Changes for page LX3V-2WT

Last modified by Mora Zhou on 2023/11/22 10:57

From version 3.1
edited by Stone Wu
on 2022/06/22 14:58
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Expansions.1 Module.Weighing.WebHome
1 +1 Module.Weighing.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -1,417 +1,411 @@
1 -= **1 Operating principle** =
1 += **1 Weighing module Operating principle** =
2 2  
3 -Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
3 +Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
4 4  
5 5  = **2 Introduction** =
6 6  
7 -1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 -1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 -1. The LX3V-2WT weighing module can read and write data through the LX3V host program with the instruction FROM/TO.
7 +1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration;
8 +1. Please read through the manual before powering on the module.
9 +1. This manual is only applicable for model number: LX3V-2WT. Please double check the mark on your module.
10 +1. Using FROM/TO command to read/write data on PLC LX3X.
10 10  
11 -**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
12 +== **2.1 Specification** ==
12 12  
13 -== **Specification** ==
14 +(% class="table-bordered" %)
15 +|**Item**|**Description**
16 +|Channel|Double channels
17 +|A/D converter|24 bit Δˉ∑ A/D
18 +|Resolution|24bit (signed)
19 +|Speed|7.5/10/25/50/60/150/300Hz available
20 +|Polarity|Unipolar and bipolar
21 +|Non-linearity|≤0.01% full scale(25^^o^^C)
22 +|Zero drift|≤0.2μV/^^ o^^C
23 +|Gain drift|≤10ppm/^^ o^^C
24 +|Excitation Voltage/ load|5V, load impedance≥200Ω
25 +|Sensor sensitivity|1mV/V-15mV/V
26 +|Isolation|Transformer (power supply) and the optical coupler (signal)
27 +|Lamp|Power supply lamp, communication lamp
28 +|Power supply|24V±20% 2VA
29 +|Operating temperature|0~~60^^ o^^C
30 +|Storage temperature|-20~~80^^ o^^C
31 +|Dimension|90(L)x58(W)x80(H) mm
14 14  
15 -|(% style="width:225px" %)**Item**|(% style="width:850px" %)**Description**
16 -|(% style="width:225px" %)Channel|(% style="width:850px" %)Dual channel
17 -|(% style="width:225px" %)A/D converter|(% style="width:850px" %)24 bit Δˉ∑ A/D
18 -|(% style="width:225px" %)Resolution|(% style="width:850px" %)24 bit (signed)
19 -|(% style="width:225px" %)Speed|(% style="width:850px" %)7.5/10/25/50/60/150/300Hz available
20 -|(% style="width:225px" %)Polarity|(% style="width:850px" %)Unipolar and bipolar
21 -|(% style="width:225px" %)Non-linearity|(% style="width:850px" %)≤0.01% full scale(25^^o^^C)
22 -|(% style="width:225px" %)Zero drift|(% style="width:850px" %)≤0.2μV/^^ o^^C
23 -|(% style="width:225px" %)Gain drift|(% style="width:850px" %)≤10ppm/^^ o^^C
24 -|(% style="width:225px" %)Excitation voltage/ load|(% style="width:850px" %)Dual 5V, single load impedance not less than 200 Ω
25 -|(% style="width:225px" %)Sensor sensitivity|(% style="width:850px" %)1mV/V to 15mV/V
26 -|(% style="width:225px" %)Isolation|(% style="width:850px" %)Transformer (power supply) and the optical coupler (signal)
27 -|(% style="width:225px" %)Indicator light|(% style="width:850px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
28 -|(% style="width:225px" %)Power supply|(% style="width:850px" %)24V±20% 2VA
29 -|(% style="width:225px" %)Operating temperature|(% style="width:850px" %)0 to 60^^ o^^C
30 -|(% style="width:225px" %)Storage temperature|(% style="width:850px" %)-20 to 80^^ o^^C
31 -|(% style="width:225px" %)Dimension|(% style="width:850px" %)90(L)x58(W)x80(H) mm
33 +== **2.2 Valid bits** ==
32 32  
33 -== **Valid bits** ==
35 +Refer to sampling frequency in Section 5.2, Chapter 5 of this manual.
34 34  
35 -Refer to sampling frequency in BFM description, Chapter 5 of this manual.
36 -
37 37  = **3 Dimensions** =
38 38  
39 -== **Dimensions** ==
39 +(% style="text-align:center" %)
40 +[[image:LX3V-2WT V2.0_html_894c15a18e7135f3.png||class="img-thumbnail" height="384" width="1000"]]
40 40  
41 - [[image:图片1.jpg||height="358" width="301"]] [[image:图片2.jpg||height="365" width="351"]]
42 + Extension cable and connector
42 42  
43 -(% style="text-align:center" %)
44 -[[image:图片3.jpg||height="593" width="684"]]
44 +② LED COMM: Lit when communicating
45 45  
46 -1. Extension cable
47 -1. COM light: Module internal data communication indicator
48 -1. 24V light: Always on when connected to external 24V power supply
49 -1. WT light: Channel input/output indicator
46 +③ Power LED: Lit when power present
50 50  
51 -* WE light: Channel calibration indicator
48 + State LED: Lit when normal
52 52  
53 -(% start="5" %)
54 -1. LINK: Communication indicator between PLC and module (LINK)
55 -1. Expansion module name
56 -1. Expansion module interface
57 -1. DIN rail mounting clip
58 -1. Hook for DIN rail
59 -1. Holes for direct mounting: 2 places (φ4.5)
50 +⑤ Module number
60 60  
61 -|(% style="width:121px" %)**Name**|(% style="width:388px" %)**Description**|(% style="width:126px" %)**Light status**|**Event status**
62 -|(% rowspan="3" style="width:121px" %)(((
63 -
52 +⑥ Analog signal output terminal
64 64  
65 -LINK light
66 -)))|(% rowspan="3" style="width:388px" %)Communication indicator between PLC and module|(% style="width:126px" %)Light flashes|Data is interacting normally (communication is normal)
67 -|(% style="width:126px" %)Lights off|Data interaction is abnormal, stopped or failed
68 -|(% style="width:126px" %)Always ON|Abnormal software operation or hardware failure
69 -|(% rowspan="3" style="width:121px" %)(((
70 -
54 +⑦ Extension module interface
71 71  
72 -COM light
73 -)))|(% rowspan="3" style="width:388px" %)Module internal data communication indicator|(% style="width:126px" %)Light flashes|Data is interacting normally (communication is normal)
74 -|(% style="width:126px" %)Lights off|Data interaction is abnormal, stopped or failed
75 -|(% style="width:126px" %)Always ON|Abnormal software operation or hardware failure
76 -|(% rowspan="3" style="width:121px" %)(((
77 -
56 +⑧ DIN rail mounting slot
78 78  
79 -WT light
80 -)))|(% rowspan="3" style="width:388px" %)Channel output/input indicator|(% style="width:126px" %)Light flashes|Analog input is out of range
81 -|(% style="width:126px" %)Always ON|Analog input is within the range
82 -|(% style="width:126px" %)Lights off|Channel closed
83 -|(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:388px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|Calibration succeeded
84 -|(% style="width:126px" %)Always ON|Calibration failed or not calibrated
58 +⑨ DIN rail hook
85 85  
86 -== Use of blade terminals ==
60 + Mounting holes (φ4.5)
87 87  
62 +
88 88  (% style="text-align:center" %)
89 -[[image:image-20220622145005-4.jpeg||height="220" width="366"]]
64 +[[image:LX3V-2WT V2.0_html_6b5398f61ad44c3d.png||class="img-thumbnail" height="199" width="300"]]
90 90  
91 -Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
66 +1. Use the crimp terminals that meet the dimensional requirements showed in the left figure.
