.1
edited by Jim(Forgotten)
on 2023/01/07 11:01
on 2023/01/07 11:01
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 25 added, 0 removed)
- image-20220622145005-1.png
- image-20220622145005-10.jpeg
- image-20220622145005-11.jpeg
- image-20220622145005-12.jpeg
- image-20220622145005-13.jpeg
- image-20220622145005-2.png
- image-20220622145005-3.jpeg
- image-20220622145005-4.jpeg
- image-20220622145005-5.jpeg
- image-20220622145005-6.png
- image-20220622145005-7.png
- image-20220622145005-8.jpeg
- image-20220622145005-9.jpeg
- image-20220622145646-14.png
- image-20220705162452-1.jpeg
- image-20220705162505-2.jpeg
- image-20220705162540-3.jpeg
- image-20220705162551-4.jpeg
- image-20220705162602-5.jpeg
- image-20220705162610-6.jpeg
- image-20220705162619-7.jpeg
- image-20220705162627-8.jpeg
- 图片1.jpg
- 图片2.jpg
- 图片3.jpg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. admin1 +XWiki.Jim - Content
-
... ... @@ -1,700 +1,624 @@ 1 -= **1 Weighing moduleOperating principle** =1 += **1 Operating principle** = 2 2 3 - Electricalresistance ofmetal material changesinproportiontotheforcesbeingappliedtodeformit.The strain gauge measures the deformationasachange in electricalresistance,whichisa measure ofthetrain andhencethe applied forces (load).3 +When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications. 4 4 5 5 = **2 Introduction** = 6 6 7 -1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; 8 -1. Please read through the manual before powering on the module. 9 -1. This manual is only applicable for model number: LX3V-2WT. Please double check the mark on your module. 10 -1. Using FROM/TO command to read/write data on PLC LX3X. 7 +1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market. 8 +1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT. 9 +1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO through LX3V or LX5V 11 11 12 -== **2.1 Specification** == 11 +(% class="box infomessage" %) 12 +((( 13 +**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage. 14 +))) 13 13 14 -(% class="table-bordered" %) 15 -|**Item**|**Description** 16 -|Channel|Double channels 17 -|A/D converter|24 bit Δˉ∑ A/D 18 -|Resolution|24bit (signed) 19 -|Speed|7.5/10/25/50/60/150/300Hz available 20 -|Polarity|Unipolar and bipolar 21 -|Non-linearity|≤0.01% full scale(25^^o^^C) 22 -|Zero drift|≤0.2μV/^^ o^^C 23 -|Gain drift|≤10ppm/^^ o^^C 24 -|Excitation Voltage/ load|5V, load impedance≥200Ω 25 -|Sensor sensitivity|1mV/V-15mV/V 26 -|Isolation|Transformer (power supply) and the optical coupler (signal) 27 -|Lamp|Power supply lamp, communication lamp 28 -|Power supply|24V±20% 2VA 29 -|Operating temperature|0~~60^^ o^^C 30 -|Storage temperature|-20~~80^^ o^^C 31 -|Dimension|90(L)x58(W)x80(H) mm 16 +== **Specification** == 32 32 33 -== **2.2 Valid bits** == 18 +|=(% scope="row" style="width: 254px;" %)**Item**|=(% style="width: 821px;" %)**Description** 19 +|=(% style="width: 254px;" %)Channel|(% style="width:821px" %)Dual channel 20 +|=(% style="width: 254px;" %)A/D converter|(% style="width:821px" %)24 bit Δˉ∑ A/D 21 +|=(% style="width: 254px;" %)Resolution|(% style="width:821px" %)24 bit (signed) 22 +|=(% style="width: 254px;" %)Speed|(% style="width:821px" %)7.5/10/25/50/60/150/300Hz available 23 +|=(% style="width: 254px;" %)Polarity|(% style="width:821px" %)Unipolar and bipolar 24 +|=(% style="width: 254px;" %)Non-linearity|(% style="width:821px" %)≤0.01% full scale(25^^o^^C) 25 +|=(% style="width: 254px;" %)Zero drift|(% style="width:821px" %)≤0.2μV/^^ o^^C 26 +|=(% style="width: 254px;" %)Gain drift|(% style="width:821px" %)≤10ppm/^^ o^^C 27 +|=(% style="width: 254px;" %)Excitation voltage/ load|(% style="width:821px" %)Dual 5V, single load impedance not less than 200 Ω 28 +|=(% style="width: 254px;" %)Sensor sensitivity|(% style="width:821px" %)1mV/V to 15mV/V 29 +|=(% style="width: 254px;" %)Isolation|(% style="width:821px" %)Transformer (power supply) and the optical coupler (signal) 30 +|=(% style="width: 254px;" %)Indicator light|(% style="width:821px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light 31 +|=(% style="width: 254px;" %)Power supply|(% style="width:821px" %)24V±20% 2VA 32 +|=(% style="width: 254px;" %)Operating temperature|(% style="width:821px" %)0 to 60^^ o^^C 33 +|=(% style="width: 254px;" %)Storage temperature|(% style="width:821px" %)-20 to 80^^ o^^C 34 +|=(% style="width: 254px;" %)Dimension|(% style="width:821px" %)90(L)x58(W)x80(H) mm 34 34 35 - Referto samplingfrequencyin Section 5.2, Chapter 5 of thismanual.36 +== **Valid bits** == 36 36 38 +Refer to sampling frequency in BFM description, Chapter 5 of this manual. 39 + 37 37 = **3 Dimensions** = 38 38 39 -(% style="text-align:center" %) 40 -[[image:LX3V-2WT V2.0_html_894c15a18e7135f3.png||class="img-thumbnail" height="384" width="1000"]] 42 +== Dimensions == 41 41 42 - ①Extensioncableand connector44 + [[image:图片1.jpg||height="358" width="301" class="img-thumbnail"]] [[image:图片2.jpg||height="365" width="351" class="img-thumbnail"]] 43 43 44 -② LED COMM: Lit when communicating 46 +(% style="text-align:center" %) 47 +[[image:图片3.jpg||height="593" width="684" class="img-thumbnail"]] 45 45 46 -③ Power LED: Lit when power present 49 +1. Extension cable 50 +1. COM light: Module internal data communication indicator 51 +1. 24V light: Always on when connected to external 24V power supply 52 +1. WT light: Channel input/output indicator; WE light: Channel calibration indicator 53 +1. LINK: Communication indicator between PLC and module (LINK) 54 +1. Expansion module name 55 +1. Expansion module interface 56 +1. DIN rail mounting clip 57 +1. Hook for DIN rail 58 +1. Holes for direct mounting: 2 places (φ4.5) 47 47 48 -④ State LED: Lit when normal 60 +|=(% scope="row" style="width: 107px;" %)**Name**|=(% style="width: 374px;" %)**Description**|=(% style="width: 146px;" %)**Light status**|=(% style="width: 449px;" %)**Event status** 61 +|(% rowspan="3" style="width:107px" %)((( 62 + 49 49 50 -⑤ Module number 64 +LINK light 65 +)))|(% rowspan="3" style="width:374px" %)Communication indicator between PLC and module|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal) 66 +|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed 67 +|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure 68 +|(% rowspan="3" style="width:107px" %)((( 69 + 51 51 52 -⑥ Analog signal output terminal 71 +COM light 72 +)))|(% rowspan="3" style="width:374px" %)Module internal data communication indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal) 73 +|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed 74 +|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure 75 +|(% rowspan="3" style="width:107px" %)((( 76 + 53 53 54 -⑦ Extension module interface 78 +WT light 79 +)))|(% rowspan="3" style="width:374px" %)Channel output/input indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Analog input is out of range 80 +|(% style="width:146px" %)Always ON|(% style="width:449px" %)Analog input is within the range 81 +|(% style="width:146px" %)Lights off|(% style="width:449px" %)Channel closed 82 +|(% rowspan="2" style="width:107px" %)WE light|(% rowspan="2" style="width:374px" %)Calibration indicator for the channel|(% style="width:146px" %)Lights off|(% style="width:449px" %)Calibration succeeded 83 +|(% style="width:146px" %)Always ON|(% style="width:449px" %)Calibration failed or not calibrated 55 55 56 - ⑧DINrailmounting slot85 +== **Use of blade terminals** == 57 57 58 -⑨ DIN rail hook 59 - 60 -⑩ Mounting holes (φ4.5) 61 - 62 - 63 63 (% style="text-align:center" %) 64 -[[image: LX3V-2WT V2.0_html_6b5398f61ad44c3d.png||class="img-thumbnail"height="199" width="300"]]88 +[[image:image-20220705162505-2.jpeg||height="218" width="375" class="img-thumbnail"]] 65 65 66 -1. Use the crimp terminals that meet the dimensional requirements showed in the left figure. 67 -1. Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals against disoperation. 90 +Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction. 68 68 69 -(% class="table-bordered" %) 70 -|**Terminals**|**Instruction**|**Terminals**|**Instruction** 71 -|24V+|Power supply+|24V-|Power supply- 72 -|GND|Grounding|FG1|CH1 sensor grounding 73 -|E1+|CH1 power supply+ (5V) for sensor|E1-|CH1 power supply- (5V) for sensor 74 -|S1+|CH1 signal output+ of sensor|S1-|CH1 signal output- of sensor 75 -|F1+|CH1 feedback+ of sensor|F1-|CH1 feedback- of sensor 76 -|E2+|CH2 power supply+ (5V) for sensor|E2-|CH2 power supply- (5V) for sensor 77 -|S2+|CH2 signal output+ of sensor|S2-|CH2 signal output- of sensor 78 -|F2+|CH2 feedback+ of sensor|F2-|CH2 feedback- of sensor 79 -|FG2|CH2 sensor grounding|((( 80 -* 81 -)))| 92 +== **Terminals** == 82 82 83 -= **4 Wiring** = 94 +|=**Terminal**|=**Terminal Instructions** 95 +|24V+|External DC24 power supply+ 96 +|24V-|External DC24 power supply- 97 +|Ground|Ground 98 +|FG1|Sensor housing 99 +|E1+|First sensor 5V power + 100 +|E1-|First sensor 5V power - 101 +|F1+|First sensor power supply feedback + 102 +|F1-|First sensor power supply feedback - 103 +|S1+|First sensor signal output + 104 +|S1-|First sensor signal output - 105 +|E2+|Second sensor 5V power + 106 +|E2-|Second sensor 5V power - 107 +|F2+|Second sensor power supply feedback + 108 +|F2-|Second sensor power supply feedback - 109 +|S2+|Second sensor signal output + 110 +|S2-|Second sensor signal output - 111 +|FG2|Second sensor housing 112 +|Other empty terminals|Empty pin, not connect any wires 84 84 114 += **4 Wiring ** = 115 + 85 85 (% style="text-align:center" %) 86 -[[image: LX3V-2WT V2.0_html_fca48acd721ccf71.png||class="img-thumbnail"height="468" width="600"]]117 +[[image:image-20220705162452-1.jpeg||height="508" width="740" class="img-thumbnail"]] 87 87 88 -**✎Note: 119 +**✎Note:** 89 89 90 - 1.Impedance5091 - 1.Sensors121 +* Impedance of the weighing sensor is greater than 200 Ω. 122 +* Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected. 92 92 93 -= **5 B FMinstruction** =124 += **5 Buffer register (BFM)** = 94 94 95 -== **5.1BFM list**==126 +== BFM list == 96 96 97 -(% class="table-bordered" %) 98 -|(% colspan="2" %)**BFM**|(% style="width:77px" %)**Latched**|(% style="width:101px" %)**Read/ Write**|(% style="width:159px" %)**Function**|(% style="width:82px" %)**Default**|(% style="width:92px" %)**Range**|(% style="width:486px" %)**Description** 99 -|(% colspan="2" %)0|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Model|(% style="width:82px" %)5012|(% style="width:92px" %) |(% style="width:486px" %)LX3V-2WT model number 100 -|(% colspan="2" %)1|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)System version|(% style="width:82px" %)15004|(% style="width:92px" %) |(% style="width:486px" %)Software & hardware version 101 -|2|42|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Unipolar/ Bipolar|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)((( 102 -0: bipolar 128 +|=(% colspan="2" %)**BFM number**|=(% rowspan="2" %)**Power-off hold**|=(% rowspan="2" %)((( 129 +**Read/** 103 103 104 - 105 -((( 106 -5: 150 Hz; 107 - 108 -6: 300 Hz; 109 - 110 -7: 600 Hz; 111 - 112 -8: 960 Hz; 113 - 114 -9: 2400 Hz; 115 - 116 -1: unipolar 131 +**write** 132 +)))|=(% rowspan="2" style="width: 182px;" %)**Register name**|=(% rowspan="2" style="width: 75px;" %)**Default**|=(% rowspan="2" style="width: 134px;" %)**Range**|=(% rowspan="2" style="width: 466px;" %)**Illustrate** 133 +|**CH1**|**CH2** 134 +|(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT 135 +|(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number 136 +|#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)((( 137 +* 0: Bipolar 138 +* 1: Unipolar 117 117 ))) 140 +|#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)((( 141 +* 0: 7.5HZ 142 +* 1: 10HZ 143 +* 2: 25HZ 144 +* 3: 50HZ 145 +* 4: 60HZ 146 +* 5: 150HZ 147 +* 6: 300HZ 148 +* 7: 600HZ 149 +* 8: 960HZ 150 +* 9: 2400HZ 151 +* 10 to 4800: 10Hz to 4800Hz 118 118 ))) 119 -|3|43|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Frequency|(% style="width:82px" %)1|(% style="width:92px" %)0-9|(% style="width:486px" %)((( 120 -0: 7.55 Hz; 153 +|#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description" 154 +|#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)((( 155 +A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 121 121 122 -1: 10 HZ; 123 - 124 -2: 25 Hz; 125 - 126 -3: 50 Hz; 127 - 128 -4: 60 Hz; 157 +* 0 means normal without error 158 +* 1 means there is an error state. 159 +* #45: Reserved 160 +* b0: Abnormal power supply 161 +* b1: Hardware failure 162 +* b2: CH1 conversion error 163 +* b3: CH2 conversion error 164 +* b4: CH1 input calibration parameter error 165 +* b5: CH2 input calibration parameter error 166 +* Others: Reserved 129 129 ))) 130 -| 4|44|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)State|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((131 - b0:CH1no-load;168 +|#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)((( 169 +Read the current average value as the tare weight value. 132 132 133 -b1: CH2 no-load; 134 - 135 -b2: CH1 overload; 136 - 137 -b3: CH2 overload; 138 - 139 -b4: CH1 measured value is stable; 140 - 141 -b5: CH2 measured value is stable; 142 - 143 -b6-b15: Reserved; 144 - 145 -BFM 44: Reserved; 171 +* 0: Normal (invalid). 172 +* 1: Execute tare setting, then reset to 0. 173 +* Others: Invalid. 146 146 ))) 147 -| 5|45|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Error Code|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((148 - It is the dataregister for all errorstates,andeacherror statusis displayed inthecorresponding bit,possiblywithmultiple error states175 +|#7|#47|O|R/W|(% style="width:182px" %)((( 176 +Gross weight/ net weigh 149 149 150 -0: No error; 178 +display 179 +)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)((( 180 +Choose to display the current weight as gross weight (K0) or net weight (K1). 