67 +1. Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals against disoperation.
92 92  
93 -== **Terminals** ==
69 +(% class="table-bordered" %)
70 +|**Terminals**|**Instruction**|**Terminals**|**Instruction**
71 +|24V+|Power supply+|24V-|Power supply-
72 +|GND|Grounding|FG1|CH1 sensor grounding
73 +|E1+|CH1 power supply+ (5V) for sensor|E1-|CH1 power supply- (5V) for sensor
74 +|S1+|CH1 signal output+ of sensor|S1-|CH1 signal output- of sensor
75 +|F1+|CH1 feedback+ of sensor|F1-|CH1 feedback- of sensor
76 +|E2+|CH2 power supply+ (5V) for sensor|E2-|CH2 power supply- (5V) for sensor
77 +|S2+|CH2 signal output+ of sensor|S2-|CH2 signal output- of sensor
78 +|F2+|CH2 feedback+ of sensor|F2-|CH2 feedback- of sensor
79 +|FG2|CH2 sensor grounding|(((
80 +*
81 +)))|
94 94  
95 -|**Terminal**|**Terminal Instructions**
96 -|24V+|External DC24 power supply+
97 -|24V-|External DC24 power supply-
98 -|Ground|Ground
99 -|FG1|Sensor housing
100 -|E1+|First sensor 5V power +
101 -|E1-|First sensor 5V power -
102 -|F1+|First sensor power supply feedback +
103 -|F1-|First sensor power supply feedback -
104 -|S1+|First sensor signal output +
105 -|S1-|First sensor signal output -
106 -|E2+|Second sensor 5V power +
107 -|E2-|Second sensor 5V power -
108 -|F2+|Second sensor power supply feedback +
109 -|F2-|Second sensor power supply feedback -
110 -|S2+|Second sensor signal output +
111 -|S2-|Second sensor signal output -
112 -|FG2|Second sensor housing
113 -|Other empty terminals|Empty pin, not connect any wires
83 += **4 Wiring** =
114 114  
115 -= **4 Wiring ** =
116 -
117 117  (% style="text-align:center" %)
118 -[[image:image-20220622145005-5.jpeg||height="522" width="706"]]
86 +[[image:LX3V-2WT V2.0_html_fca48acd721ccf71.png||class="img-thumbnail" height="468" width="600"]]
119 119  
120 -**✎Note:**
88 +**✎Note: **
121 121  
122 -* Impedance of the weighing sensor is greater than 20Ω.
123 -* Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
90 +1. Impedance of the weighing sensor is greater than 50 Ω.
91 +1. Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
124 124  
125 -= **5 Buffer register (BFM)** =
93 += **5 BFM instruction** =
126 126  
127 -== **BFM list** ==
95 +== **5.1 BFM list** ==
128 128  
129 -|(% colspan="2" %)**BFM number**|(% rowspan="2" %)**Power-off hold**|(% rowspan="2" %)(((
130 -**Read/**
97 +(% class="table-bordered" %)
98 +|(% colspan="2" %)**BFM**|(% style="width:77px" %)**Latched**|(% style="width:101px" %)**Read/ Write**|(% style="width:159px" %)**Function**|(% style="width:82px" %)**Default**|(% style="width:92px" %)**Range**|(% style="width:486px" %)**Description**
99 +|(% colspan="2" %)0|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Model|(% style="width:82px" %)5012|(% style="width:92px" %) |(% style="width:486px" %)LX3V-2WT model number
100 +|(% colspan="2" %)1|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)System version|(% style="width:82px" %)15004|(% style="width:92px" %) |(% style="width:486px" %)Software & hardware version
101 +|2|42|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Unipolar/ Bipolar|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
102 +0: bipolar
131 131  
132 -**write**
133 -)))|(% rowspan="2" style="width:189px" %)**Register name**|(% rowspan="2" style="width:74px" %)**Default**|(% rowspan="2" style="width:128px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
134 -|**CH1**|**CH2**
135 -|(% colspan="2" %)#0|O|R|(% style="width:189px" %)Model type|(% style="width:74px" %)5012|(% style="width:128px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
136 -|(% colspan="2" %)#1|O|R|(% style="width:189px" %)Software version|(% style="width:74px" %)15004|(% style="width:128px" %)-|(% style="width:466px" %)Software version number
137 -|#2|#42|O|R/W|(% style="width:189px" %)Unipolar/Bipolar|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
138 -|#3|#43|O|R/W|(% style="width:189px" %)Sampling frequency|(% style="width:74px" %)1|(% style="width:128px" %)0 to 4800|(% style="width:466px" %)(((
139 -0: 7.5HZ
140 140  
141 -1: 10HZ
105 +(((
106 +5: 150 Hz;
142 142  
143 -2: 25HZ
108 +6: 300 Hz;
144 144  
145 -3: 50HZ
110 +7: 600 Hz;
146 146  
147 -4: 60HZ
112 +8: 960 Hz;
148 148  
149 -5: 150HZ
114 +9: 2400 Hz;
150 150  
151 -6: 300HZ
116 +1: unipolar
117 +)))
118 +)))
119 +|3|43|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Frequency|(% style="width:82px" %)1|(% style="width:92px" %)0-9|(% style="width:486px" %)(((
120 +0: 7.55 Hz;
152 152  
153 -7: 600HZ
122 +1: 10 HZ;
154 154  
155 -8: 960HZ
124 +2: 25 Hz;
156 156  
157 -9: 2400HZ
126 +3: 50 Hz;
158 158  
159 -10 to 4800: 10Hz to 4800Hz
128 +4: 60 Hz;
160 160  )))
161 -|#4|#44|X|R|(% style="width:189px" %)Status code|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
162 -|#5|#45|X|R|(% style="width:189px" %)Error code|(% style="width:74px" %)0|(% style="width:128px" %)—|(% style="width:466px" %)(((
163 -A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
130 +|4|44|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)State|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
131 +b0: CH1 no-load;
164 164  
165 -#45: Reserved