151 151 152 -1: Error; 153 - 154 -b0: Power supply error; 155 - 156 -b1: Hardware error; 157 - 158 -b2: CH1 conversion error; 159 - 160 -b3: CH2 conversion error; 161 - 162 -B4 :CH1 input calibration parameter error 163 - B5 :CH2 input calibration parameter error 164 - 165 -Other bit: Reserved; 166 - 167 -BFM45: Reserved; 182 +* 0: display gross weight. 183 +* 1: display net weight. 184 +* 0xF: Channel closed 168 168 ))) 169 -| 6|46|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Tare weight Preset|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((170 - Use average weight astare weight:186 +|#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)((( 187 +The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0. 171 171 172 -0: Disabled 189 +* 0x0001: CHI zero instruction. 190 +* 0x0002: CH1 weight base point instruction. 191 +* 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above) 192 +* 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above) 173 173 174 -1: Set tare weight then reset to 0; 175 - 176 -Others : Reserved; 194 +**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0. 177 177 ))) 178 -|7|47|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Gross/Net weight|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 179 -Display gross weight or net weight 180 - 181 -0: Gross weight; 182 - 183 -1: Net weight; 184 - 185 -Others: Channels invalid; 196 +|#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)((( 197 +* #49: Reserved 198 +* 1: Reset CH1 199 +* 2: Reset CH2 200 +* 3: Reset all channels 201 +* Others: no action 186 186 ))) 187 -|8|48|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Weight Calibration|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 188 -Defaulted to 0 189 - 190 -0x0001:Channels 1 set to 0 191 - 192 -0x0002:Channels 1 calibrating: 193 - 194 -0x0003:CH1 without weight 195 - 196 -calibration 197 - 0x0004:CH1 modified calibration 198 - 199 -parameter error 200 - 201 -Step1: Remove all load ; 202 - 203 -Step2: BFM #8 (#48) set to 0x0001; 204 - 205 -Step3: Add known weight; 206 - 207 -Step4: Write known weight to BFM#23 (#63); 208 - 209 -Step5: BFM #8 (#48) set to 0x0002;Calibration without weight: 210 - 211 -Step1: Do not put any weight on the load cell; 212 - 213 -Step2: Write the maximum range of the sensor to #23; 214 - 215 -Step3: Write the sensor sensitivity to #39, accurate to three decimal places; 216 - 217 -Step4: The value of #8 is written as 0x0003. 218 - 219 -Modify calibration parameters: 220 - 221 -Step1: Modify the calibration parameter values in BFM#35~~BFM#38; 222 - 223 -Step2: The value of #8 is written as 0x0004. 224 - 225 -Remark: After writing the value to BFM#8 using the device monitoring, it will be automatically reset to 0. 203 +|#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change 204 +|#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change 205 +|#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms. 206 +|#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)((( 207 +* 0: Disable the zero tracking function 208 +* Others: Set the zero tracking range (absolute value) 226 226 ))) 227 -|9|49|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Reset to default|(% style="width:82px" %)0|(% style="width:92px" %)0-3|(% style="width:486px" %)((( 228 -#49: Keep unused 229 - 230 -1: Reset CH1; 2: Reset CH2 231 - 232 -3: Reset all channels 233 - 234 -Other: No action 210 +|#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)((( 211 +* 0: Disable automatic reset at startup 212 +* 1: ±2%MAX 213 +* 2: ±5%MAX 214 +* 3: ±10%MAX 215 +* 4: ±20%MAX 235 235 ))) 236 -|10|50|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering mode|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)Recalibration required after change 237 -|11|51|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering strength|(% style="width:82px" %)3|(% style="width:92px" %)0-7|(% style="width:486px" %)Recalibration required after change 238 -|12|52|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking intensity|(% style="width:82px" %)0|(% style="width:92px" %)0-200|(% style="width:486px" %)((( 239 -0: Zero tracking disabled 217 +|#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)((( 218 +* 0:<1V/V 219 +* 1:<125mV/V 220 +* 2:<62.5mV/V 221 +* 3:<31.25V/V 222 +* 4:<15.625mV/V 223 +* 5:<7.812mV/V 240 240 241 - Other:Intensity ofzerotracking225 +**✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above) 242 242 ))) 243 -|1 3|53|(%style="width:77px" %)O|(%style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking range|(% style="width:82px" %)0|(% style="width:92px" %)1-300|(% style="width:486px" %)(((244 - 0:No limit227 +|#16|#56|(% rowspan="2" %)((( 228 + 245 245 246 -Others: Up limit 247 -))) 248 -|14|54|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No load Zeroing at startup|(% style="width:82px" %)0|(% style="width:92px" %)0-4|(% style="width:486px" %)((( 249 -0: Disabled; 230 +X 231 +)))|(% rowspan="2" %)((( 232 + 250 250 251 -1: ±2%MAX; 234 +R 235 +)))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 236 +-2147483648 to 252 252 253 -2: ±5%MAX; 254 - 255 -3: ±10%MAX; 256 - 257 -4: ±20%MAX; 238 +2147483647 239 +)))|(% style="width:466px" %)((( 240 +Average weight display value (low word) 258 258 ))) 259 -|15|55|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Sensor sensitivity setting|(% style="width:82px" %)4|(% style="width:92px" %)0-5|(% style="width:486px" %)((( 260 -0: < 1V/V 242 +|#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)((( 243 +Average weight display value (high word) 244 +))) 245 +|#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)((( 246 +The setting range is K1 to K50, and the default value is K5. 261 261 262 -1: < 125mV/V 263 - 264 -2: < 62.5mV/V 265 - 266 -3: < 31.25V/V 267 - 268 -4: < 15.625mV/V 269 - 270 -5: <7.812 mV/V 271 - 272 -Note: Please recalibrate after setting 273 - 274 -(This function only is available in Software & hardware version 13904 or later) 248 +When the set value exceeds the range, it is automatically changed to the critical value K1 or K50. 275 275 ))) 276 -|16|56|(% rowspan="2" style="width:77px" %)X|(% rowspan="2" style="width:101px" %)R|(% style="width:159px" %)Average weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)Signed 32-bit integer|(% style="width:486px" %)Average weight (Low word) 277 -|17|57|(% style="width:159px" %)Average weight H|(% style="width:486px" %)Average weight (High word) 278 -|18|58|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sliding average|(% style="width:82px" %)5|(% style="width:92px" %)1-50|(% style="width:486px" %)Setting range: K1~~K50; settings outside of this range will be changed to the nearest value in the range. 