133 +b1: CH2 no-load;
166 166  
167 -b0: Abnormal power supply
135 +b2: CH1 overload;
168 168  
169 -b1: Hardware failure
137 +b3: CH2 overload;
170 170  
171 -b2: CH1 conversion error
139 +b4: CH1 measured value is stable;
172 172  
173 -b3: CH2 conversion error
141 +b5: CH2 measured value is stable;
174 174  
175 -b4: CH1 input calibration parameter error
143 +b6-b15: Reserved;
176 176  
177 -b5: CH2 input calibration parameter error
178 -
179 -Others: Reserved
145 +BFM 44: Reserved;
180 180  )))
181 -|#6|#46|X|R/W|(% style="width:189px" %)Tare reading|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
182 -Read the current average value as the tare weight value.
147 +|5|45|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Error Code|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
148 +It is the data register for all error states, and each error status is displayed in the corresponding bit, possibly with multiple error states
183 183  
184 -0: Normal (invalid).
150 +0: No error;
185 185  
186 -1: Execute tare setting, then reset to 0.
152 +1: Error;
187 187  
188 -Others: Invalid.
189 -)))
190 -|#7|#47|O|R/W|(% style="width:189px" %)(((
191 -Gross weight/ net weigh
154 +b0: Power supply error;
192 192  
193 -display
194 -)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
195 -Choose to display the current weight as gross weight (K0) or net weight (K1).
156 +b1: Hardware error;
196 196  
197 -0: display gross weight.
158 +b2: CH1 conversion error;
198 198  
199 -1: display net weight.
160 +b3: CH2 conversion error;
200 200  
201 -0xF: Channel closed
162 +B4 :CH1 input calibration parameter error
163 + B5 :CH2 input calibration parameter error
164 +
165 +Other bit: Reserved;
166 +
167 +BFM45: Reserved;
202 202  )))
203 -|#8|#48|X|R/W|(% style="width:189px" %)Calibration|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
204 -The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
169 +|6|46|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Tare weight Preset|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
170 +Use average weight as tare weight:
205 205  
206 -0x0001: CHI zero instruction.
172 +0: Disabled
207 207  
208 -0x0002: CH1 weight base point instruction.
174 +1: Set tare weight then reset to 0;
209 209  
210 -0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
176 +Others : Reserved;
177 +)))
178 +|7|47|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Gross/Net weight|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
179 +Display gross weight or net weight
211 211  
212 -0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
181 +0: Gross weight;
213 213  
214 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
183 +1: Net weight;
184 +
185 +Others: Channels invalid;
215 215  )))
216 -|#9|#49|X|R/W|(% style="width:189px" %)Reset|(% style="width:74px" %)0|(% style="width:128px" %)0 to 3|(% style="width:466px" %)(((
217 -#49: Reserved
187 +|8|48|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Weight Calibration|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
188 +Defaulted to 0
218 218  
219 -1: Reset CH1
190 +0x0001:Channels 1 set to 0
220 220  
221 -2: Reset CH2
192 +0x0002:Channels 1 calibrating:
222 222  
223 -3: Reset all channels
194 +0x0003:CH1 without weight
224 224  
225 -Others: no action
226 -)))
227 -|#10|#50|O|R/W|(% style="width:189px" %)Filtering method|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
228 -|#11|#51|O|R/W|(% style="width:189px" %)Filter strength|(% style="width:74px" %)0|(% style="width:128px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
229 -|#12|#52|O|R/W|(% style="width:189px" %)Zero tracking intervals|(% style="width:74px" %)0|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
230 -|#13|#53|O|R/W|(% style="width:189px" %)Zero tracking range|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
231 -0: Disable the zero tracking function
196 +calibration
197 + 0x0004:CH1 modified calibration
232 232  
233 -Others: Set the zero tracking range (absolute value)
234 -)))
235 -|#14|#54|O|R/W|(% style="width:189px" %)Automatically reset after boot|(% style="width:74px" %)0|(% style="width:128px" %)0 to 4|(% style="width:466px" %)(((
236 -0: Disable automatic reset at startup
199 +parameter error
237 237  
238 -1: ±2%MAX
201 +Step1: Remove all load ;
239 239  
240 -2: ±5%MAX
203 +Step2: BFM #8 (#48) set to 0x0001;
241 241  
242 -3: ±10%MAX
205 +Step3: Add known weight;
243 243  
244 -4: ±20%MAX
245 -)))
246 -|#15|#55|O|R/W|(% style="width:189px" %)Sensor sensitivity setting (inside the module)|(% style="width:74px" %)4|(% style="width:128px" %)0 to 5|(% style="width:466px" %)(((
247 -0:<1V/V
207 +Step4: Write known weight to BFM#23 (#63);
248 248  
249 -1:<125mV/V
209 +Step5: BFM #8 (#48) set to 0x0002;Calibration without weight:
250 250  
251 -2:<62.5mV/V
211 +Step1: Do not put any weight on the load cell;
252 252  
253 -3:<31.25V/V
213 +Step2: Write the maximum range of the sensor to #23;
254 254  
255 -4:<15.625mV/V
215 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
256 256  
257 -5:<7.812mV/V
217 +Step4: The value of #8 is written as 0x0003.
258 258  
259 -**✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
219 +Modify calibration parameters:
220 +
221 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
222 +
223 +Step2: The value of #8 is written as 0x0004.
224 +
225 +Remark: After writing the value to BFM#8 using the device monitoring, it will be automatically reset to 0.
260 260  )))
261 -|#16|#56|(% rowspan="2" %)(((
262 -
227 +|9|49|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Reset to default|(% style="width:82px" %)0|(% style="width:92px" %)0-3|(% style="width:486px" %)(((
228 +#49: Keep unused
263 263  
264 -X
265 -)))|(% rowspan="2" %)(((
266 -
230 +1: Reset CH1; 2: Reset CH2
267 267  
268 -R
269 -)))|(% style="width:189px" %)Average weight L|(% style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
270 --2147483648 to
232 +3: Reset all channels
271 271  
272 -2147483647
273 -)))|(% style="width:466px" %)(((
274 -Average weight display value
234 +Other: No action
235 +)))
236 +|10|50|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering mode|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)Recalibration required after change
237 +|11|51|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering strength|(% style="width:82px" %)3|(% style="width:92px" %)0-7|(% style="width:486px" %)Recalibration required after change
238 +|12|52|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking intensity|(% style="width:82px" %)0|(% style="width:92px" %)0-200|(% style="width:486px" %)(((
239 +0: Zero tracking disabled
275 275  
276 -(low word)
241 +Other: Intensity of zero tracking
277 277  )))
278 -|#17|#57|(% style="width:189px" %)Average weight H|(% style="width:74px" %)0|(% style="width:466px" %)(((
279 -Average weight display value
243 +|13|53|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking range|(% style="width:82px" %)0|(% style="width:92px" %)1-300|(% style="width:486px" %)(((
244 +0: No limit
280 280  
281 -(high word)
246 +Others: Up limit
282 282  )))
283 -|#18|#58|O|R/W|(% style="width:189px" %)Sliding average|(% style="width:74px" %)5|(% style="width:128px" %)1 to 50|(% style="width:466px" %)(((
284 -The setting range is K1 to K50, and the default value is K5.
248 +|14|54|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No load Zeroing at startup|(% style="width:82px" %)0|(% style="width:92px" %)0-4|(% style="width:486px" %)(((
249 +0: Disabled;
285 285  
286 -When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
251 +1: ±2%MAX;
252 +
253 +2: ±5%MAX;
254 +
255 +3: ±10%MAX;
256 +
257 +4: ±20%MAX;
287 287  )))
288 -|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Tare weight value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
289 --2147483648 to
259 +|15|55|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Sensor sensitivity setting|(% style="width:82px" %)4|(% style="width:92px" %)0-5|(% style="width:486px" %)(((
260 +0: < 1V/V
290 290  
291 -2147483647
292 -)))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
293 -|#20|#60|R/W|(% style="width:189px" %)Tare weight value H
294 -|#21|#61|O|R/W|(% style="width:189px" %)CH1 Stability check time|(% style="width:74px" %)200|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
295 -|#22|#62|O|R/W|(% style="width:189px" %)Stability check range|(% style="width:74px" %)1|(% style="width:128px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
296 -|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:189px" %)(((
297 -Weight value
262 +1: < 125mV/V
298 298  
299 -calibration L
300 -)))|(% rowspan="2" style="width:74px" %)1000|(% rowspan="2" style="width:128px" %)(((
301 --2147483648 to
264 +2: < 62.5mV/V
302 302  
303 -2147483647
304 -)))|(% rowspan="2" style="width:466px" %)(((
305 -Input weight base point weight with calibration weight
266 +3: < 31.25V/V
306 306  
307 -Input sensor range without calibration weight
268 +4: < 15.625mV/V
269 +
270 +5: <7.812 mV/V
271 +
272 +Note: Please recalibrate after setting
273 +
274 +(This function only is available in Software & hardware version 13904 or later)
308 308  )))
309 -|#24|#64|R/W|(% style="width:189px" %)(((
310 -Weight value
276 +|16|56|(% rowspan="2" style="width:77px" %)X|(% rowspan="2" style="width:101px" %)R|(% style="width:159px" %)Average weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)Signed 32-bit integer|(% style="width:486px" %)Average weight (Low word)
277 +|17|57|(% style="width:159px" %)Average weight H|(% style="width:486px" %)Average weight (High word)
278 +|18|58|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sliding average|(% style="width:82px" %)5|(% style="width:92px" %)1-50|(% style="width:486px" %)Setting range: K1~~K50; settings outside of this range will be changed to the nearest value in the range.
279 +|19|59|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Tare weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
280 +-2147483648~~
311 311  
312 -calibration H
282 +2147483647
283 +)))|(% rowspan="2" style="width:486px" %)User can write or read tare weight by command #7
284 +|20|60|(% style="width:159px" %)Tare weight H
285 +|21|61|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)CH1 stability check time|(% style="width:82px" %)200|(% style="width:92px" %)0-20000|(% style="width:486px" %)Stability inspection time, used in conjunction with the stability inspection range, unit: ms
286 +|22|62|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Stability inspection range|(% style="width:82px" %)1|(% style="width:92px" %)1-100|(% style="width:486px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, then the current weight fluctuation range is within 100 and lasts for 200ms, then the value is considered stable, otherwise it is considered unstable, and the stability flag is displayed on BFM#4
287 +|23|63|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Weight value adjustment L|(% rowspan="2" style="width:82px" %)1000|(% rowspan="2" style="width:92px" %)(((
288 +-2147483648~~
289 +
290 +2147483647
291 +)))|(% rowspan="2" style="width:486px" %)(((
292 +Please refer to #8
293 +
294 +With weight calibration, enter the weight base point weight, without weight calibration enter the sensor range
313 313  )))
314 -|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Weight upper limit L|(% rowspan="2" style="width:74px" %)32767|(% rowspan="2" style="width:128px" %)(((
315 --2147483648 to
296 +|24|64|(% style="width:159px" %)Weight value adjustment H
297 +|25|65|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Maximum L|(% rowspan="2" style="width:82px" %)32767|(% rowspan="2" style="width:92px" %)(((
298 +-2147483648~~
316 316  
317 317  2147483647
318 -)))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
319 -|#26|#66|R/W|(% style="width:189px" %)Weight upper limit H
320 -|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checupper limit L|(% rowspan="2" style="width:74px" %)10|(% rowspan="2" style="width:128px" %)(((
321 --2147483648 to
301 +)))|(% rowspan="2" style="width:486px" %)User can set the max value, it will record the error code when measured value exceed set value
302 +|26|66|(% style="width:159px" %)Maximum H
303 +|27|67|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection up limit|(% rowspan="2" style="width:82px" %)10|(% rowspan="2" style="width:92px" %)(((
304 +-2147483648~~
322 322  
323 323  2147483647
324 -)))|(% rowspan="4" style="width:466px" %)(((
325 -Zero point judgment function:
307 +)))|(% rowspan="4" style="width:486px" %)(((
308 +Zero weight detection function, used to tell if all loads have been removed.