279 -|19|59|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Tare weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)((( 280 --2147483648~~ 250 +|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 251 +-2147483648 to 281 281 282 282 2147483647 283 -)))|(% rowspan="2" style="width:486px" %)User can write or read tare weight by command #7 284 -|20|60|(% style="width:159px" %)Tare weight H 285 -|21|61|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)CH1 stability check time|(% style="width:82px" %)200|(% style="width:92px" %)0-20000|(% style="width:486px" %)Stability inspection time, used in conjunction with the stability inspection range, unit: ms 286 -|22|62|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Stability inspection range|(% style="width:82px" %)1|(% style="width:92px" %)1-100|(% style="width:486px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, then the current weight fluctuation range is within 100 and lasts for 200ms, then the value is considered stable, otherwise it is considered unstable, and the stability flag is displayed on BFM#4 287 -|23|63|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Weight value adjustment L|(% rowspan="2" style="width:82px" %)1000|(% rowspan="2" style="width:92px" %)((( 288 --2147483648~~ 254 +)))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction. 255 +|#20|#60|R/W|(% style="width:182px" %)Tare weight value H 256 +|#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms. 257 +|#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4. 258 +|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)((( 259 +Weight value calibration L 260 +)))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)((( 261 +-2147483648 to 289 289 290 290 2147483647 291 -)))|(% rowspan="2" style="width:4 86px" %)(((292 - Pleasereferto#8264 +)))|(% rowspan="2" style="width:466px" %)((( 265 +Input weight base point weight with calibration weight 293 293 294 - Withweightcalibration, enter the weight basepointweight, withoutweightcalibration enter the sensor range267 +Input sensor range without calibration weight 295 295 ))) 296 -|24|64|(% style="width:159px" %)Weight value adjustment H 297 -|25|65|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Maximum L|(% rowspan="2" style="width:82px" %)32767|(% rowspan="2" style="width:92px" %)((( 298 --2147483648~~ 269 +|#24|#64|R/W|(% style="width:182px" %)((( 270 +Weight value calibration H 271 +))) 272 +|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)((( 273 +-2147483648 to 299 299 300 300 2147483647 301 -)))|(% rowspan="2" style="width:4 86px" %)Usercanset the maxvalue,itwill recordtheerror code whenmeasured value exceed set value302 -|26|66|(% style="width:1 59px" %)Maximum H303 -|27|67|(% rowspan="2" style="width:77px"%)O|(% rowspan="2" style="width:101px" %)R/W|(%rowspan="2" style="width:159px" %)Zero weight detection up limit|(% rowspan="2" style="width:82px" %)10|(% rowspan="2" style="width:92px" %)(((304 - -2147483648~~276 +)))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded. 277 +|#26|#66|R/W|(% style="width:182px" %)Weight upper limit H 278 +|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)((( 279 +Zero judgment check 305 305 281 +upper limit L 282 +)))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)((( 283 +-2147483648 to 284 + 306 306 2147483647 307 -)))|(% rowspan="4" style="width:4 86px" %)(((308 -Zero weight detection function, used to tell if all loads have been removed.286 +)))|(% rowspan="4" style="width:466px" %)((( 287 +Zero point judgment function: 309 309 310 - Readingofthebit toindicatestable readingbecoming0means allloads have been removed.289 +You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1) 311 311 ))) 312 -|28|68 313 -|29|69|(% rowspan="2" style="width:77px"%)O|(% rowspan="2" style="width:101px" %)R/W|(%rowspan="2" style="width:159px" %)Zeroweightdetectiondownlimit|(% rowspan="2" style="width:82px" %)-10|(% rowspan="2" style="width:92px" %)(((314 --2147483648 ~~291 +|#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H 292 +|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)((( 293 +-2147483648 to 315 315 316 316 2147483647 317 317 ))) 318 -|30|70 319 -|31|71|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function options|(% style="width:82px" %)0|(% style="width:92px" %)0~~1|(% style="width:486px" %)((( 320 -0: Default, disable additional functions; 321 - 322 -1: Enable filter reset function. 323 - 324 -Other: Reserved 297 +|#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H 298 +|#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)((( 299 +* 0: Default value. Additional functions are not enabled 300 +* 1: Enable filter reset function. 301 +* Others: Reserved 325 325 ))) 326 -|32|72|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function parameters|(% style="width:82px" %)0|(% style="width:92px" %)0~~100|(% style="width:486px" %)((( 303 +|#32|#72|X|R/W|(% style="width:182px" %)((( 304 +Additional functions 305 + 306 +Parameter 1 307 +)))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)((( 327 327 Enable filter reset function: 328 328 329 -0: Default; 330 - 331 -0~~100: The number of sampling cycles to wait for the filter to restart. 332 - 333 -The value collected during the accumulation of the average, as the initial value of filtering 310 +* 0: The default value does not work 311 +* 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering. 334 334 ))) 335 -|33|73| (% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)ThenumberofADCacquisitions336 -|34|74| (% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value H|(% style="width:82px" %) |(% style="width:92px" %) |(% style="width:486px" %)337 -|35|75|(% rowspan="2" style="width:77px"%)O|(% rowspan="2"style="width:101px"%)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter A|(% rowspan="2" style="width:82px" %)1|(% rowspan="2" style="width:92px" %)(((338 --3.402823E+38 ~~313 +|#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC 314 +|#34|#74|X|R|(% style="width:182px" %)Digital value H 315 +|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)((( 316 +-3.402823E+38 339 339 340 -3.402823E+38 341 -)))|(% rowspan="4" style="width:486px" %)((( 342 -Explain by CH1: 318 +to 3.402823E+38 319 +)))|(% rowspan="4" style="width:466px" %)Described in CH1: 320 +After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1. 