326 326  
327 -You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
310 +Reading of the bit to indicate stable reading becoming 0 means all loads have been removed.
328 328  )))
329 -|#28|#68|R/W|(% style="width:189px" %)Zero judgment check upper limit H
330 -|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checklower limit L|(% rowspan="2" style="width:74px" %)-10|(% rowspan="2" style="width:128px" %)(((
331 --2147483648 to
312 +|28|68
313 +|29|69|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection down limit|(% rowspan="2" style="width:82px" %)-10|(% rowspan="2" style="width:92px" %)(((
314 +-2147483648~~
332 332  
333 333  2147483647
334 334  )))
335 -|#30|#70|R/W|(% style="width:189px" %)Zero judgment check lower limit H
336 -|#31|#71|X|R/W|(% style="width:189px" %)Additional function options|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
337 -0: Default value. Additional functions are not enabled
318 +|30|70
319 +|31|71|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function options|(% style="width:82px" %)0|(% style="width:92px" %)0~~1|(% style="width:486px" %)(((
320 +0: Default, disable additional functions;
338 338  
339 339  1: Enable filter reset function.
340 340  
341 -Others: Reserved
324 +Other: Reserved
342 342  )))
343 -|#32|#72|X|R/W|(% style="width:189px" %)(((
344 -Additional functions
345 -
346 -Parameter 1
347 -)))|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
326 +|32|72|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function parameters|(% style="width:82px" %)0|(% style="width:92px" %)0~~100|(% style="width:486px" %)(((
348 348  Enable filter reset function:
349 349  
350 -0: The default value does not work
329 +0: Default;
351 351  
352 -0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
331 +0~~100: The number of sampling cycles to wait for the filter to restart.
332 +
333 +The value collected during the accumulation of the average, as the initial value of filtering
353 353  )))
354 -|#33|#73|X|R|(% style="width:189px" %)Digital value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
355 -|#34|#74|X|R|(% style="width:189px" %)Digital value H
356 -|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter A|(% rowspan="2" style="width:74px" %)1|(% rowspan="2" style="width:128px" %)(((
357 --3.402823E+38
335 +|33|73|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)The number of ADC acquisitions
336 +|34|74|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value H|(% style="width:82px" %) |(% style="width:92px" %) |(% style="width:486px" %)
337 +|35|75|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter A|(% rowspan="2" style="width:82px" %)1|(% rowspan="2" style="width:92px" %)(((
338 +-3.402823E+38~~
358 358  
359 -to 3.402823E+38
360 -)))|(% rowspan="4" style="width:466px" %)Described in CH1:
361 -After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
362 -|#36|#76
363 -|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter B|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
364 --3.402823E+38
340 +3.402823E+38
341 +)))|(% rowspan="4" style="width:486px" %)(((
342 +Explain by CH1:
365 365  
366 -to 3.402823E+38
344 +After modifying the calibration parameters, #8 does not write 4, which is only displayed, not used for weight value calculation, and does not save after power off; #8 After writing 4, if the parameter range is correct, write and save it for weight value calculation 4 Error code Bit4 is set to 0, if the parameter range is wrong, no write operation will be performed, #4 error code Bit4 is set to 1.
367 367  )))
368 -|#38|#78
369 -|#39|#79|O|R/W|(% style="width:189px" %)Sensor sensitivity (specification)|(% style="width:74px" %)2000|(% style="width:128px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
370 -For example: Modified to 1942 represent 1.942mV/V.
371 -|#40|#80|X|R/W|(% style="width:189px" %)Sensor feedback voltage L|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
346 +|36|76
347 +|37|77|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter B|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
348 +-3.402823E+38~~
349 +
350 +3.402823E+38
351 +)))
352 +|38|78
353 +|39|79|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor sensitivity (specification)|(% style="width:82px" %)2000|(% style="width:92px" %)0-32767|(% style="width:486px" %)(((
354 +The default setting of 2000 represents 2mV/V, and calibration without weights needs to set the sensor sensitivity accuracy. The sensitivity range can be set to 0~~32.767mV/V, the sensor sensitivity BFM#39 enters a negative value, and it is directly converted to 32767 for execution.
355 +
356 +Example: Modified to 1942 means 1.942mV/V.
357 +)))
358 +|40|80|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor feedback voltage L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
372 372  Write:
373 373  
374 -0: not displayed
361 +0: do not display
375 375  
376 -1: Display the current sensor feedback voltage in real time
363 +1: Real-time display of current sensor feedback voltage
377 377  
378 -2: Display the zero-point voltage during calibration
365 +2: Display the zero point voltage during calibration
379 379  
380 -3: Display the voltage reading of the applied weight during calibration:
367 +3: Display the voltage of the weight applied during calibration
381 381  
382 -Displays the low bit of the voltage value. Unit: uV.
369 +Read:
370 +
371 +Display the low digit of the voltage value in uV.
383 383  )))
384 -|#41|#81|X|R|(% style="width:189px" %)(((
385 -Sensor feedback
373 +|41|81|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Sensor feedback voltage H|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
374 +Read:
386 386  
387 -voltage H
388 -)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
376 +Display the high digit of the voltage value in uV.
377 +)))
389 389  
390 -**✎Note:**
379 +**✎Note: **
391 391  
392 -* O means retentive type.
393 -* X means non-retentive type.
394 -* R means readable data.
395 -* W means writable data.
381 +1. O: yes;
382 +1. X: no;
383 +1. R: read;
384 +1. W: write;
396 396  
397 -== **BFM description** ==
386 +== **5.2 Buffer (BFM) description** ==
398 398  
399 -**BFM0: Module code**
388 +* **BFM0: Module code**
400 400  
401 -LX3V-2WT model code: 5012
390 +LX3V-2WT V3 code: 5012
402 402  
403 -**BFM1: module version**
392 +* **BFM1: module version**
404 404  
405 -The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
394 +Module version (decimal)
406 406  
407 -**BFM2: Polarity**
396 +**Example**
408 408  
398 +BFM1=120, means V1.2.0
399 +
400 +* **BFM2: Polarity**
401 +
409 409  For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
410 410  
411 -**BFM3: Sampling frequency**
404 +* **BFM3: Sampling frequency**
412 412  
413 -The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
406 +The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
414 414  
408 +(% class="table-bordered" %)
415 415  |**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
416 416  |0|7.5|23.5|5|150|21.5
417 417  |1|10|23.5|6|300|21
... ... @@ -419,247 +419,288 @@
419 419  |3|50|22|8|960|20
420 420  |4|60|22|9|2400|17.5
421 421  
422 -**BFM4: State code**
416 +* **BFM4: State code**
423 423  
424 -|(% rowspan="2" %)**Bit NO.**|(% colspan="2" %)**Status code**
418 +(% class="table-bordered" %)
419 +|(% rowspan="2" %)**Bit No.**|(% colspan="2" %)**Description**
425 425  |**1**|**0**
426 -|Bit0|CH1 zero weight (no load)|CH1 is not empty
427 -|Bit1|CH2 zero weight (no load)|CH2 is not empty
428 -|Bit2|(((
429 -CH1 exceeds weight upper limit (overload)
430 -
431 -**✎Note: **The upper limit weight is set by #27 and #28.
432 -)))|CH1 is not overloaded
433 -|Bit3|(((
434 -CH2 exceeds weight upper limit (overload)
435 -
436 -**✎Note: **The upper limit weight is set by #27 and #28.
437 -)))|CH2 is not overloaded
438 -|Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
439 -|Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
440 -|Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
441 -|Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
421 +|Bit 0|CH1 no-load|CH1 load
422 +|Bit 2|CH1 over-load|CH1 not over-load
423 +|Bit 4|CH1 stable|CH1 unstable
424 +|Bit 6|CH1 uncalibrated/calibrated error|CH1 calibration successful
442 442  |(((
443 -Bit8
426 +Bit 8
444 444  
445 -Bit9
428 +Bit 9
446 446  )))|(((
447 447  00: no error
448 448  
449 -10: The weight of the base point of weight is too large
432 +10: The base point of the weight is too heavy
450 450  )))|(((
451 451  01: No-load calibration
452 452  
453 -11: Uncalibrated
436 +11: Not calibrated
454 454  )))
455 -|(((
456 -Bit10
438 +|Bit 12|(((
439 +CH1 exceeds the sensor range
457 457  
458 -Bit11
459 -)))|(((
460 -00: no error
441 +Note: Determined by sensor feedback voltage
442 +)))|CH1 within the sensor range
461 461  
462 -10: The weight of the base point of weight is too large
463 -)))|(((
464 -01: No-load calibration
444 +* **BFM5: Error code**
465 465  
466 -11: Uncalibrated
467 -)))
468 -|Bit12|(((
469 -CH1 exceeds the sensor range
446 +(% class="table-bordered" %)
447 +|**Bit No.**|**Value**|**Error**|(% colspan="2" %)**Bit No.**|**Value**|**Error**
448 +|bit 0|K1(H0001)|Power failure|(% colspan="2" %)bit 1|K1(H0001)|Hardware failure
449 +|bit 2|K4(H0004)|CH1 conversion error|(% colspan="2" %)bit 3|K8(H0008)|CH2 conversion error
450 +|bit 4|K16(H0010)|CH1 write calibration parameter error|(% colspan="2" %)bit 5|K32(H0020)|CH2 write calibration parameter error
451 +|Other|(% colspan="3" %)Reserved|(% colspan="2" %)BFM#45|Reserved
452 +|(% colspan="7" %)**✎Note: **The data register that stores all error states. Each error state is determined by a corresponding bit. More than two error states may occur at the same time. 0 means normal and no error, and 1 means there is a state.
470 470  
471 -**✎Note:** Determined by sensor feedback voltage
472 -)))|CH1 is within the sensor range
473 -|Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
474 -|Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
454 +* **BFM6: Tare weight setting**
475 475  
476 -**BFM5: Error code**
456 +Set the current weight value (BFM16-17) as a tare (BFM19-20) weight. Every bit represents a different channel, which is set to 1 to mean enabled, reset to 0 after being set.
477 477  
478 -|**Bit NO.**|**Content**|**Error state**
479 -|Bit0|K1 (H0001)|Abnormal power supply
480 -|Bit1|K2 (H0002)|Hardware fault
481 -|Bit2|K4 (H0004)|CH1 conversion error
482 -|Bit3|K8 (H0008)|CH2 conversion error
483 -|Bit4|K16 (H0010)|CH1 write calibration parameter error
484 -|Bit5|K32 (H0020)|CH2 write calibration parameter error
485 -|Others|(% colspan="2" %)Reserved
486 -|BFM#45|(% colspan="2" %)Reserved
487 -|(% colspan="3" %)(((
488 -**✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
489 -)))
458 +**Use CH1 as example**
490 490  
491 -**Tare setting: **CH1-BFM6, CH2-BFM46
460 +The current weight is 100, after setting tare weight;
492 492  
493 -Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
462 +If it displays gross weight (BFM7 = 0) currently, the tare weight (BFM19-20) will become 100, the current weight is still 100;
494 494  
495 -The current weight value is 100, after tare setting:
464 +If it displays net weight (BFM7 = 1), the tare weight (BFM19-20) will be original value + current weight value, the current weight value becomes zero;
496 496  
497 -* If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
498 -* If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
466 +* **BFM8: Adjust the weight command. User adjustment steps: (describe with CH1)**
499 499  
500 -**BFM8: Weight calibration instruction**
468 +There is a weight calibration:
501 501  
502 -Steps are as follows. (Described with CH1)
470 +Step1: Do not put any weight on the load cell;
503 503  
504 -* Calibration with weights
505 -** Step1: Do not put any weights on the load cell.