321 +|#36|#76 322 +|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 323 +-3.402823E+38 343 343 344 - After modifyingthe calibration parameters, #8 does not write4, which is only displayed, not used for weight value calculation, and does not save after power off; #8After writing 4, if the parameter range is correct, write and save it for weight value calculation 4Error code Bit4 is set to 0, if the parameter range is wrong, no write operation will be performed, #4 error code Bit4 is set to 1.325 +to 3.402823E+38 345 345 ))) 346 -|36|76 347 -|37|77|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter B|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)((( 348 --3.402823E+38~~ 349 - 350 -3.402823E+38 351 -))) 352 -|38|78 353 -|39|79|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor sensitivity (specification)|(% style="width:82px" %)2000|(% style="width:92px" %)0-32767|(% style="width:486px" %)((( 354 -The default setting of 2000 represents 2mV/V, and calibration without weights needs to set the sensor sensitivity accuracy. The sensitivity range can be set to 0~~32.767mV/V, the sensor sensitivity BFM#39 enters a negative value, and it is directly converted to 32767 for execution. 355 - 356 -Example: Modified to 1942 means 1.942mV/V. 357 -))) 358 -|40|80|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor feedback voltage L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)((( 327 +|#38|#78 328 +|#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute. 329 +For example: Modified to 1942 represent 1.942mV/V. 330 +|#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)((( 359 359 Write: 360 360 361 -0: do not display 333 +* 0: not displayed 334 +* 1: Display the current sensor feedback voltage in real time 335 +* 2: Display the zero-point voltage during calibration 336 +* 3: Display the voltage reading of the applied weight during calibration: 362 362 363 -1: Real-time display of current sensor feedback voltage 364 - 365 -2: Display the zero point voltage during calibration 366 - 367 -3: Display the voltage of the weight applied during calibration 368 - 369 -Read: 370 - 371 -Display the low digit of the voltage value in uV. 338 +Displays the low bit of the voltage value. Unit: uV. 372 372 ))) 373 -|41|81| (% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Sensor feedback voltage H|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((374 - Read:340 +|#41|#81|X|R|(% style="width:182px" %)((( 341 +Sensor feedback 375 375 376 - Display the high digit of thevoltagevalue in uV.377 -))) 343 +voltage H 344 +)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV. 378 378 379 -**✎Note: 346 +**✎Note:** 380 380 381 - 1.O:yes;382 - 1.X:no;383 - 1.R:read;384 - 1.W:write;348 +* O means retentive type. 349 +* X means non-retentive type. 350 +* R means readable data. 351 +* W means writable data. 385 385 386 -== ** 5.2Buffer (BFM)description** ==353 +== **BFM description** == 387 387 388 -* *BFM0: Module code**355 +**BFM0: Module code** 389 389 390 -LX3V-2WT V3code: 5012357 +LX3V-2WT model code: 5012 391 391 392 -* *BFM1: module version**359 +**BFM1: module version** 393 393 394 - Module version(decimal)361 +The software version is displayed in decimal, which is used to indicate the software version of the expansion module. 395 395 396 -** Example**363 +**BFM2: Polarity** 397 397 398 - BFM1=120, meansV1.2.0365 +For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus. 399 399 400 -* *BFM2:Polarity**367 +**BFM3: Sampling frequency** 401 401 402 - Forbipolar,thesignalwillgothrough zerowhileitis in changingprocess, but unipolarwillnot. The resultoftheconversion fromanalog value todigitalvalue is signed, so forbipolargnalthevaluecouldbeminus.369 +The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets. 403 403 404 -* **BFM3: Sampling frequency** 371 +|=(% scope="row" %)**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**|=**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)** 372 +|=0|7.5|23.5|5|150|21.5 373 +|=1|10|23.5|6|300|21 374 +|=2|25|23|7|600|20.5 375 +|=3|50|22|8|960|20 376 +|=4|60|22|9|2400|17.5 377 +|=4800|4800|15|-|-|- 405 405 406 - Thefrequency of inputsignal reading,thelower the frequency is, the more stable the value it gets, andthehigher the precision is, but the lower speed gets.379 +**BFM4: State code** 407 407 408 -(% class="table-bordered" %) 409 -|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)** 410 -|0|7.5|23.5|5|150|21.5 411 -|1|10|23.5|6|300|21 412 -|2|25|23|7|600|20.5 413 -|3|50|22|8|960|20 414 -|4|60|22|9|2400|17.5 381 +|=(% rowspan="2" scope="row" %)**Bit NO.**|(% colspan="2" %)**Status code** 382 +|=**1**|**0** 383 +|=Bit0|CH1 zero weight (no load)|CH1 is not empty 384 +|=Bit1|CH2 zero weight (no load)|CH2 is not empty 385 +|=Bit2|((( 386 +CH1 exceeds weight upper limit (overload) 415 415 416 -* **BFM4: State code** 388 +**✎Note: **The upper limit weight is set by #27 and #28. 389 +)))|CH1 is not overloaded 390 +|=Bit3|((( 391 +CH2 exceeds weight upper limit (overload) 417 417 418 -(% class="table-bordered" %) 419 -|(% rowspan="2" %)**Bit No.**|(% colspan="2" %)**Description** 420 -|**1**|**0** 421 -|Bit 0|CH1 no-load|CH1 load 422 -|Bit 2|CH1 over-load|CH1 not over-load 423 -|Bit 4|CH1 stable|CH1 unstable 424 -|Bit 6|CH1 uncalibrated/calibrated error|CH1 calibration successful 425 -|((( 426 -Bit 8 393 +**✎Note: **The upper limit weight is set by #27 and #28. 394 +)))|CH2 is not overloaded 395 +|=Bit4|CH1 measurement value is stable|CH1 measurement value is unstable 396 +|=Bit5|CH2 measurement value is stable|CH2 measurement value is unstable 397 +|=Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully 398 +|=Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully 399 +|=((( 400 +Bit8 427 427 428 -Bit 402 +Bit9 429 429 )))|((( 430 -00: no error 431 - 432 -10: The base point of the weight is too heavy 404 +* 00: no error 405 +* 10: The weight of the base point of weight is too large 433 433 )))|((( 434 -01: No-load calibration 407 +* 01: No-load calibration 408 +* 11: Uncalibrated 409 +))) 410 +|=((( 411 +Bit10 435 435 436 -11: Not calibrated 413 +Bit11 414 +)))|((( 415 +* 00: no error 416 +* 10: The weight of the base point of weight is too large 417 +)))|((( 418 +* 01: No-load calibration 419 +* 11: Uncalibrated 437 437 ))) 438 -|Bit 421 +|=Bit12|((( 439 439 CH1 exceeds the sensor range 440 440 441 -Note: Determined by sensor feedback voltage 442 -)))|CH1 within the sensor range 424 +**✎Note:** Determined by sensor feedback voltage 425 +)))|CH1 is within the sensor range 426 +|=Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights 427 +|=Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights 443 443 444 -* *BFM5: Error code**429 +**BFM5: Error code** 445 445 446 -(% class="table-bordered" %) 447 -|**Bit No.**|**Value**|**Error**|(% colspan="2" %)**Bit No.