506 -** Step2: #8 value is written as 0x0001.
507 -** Step3: Add standard weights to the load cell.
508 -** Step4: Write the weight of the current weight on the chassis into #23.
509 -** Step5: #8 value is written as 0x0002.
510 -* Weightless calibration
511 -** Step1: Do not put any weights on the load cell.
512 -** Step2: Write the maximum range of the sensor into #23.
513 -** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
514 -** Step4: #8 value is written as 0x0003.
515 -* Modify calibration parameters:
516 -** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
517 -** Step2: #8 value is written as 0x0004.
472 +Step2: #8 value is written as 0x0001;
518 518  
519 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
474 +Step3: Add standard weights to the load cell;
520 520  
521 -**BFM11: filtering strength**
476 +Step4: Write the weight of the current weight on the chassis to #23;
522 522  
478 +Step5: The #8 value is written as 0x0002.
479 +
480 +Calibration without weight:
481 +
482 +Step1: Do not put any weight on the load cell;
483 +
484 +Step2: Write the maximum range of the sensor to #23;
485 +
486 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
487 +
488 +Step4: The #8 value is written as 0x0003.
489 +
490 +Modify calibration parameters:
491 +
492 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
493 +
494 +Step2: The #8 value is written as 0x0004.
495 +
496 +Remarks: After using the device monitoring to write a value to BFM#8 or BFM#48, it will automatically reset to 0.
497 +
498 +* **BFM11: filtering strength**
499 +
523 523  The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
524 524  
525 -**BFM12: zero tracking interval**
502 +* **BFM12: zero tracking strength**
526 526  
527 -BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
504 +Zero-tracking is to have a constant 0 when there’s no load. Zero tracking intensity means the weight counts 0 when its within the range to reduce the influence of temperature drift.
528 528  
529 -**✎Note:** This function is generally used to correct sensor temperature drift.
506 +(% class="table-bordered" %)
507 +|**Setting**|**Description**|**Note**
508 +|0|Zero tracking OFF|Default
509 +|1-200|Range of weight value|10 means ± 10
510 +|Others|Reserved|
511 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
530 530  
531 -**BFM13: Zero tracking range**
513 +* **BFM13:Range of Zero tracking**
532 532  
533 -The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
515 +Accumulated range of zero tracking, stop tracking when out of range
534 534  
535 -|**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
536 -|0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
537 -|1 to 100|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
538 -If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
539 -)))
540 -|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
517 +Table 5‑6
541 541  
542 -E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
519 +(% class="table-bordered" %)
520 +|**Setting**|**Description**|**Note**
521 +|0|Disable zero tracking|Default
522 +|1-300|Range of weight value|10 means ±10
523 +|Others|Reserved|
524 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
543 543  
544 -**BFM15: Set the AD chip gain**
526 +**Example**
545 545  
546 -**I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
528 +Setting value is 100, when the position within ± 100, it will be read as no-load.
547 547  
548 -|**BFM15**|**voltage range**|**Sensor sensitivity**
549 -|0|±5V|<1V/V
550 -|1|±625mV|<125mV/V
551 -|2|±312.5mV|<62.5mV/V
552 -|3|±156.2mV|<31.25mV/V
553 -|4|±78.125mV|<15.625mV/V
554 -|5|±39.06mV|<7.812mV/V
530 +* **BFM15: Set AD chip gain**
555 555  
556 -== **Function description** ==
532 +It can be set according to the sensor range
557 557  
558 -**Net weight measurement function**
534 +(% class="table-bordered" %)
535 +|**BFM15**|**Voltage range**|**Sensor sensitivity**
536 +|0|± 5V|< 1V/V
537 +|1|± 625mV|< 125mV/V
538 +|2|±312.5 mV|< 62.5mV/V
539 +|3|±156.2 mV|< 31.25V/V
540 +|4|±78.125 mV|< 15.625mV/V
541 +|5|±39.06 mV|<7.812 mV/V
559 559  
560 -You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
543 +== **5.3 Function Instructions** ==
561 561  
562 -* Tare weigh:t Refers to the weight of the outer packaging.
563 -* Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
564 -* Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
565 -* Gross weight = net weight + tare weight
545 +**Net weight measurement**
566 566  
567 -E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
547 +It can be set to measure net weight or gross weight. The Net weight means the weight of the product itself, that is, the actual weight of the product without its external packaging.
568 568  
569 -* Net weight=10KG
570 -* Tare weight=0.2KG
571 -* Gross weight=10.2KG
549 +The weight of the packaging is called the tare weight. The gross weight is the total weight, namely the net weight plus the tare weight.
572 572  
573 -E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
551 +1. Tare weight: weight of the packaging
552 +1. Net weight: the weight of the product, excluding the packaging.
553 +1. Gross weight: the net weight plus the tare of the product.
554 +1. Gross weight= net weight + tare weight.
574 574  
575 -* Read the tare value
576 -** Write H0000 in BFM7;
577 -** Place the package on the CH1 weighing module;
578 -** Write H0001 in BFM6, and take the current package weight as the tare weight.
579 -* Set BFM7=H0001
556 +**Example 1**
580 580  
581 -**Stability check**
558 +A product weighs 10kg and the carton contains it weighs 0.2kg, then its gross weight is 10.2 kg (net weight=10kg, tare weight=0.2kg, gross weight=10.2kg)
582 582  
583 -When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
560 +**Example2**
584 584  
585 -* If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
586 -* When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
562 +Use the measured value at CH1 as the net weight. If you know the weight of the packaging already, you can skip the step of reading tare weight.
587 587  
588 -E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
564 +* Read the tare weight
589 589  
590 -**Zero point judgment**
566 +Step 1: Write H0000 into BFM7.
591 591  
592 -You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
568 +Step 2: Place the packaging on the CH1 load cell.
593 593  
594 -**Filter function**
570 +Step 3: Write H0001 into BFM6 to take the weight of the packaging as the tare weight.
595 595  
596 -The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
572 +* Set BFM7 = H00F1.
597 597  
574 +**Standstill check function**
575 +
576 +When an object is placed on the load cell to measure its weight, you can use the standstill check function to know whether the current reading has been stabilized.
577 +
578 +* If the measured value shifts within the range (BFM 22) of standstill check set up by the user, BFM4’bit 4 will be set to “1”.