**|**Value**|**Error** 448 -|bit 0|K1(H0001)|Power failure|(% colspan="2" %)bit 1|K1(H0001)|Hardware failure 449 -|bit 2|K4(H0004)|CH1 conversion error|(% colspan="2" %)bit 3|K8(H0008)|CH2 conversion error 450 -|bit 4|K16(H0010)|CH1 write calibration parameter error|(% colspan="2" %)bit 5|K32(H0020)|CH2 write calibration parameter error 451 -|Other|(% colspan="3" %)Reserved|(% colspan="2" %)BFM#45|Reserved 452 -|(% colspan="7" %)**✎Note: **The data register that stores all error states. Each error state is determined by a corresponding bit. More than two error states may occur at the same time. 0 means normal and no error, and 1 means there is a state. 431 +|=**Bit NO.**|=**Content**|=**Error state** 432 +|Bit0|K1 (H0001)|Abnormal power supply 433 +|Bit1|K2 (H0002)|Hardware fault 434 +|Bit2|K4 (H0004)|CH1 conversion error 435 +|Bit3|K8 (H0008)|CH2 conversion error 436 +|Bit4|K16 (H0010)|CH1 write calibration parameter error 437 +|Bit5|K32 (H0020)|CH2 write calibration parameter error 438 +|Others|(% colspan="2" %)Reserved 439 +|BFM#45|(% colspan="2" %)Reserved 440 +(% class="info" %)|(% colspan="3" %)((( 441 +**✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state. 442 +))) 453 453 454 -* *BFM6:Tareweightsetting**444 +**Tare setting: **CH1-BFM6, CH2-BFM46 455 455 456 -Set the current weight value (BFM16-17) as atare(BFM19-20)weight.Everybitrepresentsadifferentchannel,whichis setto1to meanenabled, resetto0afterbeingset.446 +Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example. 457 457 458 - **UseCH1as example**448 +The current weight value is 100, after tare setting: 459 459 460 -The current weight is 100, after setting tare weight; 450 +* If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100; 451 +* If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0. 461 461 462 - If it displays gross weight (BFM7= 0) currently, the tare weight(BFM19-20) willbecome 100, the currentweightisstill 100;453 +**BFM8: Weight calibration instruction** 463 463 464 - If itdisplaysnet weight (BFM7 = 1), the tareweight(BFM19-20) will beoriginalvalue+currentweightvalue, thecurrent weight value becomes zero;455 +Steps are as follows. (Described with CH1) 465 465 466 -* **BFM8: Adjust the weight command. User adjustment steps: (describe with CH1)** 457 +* Calibration with weights 458 +** Step1: Do not put any weights on the load cell. 459 +** Step2: Write 0x0001 to #8. 460 +** Step3: Add standard weights to the load cell. 461 +** Step4: Write the weight of the current weight on the chassis into #23. 462 +** Step5: Write 0x0002 to #8. 463 +* Weightless calibration 464 +** Step1: Do not put any weights on the load cell. 465 +** Step2: Write the maximum range of the sensor into #23. 466 +** Step3: Write the sensor sensitivity into #39, accurate to three decimal places. 467 +** Step4: Write 0x0003 to #8. 468 +* Modify calibration parameters: 469 +** Step1: Modify the calibration parameter values in BFM#35 to BFM#38; 470 +** Step2: Write 0x0004 to #8. 467 467 468 -There is a weight calibration: 472 +(% class="box infomessage" %) 473 +((( 474 +**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0. 475 +))) 469 469 470 - Step1:Do notput any weightone load cell;477 +**BFM11: filtering strength** 471 471 472 -Step2: #8 value is written as 0x0001; 473 - 474 -Step3: Add standard weights to the load cell; 475 - 476 -Step4: Write the weight of the current weight on the chassis to #23; 477 - 478 -Step5: The #8 value is written as 0x0002. 479 - 480 -Calibration without weight: 481 - 482 -Step1: Do not put any weight on the load cell; 483 - 484 -Step2: Write the maximum range of the sensor to #23; 485 - 486 -Step3: Write the sensor sensitivity to #39, accurate to three decimal places; 487 - 488 -Step4: The #8 value is written as 0x0003. 489 - 490 -Modify calibration parameters: 491 - 492 -Step1: Modify the calibration parameter values in BFM#35~~BFM#38; 493 - 494 -Step2: The #8 value is written as 0x0004. 495 - 496 -Remarks: After using the device monitoring to write a value to BFM#8 or BFM#48, it will automatically reset to 0. 497 - 498 -* **BFM11: filtering strength** 499 - 500 500 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease. 501 501 502 -* *BFM12: zero trackingstrength**481 +**BFM12: zero tracking interval** 503 503 504 - Zero-trackingisto haveaconstant0whenthere’s noload.Zerotrackingintensitymeanstheweightcounts0whenit’swithin therange to reduce the influenceoftemperature drift.483 +BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset. 505 505 506 -(% class="table-bordered" %) 507 -|**Setting**|**Description**|**Note** 508 -|0|Zero tracking OFF|Default 509 -|1-200|Range of weight value|10 means ± 10 510 -|Others|Reserved| 511 -|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required. 485 +(% class="box infomessage" %) 486 +((( 487 +**✎Note:** This function is generally used to correct sensor temperature drift. 488 +))) 512 512 513 -* *BFM13:RangeofZero tracking**490 +**BFM13: Zero tracking range** 514 514 515 - Accumulatedrange of zero tracking,stoptracking whenout of range492 +The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue. 516 516 517 -Table 5‑6 494 +|=(% scope="row" style="width: 95px;" %)**Settings**|=(% style="width: 612px;" %)**Description**|=(% style="width: 369px;" %)**Remark** 495 +|(% style="width:95px" %)0|(% style="width:612px" %)Do not enable zero tracking|(% style="width:369px" %)Default 496 +|(% style="width:95px" %)1 to 300|(% style="width:612px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:369px" %)((( 497 +If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared. 498 +))) 499 +(% class="info" %)|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required. 518 518 519 -(% class="table-bordered" %) 520 -|**Setting**|**Description**|**Note** 521 -|0|Disable zero tracking|Default 522 -|1-300|Range of weight value|10 means ±10 523 -|Others|Reserved| 524 -|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required. 501 +E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed. 525 525 526 -** Example**503 +**BFM15: Set the AD chip gain** 527 527 528 - Settingvalueis100, when thepositionwithin±100, itwill bereadasno-load.505 +**I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated. 529 529 530 -* **BFM15: Set AD chip gain** 507 +|=**BFM15**|=**voltage range**|=**Sensor sensitivity** 508 +|0|±5V|<1V/V 509 +|1|±625mV|<125mV/V 510 +|2|±312.5mV|<62.5mV/V 511 +|3|±156.2mV|<31.25mV/V 512 +|4|±78.125mV|<15.625mV/V 513 +|5|±39.06mV|<7.812mV/V 531 531 532 - Itcanbeet accordingtothe sensorrange515 +== **Function description** == 533 533 534 -(% class="table-bordered" %) 535 -|**BFM15**|**Voltage range**|**Sensor sensitivity** 536 -|0|± 5V|< 1V/V 537 -|1|± 625mV|< 125mV/V 538 -|2|±312.5 mV|< 62.5mV/V 539 -|3|±156.2 mV|< 31.25V/V 540 -|4|±78.125 mV|< 15.625mV/V 541 -|5|±39.06 mV|<7.812 mV/V 517 +**Net weight measurement function** 542 542 543 - ==**5.3FunctionInstructions**==519 +You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight. 544 544 545 -**Net weight measurement** 521 +* Tare weigh:t Refers to the weight of the outer packaging. 522 +* Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. 523 +* Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight) 524 +* Gross weight = net weight + tare weight 546 546 547 - It can be set to measure net weightor gross weight.TheNetweightmeansthe weight of theproductitself, that is, theactualweightoftheproduct without itsexternal packaging.526 +E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG. 548 548 549 -The weight of the packaging is called the tare weight. The gross weight is the total weight, namely the net weight plus the tare weight. 528 +* Net weight=10KG 529 +* Tare weight=0.2KG 530 +* Gross weight=10.2KG 550 550 551 -1. Tare weight: weight of the packaging 552 -1. Net weight: the weight of the product, excluding the packaging. 553 -1. Gross weight: the net weight plus the tare of the product. 554 -1. Gross weight= net weight + tare weight. 532 +E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight). 555 555 556 -**Example 1** 534 +* Read the tare value 535 +** Write H0000 in BFM7; 536 +** Place the package on the CH1 weighing module; 537 +** Write H0001 in BFM6, and take the current package weight as the tare weight. 538 +* Set BFM7=H0001 557 557 558 - A productweighs 10kgand the carton containsitweighs 0.2kg, then its gross weight is 10.2kg (net weight=10kg, tare weight=0.2kg, gross weight=10.2kg)540 +**Stability check** 559 559 560 - **Example2**542 +When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable. 561 561 562 -Use the measured value at CH1 as the net weight. If you know the weight of the packaging already, you can skip the step of reading tare weight. 544 +* If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1. 545 +* When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again. 563 563 564 - *Read the tare weight547 +E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control). 565 565 566 - Step 1: WriteH0000intoBFM7.549 +**Zero point judgment** 567 567 568 - Step2:Place thepackaging on theCH1loadcell.551 +You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1). 569 569 570 - Step 3: WriteH0001 into BFM6 to take the weightof the packaging as the tare weight.553 +**Filter function** 571 571 572 - *SetBFM7=H00F1.555 +The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value. 573 573 574 -**Standstill check function** 575 - 576 -When an object is placed on the load cell to measure its weight, you can use the standstill check function to know whether the current reading has been stabilized. 577 - 578 -* If the measured value shifts within the range (BFM 22) of standstill check set up by the user, BFM4’bit 4 will be set to “1”. 579 -* If the measured value shifts beyond the range for standstill check set up by the user, bit4 will be set to “0”. They will be set to “1” again when the range is returned to the set range. 580 - 581 -**Example** 582 - 583 -The measuring time is 10ms, the times of standstill check is 10, and the range for standstill check is 1,000. When the range for standstill check exceeds 1,000, the reading is considered unstable, i.e. BFM4’bit4 will be set to 0. When the measuring time is within 100ms (10 × 10ms) and the range returns to be within 1,000, BFM4’bit4 will be set to 1 again. We recommend you check if the measured value is stable enough before operating it. 584 - 585 -* **Zero detection function** 586 - 587 -Users can use this function to know whether the object has been removed from the load cell. If the BFM4’bit4 is 1, and the BFM4’bit0 and bit1 are 1 as well, the object has been removed from the load cell already, and you can proceed to the next step. 588 - 589 -* **Filtering** 590 - 591 -This setting is used to exclude noises from the readings, which are introduced by environmental factors. 592 - 593 593 = **6 Example** = 594 594 595 -* *Current state of weight**559 +**Current state of weight** 596 596 597 597 (% style="text-align:center" %) 598 -[[image: LX3V-2WT V2.0_html_6bc45b23c2b79282.png||class="img-thumbnail"height="77" width="500"]]562 +[[image:image-20220622145646-14.png||height="51" width="330" class="img-thumbnail"]] 599 599 600 -Read the current state BFM4 .More information, please refer to__[[5.2>>path:#_5.2_Buffer_(BFM)]]__564 +Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description". 601 601 602 -* *Get current weight value**566 +**Get current weight value** 603 603 604 604 (% style="text-align:center" %) 605 -[[image: LX3V-2WT V2.0_html_5f4a500276a0a3a0.png||class="img-thumbnail"height="66" width="500"]]569 +[[image:image-20220622145005-7.png||height="51" width="385" class="img-thumbnail"]] 606 606 607 -Write average weight value (BFM16) to D0 571 +Write the average weight value (BFM16) of CH1 in the weighing module into D0. 608 608 609 -* *Calibrating weight**573 +**Calibrating weight** 610 610 611 -(% style="text-align:center" %) 612 -[[image:LX3V-2WT V2.0_html_c4b24548535207d3.png||class="img-thumbnail" height="252" width="500"]] 575 +*In the new version, the first step can also be used for manual reset. 613 613 614 - Step1:Remove all weights;577 +The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1. 615 615 616 -Step 2: Write 0x0001 to #8; 617 - 618 -Step 3: Add known weights; 619 - 620 -Step 4: Write known weights (D2) to #23; 621 - 622 -Step 5: Write 0x0002 to #8 623 - 624 -*In the new version, the step 1 can be used for manual reset. 625 - 626 -Adjustment and calibration are to make sure the weight values of module and the heavy load units of module to be consistent. 627 - 628 -* **Tare weight and gross weight** 629 - 630 630 (% style="text-align:center" %) 631 -[[image: LX3V-2WT V2.0_html_5b9b9b62d33c4a7e.png||class="img-thumbnail"height="293" width="500"]]580 +[[image:image-20220705162540-3.jpeg||height="194" width="779" class="img-thumbnail"]] 632 632 633 - Set value as tare weightbywritingK1to BFM6582 +**Tare weight and gross weight** 634 634 635 -Set the value as Net weight by writing K1 to BFM7 636 - 637 -Set the value as gross weight by writing K0 to BFM7 638 - 639 -* **Filter method and strength** 640 - 641 641 (% style="text-align:center" %) 642 -[[image: LX3V-2WT V2.0_html_187c088ffaacd7f1.png||class="img-thumbnail"height="194" width="500"]]585 +[[image:image-20220705162551-4.jpeg||height="289" width="778" class="img-thumbnail"]] 643 643 644 - Set filteringbywritingvalue to BFM10587 +**Filter mode setting** 645 645 646 - Set filteringbywritingvalue toBFM11589 +After setting the filtering mode and filtering strength, you need to calibrate it again. 647 647 648 -After setting the filtering mode and filtering strength, need to calibrate again. 649 - 650 -* **Zero tracking** 651 - 652 652 (% style="text-align:center" %) 653 -[[image: LX3V-2WT V2.0_html_9b603f9448600b12.png||class="img-thumbnail"height="196" width="500"]]592 +[[image:image-20220705162602-5.jpeg||height="197" width="774" class="img-thumbnail"]] 654 654 594 +**Zero tracking** 595 + 655 655 Zero tracking is used to reduce the temperature drift interference; 656 656 657 657 Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited. 658 658 659 -* **Calibration without weights** 600 +(% style="text-align:center" %) 601 +[[image:image-20220705162610-6.jpeg||class="img-thumbnail"]] 660 660 603 +**Calibration without weights** 604 + 661 661 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V). 662 662 663 663 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function. 664 664 665 665 (% style="text-align:center" %) 666 -[[image: LX3V-2WT V2.0_html_735f5d0ddc4d01c3.png||class="img-thumbnail" height="391" width="500"]]610 +[[image:image-20220705162619-7.jpeg||height="319" width="756" class="img-thumbnail"]] 667 667 668 -((( 669 -Step1: Write the sensor range in D8 to BFM23: 612 +**Modify calibration parameters** 670 670 671 -Example: measuring range 3kg, D8 value setting 3000 672 - 673 -Step2: write the sensor sensitivity in D9 into BFM39: 674 - 675 -Example: Sensitivity: 1.942mV/V, D9 value set to 1942; 676 - 677 -Step3: write value K4 to BFM8 and confirm to write calibration parameters. 678 -))) 679 - 680 -* **Modify calibration parameters** 681 - 682 -Step1: Write the floating point number in D10 into BFM35~~BFM36; 683 - 684 -((( 685 -Step2: Write the floating point number in D11 into BFM37~~BFM38; 686 - 687 -Step3: Write value K4 to BFM8 and confirm to write calibration parameters. 688 - 689 689 (% style="text-align:center" %) 690 -[[image:LX3V-2WT V2.0_html_592dd08d03d2ad0d.png||class="img-thumbnail" height="259" width="700"]] 691 -))) 615 +[[image:image-20220705162627-8.jpeg||height="291" width="761" class="img-thumbnail"]] 692 692 693 -**✎Note:** types(float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.617 +**✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters. 694 694 695 -= **7 Diagnosis** = 619 += **7 Diagnosis ** = 696 696 697 -== **7.1Check**==621 +== Check == 698 698 699 699 1. Make sure all cables are connected properly; 700 700 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256. ... ... @@ -702,30 +702,17 @@ 702 702 1. Make sure power supply is working properly; 703 703 1. LX3V CPU unit is in RUN mode; 704 704 705 -== **7.2Checktheerror**==629 +== Check errors == 706 706 707 - *If the special function module LX3V-2WTV3does not operate normally, please check the following items.631 +If the special function module LX3V-2WT does not operate normally, please check the following items. 708 708 709 -Check the status of the LINK indicator 710 - 711 -Flashing: The extension cable is connected correctly 712 - 713 -Otherwise: Check the connection of the extension cable. 714 - 715 -* Check the status of the "24V" LED indicator (upper right corner of LX3V-2WT V3) 716 - 717 -Lit: LX3V-2WT V3 is normal, and the 24VDC power supply is normal. 718 - 719 -Otherwise: the 24V DC power supply may be faulty. If the power supply is normal, it is LX3V-2WT V3 fault. 720 - 721 -* Check the status of the "COM" LED indicator (upper right corner of LX3V-2WT V3) 722 - 723 -Flashing: Value conversion is operating normally. 724 - 725 -Otherwise: check buffer memory #5 (error status). 726 - 727 -If any bit (b0, b1, b2) is ON, that is why the COM indicator is off. Detailed description 728 - 729 -Please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual. 730 - 731 -* Check the sensor and measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv. The sensitivity of the sensor can be found on the sensor manual, and the unit is (mv/v). If the voltage at this point exceeds the range, it means the sensor Deformation or wiring error occurred. Measure whether the voltage between F+ and F- is 5V. If it is not 5V, check the sensor wiring. 633 +* Check the status of the LINK indicator 634 +** Blink: Expansion cables are properly connected. 635 +** Otherwise: Check the connection of the extension cable. 636 +* Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT) 637 +** Light on LX3V-2WT is normal, and 24VDC power is normal. 638 +** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty. 639 +* Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT) 640 +** Blink: Numeric conversion works fine. 641 +** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual. 642 +* Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.
- image-20220622145005-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +15.0 KB - Content
- image-20220622145005-10.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.9 KB - Content
- image-20220622145005-11.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +67.0 KB - Content
- image-20220622145005-12.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.0 KB - Content
- image-20220622145005-13.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +183.1 KB - Content
- image-20220622145005-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +14.2 KB - Content
- image-20220622145005-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.4 KB - Content
- image-20220622145005-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.7 KB - Content
- image-20220622145005-5.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +151.7 KB - Content
- image-20220622145005-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +26.0 KB - Content
- image-20220622145005-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220622145005-8.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +125.2 KB - Content
- image-20220622145005-9.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +123.2 KB - Content
- image-20220622145646-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +65.8 KB - Content
- image-20220705162452-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +193.9 KB - Content
- image-20220705162505-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +44.3 KB - Content
- image-20220705162540-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +118.9 KB - Content
- image-20220705162551-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +123.2 KB - Content
- image-20220705162602-5.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +62.9 KB - Content
- image-20220705162610-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +67.0 KB - Content
- image-20220705162619-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +209.0 KB - Content
- image-20220705162627-8.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +183.1 KB - Content
- 图片1.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.1 KB - Content
- 图片2.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.2 KB - Content
- 图片3.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +142.9 KB - Content