579 +* If the measured value shifts beyond the range for standstill check set up by the user, bit4 will be set to “0”. They will be set to “1” again when the range is returned to the set range.
580 +
581 +**Example**
582 +
583 +The measuring time is 10ms, the times of standstill check is 10, and the range for standstill check is 1,000. When the range for standstill check exceeds 1,000, the reading is considered unstable, i.e. BFM4’bit4 will be set to 0. When the measuring time is within 100ms (10 × 10ms) and the range returns to be within 1,000, BFM4’bit4 will be set to 1 again. We recommend you check if the measured value is stable enough before operating it.
584 +
585 +* **Zero detection function**
586 +
587 +Users can use this function to know whether the object has been removed from the load cell. If the BFM4’bit4 is 1, and the BFM4’bit0 and bit1 are 1 as well, the object has been removed from the load cell already, and you can proceed to the next step.
588 +
589 +* **Filtering**
590 +
591 +This setting is used to exclude noises from the readings, which are introduced by environmental factors.
592 +
598 598  = **6 Example** =
599 599  
600 -**Current state of weight**
595 +* **Current state of weight**
601 601  
602 602  (% style="text-align:center" %)
603 -[[image:image-20220622145646-14.png||height="51" width="330"]]
598 +[[image:LX3V-2WT V2.0_html_6bc45b23c2b79282.png||class="img-thumbnail" height="77" width="500"]]
604 604  
605 -Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
600 +Read the current state BFM4. More information, please refer to __[[5.2>>path:#_5.2_Buffer_(BFM)]]__
606 606  
607 -**Get current weight value**
602 +* **Get current weight value**
608 608  
609 609  (% style="text-align:center" %)
610 -[[image:image-20220622145005-7.png||height="51" width="385"]]
605 +[[image:LX3V-2WT V2.0_html_5f4a500276a0a3a0.png||class="img-thumbnail" height="66" width="500"]]
611 611  
612 -Write the average weight value (BFM16) of CH1 in the weighing module into D0.
607 +Write average weight value (BFM16) to D0
613 613  
614 -**Calibrating weight**
609 +* **Calibrating weight**
615 615  
616 -*In the new version, the first step can also be used for manual reset.
611 +(% style="text-align:center" %)
612 +[[image:LX3V-2WT V2.0_html_c4b24548535207d3.png||class="img-thumbnail" height="252" width="500"]]
617 617  
618 -The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
614 +Step 1: Remove all weights;
619 619  
620 -(% style="text-align:center" %)
621 -[[image:image-20220622145005-8.jpeg||height="193" width="797"]]
616 +Step 2: Write 0x0001 to #8;
622 622  
623 -**Tare weight and gross weight**
618 +Step 3: Add known weights;
624 624  
620 +Step 4: Write known weights (D2) to #23;
621 +
622 +Step 5: Write 0x0002 to #8
623 +
624 +*In the new version, the step 1 can be used for manual reset.
625 +
626 +Adjustment and calibration are to make sure the weight values of module and the heavy load units of module to be consistent.
627 +
628 +* **Tare weight and gross weight**
629 +
625 625  (% style="text-align:center" %)
626 -[[image:image-20220622145005-9.jpeg||height="274" width="749"]]
631 +[[image:LX3V-2WT V2.0_html_5b9b9b62d33c4a7e.png||class="img-thumbnail" height="293" width="500"]]
627 627  
628 -**Filter mode setting**
633 +Set value as tare weight by writing K1 to BFM6
629 629  
630 -After setting the filtering mode and filtering strength, you need to calibrate it again.
635 +Set the value as Net weight by writing K1 to BFM7
631 631  
637 +Set the value as gross weight by writing K0 to BFM7
638 +
639 +* **Filter method and strength**
640 +
632 632  (% style="text-align:center" %)
633 -[[image:image-20220622145005-10.jpeg||height="196" width="791"]]
642 +[[image:LX3V-2WT V2.0_html_187c088ffaacd7f1.png||class="img-thumbnail" height="194" width="500"]]
634 634  
635 -**Zero tracking**
644 +Set filtering by writing value to BFM10
636 636  
637 -Zero tracking is used to reduce the temperature drift interference;
646 +Set filtering by writing value to BFM11
638 638  
639 -Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
648 +After setting the filtering mode and filtering strength, need to calibrate again.
640 640  
650 +* **Zero tracking**
651 +
641 641  (% style="text-align:center" %)
642 -[[image:image-20220622145005-11.jpeg||height="242" width="601"]]
653 +[[image:LX3V-2WT V2.0_html_9b603f9448600b12.png||class="img-thumbnail" height="196" width="500"]]
643 643  
644 -**Calibration without weights**
655 +Zero tracking is used to reduce the temperature drift interference;
645 645  
657 +Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
658 +
659 +* **Calibration without weights**
660 +
646 646  Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
647 647  
648 648  Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
649 649  
650 650  (% style="text-align:center" %)
651 -[[image:image-20220622145005-12.jpeg||height="323" width="774"]]
666 +[[image:LX3V-2WT V2.0_html_735f5d0ddc4d01c3.png||class="img-thumbnail" height="391" width="500"]]
652 652  
653 -**Modify calibration parameters**
668 +(((
669 +Step1: Write the sensor range in D8 to BFM23:
654 654  
671 +Example: measuring range 3kg, D8 value setting 3000
672 +
673 +Step2: write the sensor sensitivity in D9 into BFM39:
674 +
675 +Example: Sensitivity: 1.942mV/V, D9 value set to 1942;
676 +
677 +Step3: write value K4 to BFM8 and confirm to write calibration parameters.
678 +)))
679 +
680 +* **Modify calibration parameters**
681 +
682 +Step1: Write the floating point number in D10 into BFM35~~BFM36;
683 +
684 +(((
685 +Step2: Write the floating point number in D11 into BFM37~~BFM38;
686 +
687 +Step3: Write value K4 to BFM8 and confirm to write calibration parameters.
688 +
655 655  (% style="text-align:center" %)
656 -[[image:image-20220622145005-13.jpeg||height="315" width="838"]]
690 +[[image:LX3V-2WT V2.0_html_592dd08d03d2ad0d.png||class="img-thumbnail" height="259" width="700"]]
691 +)))
657 657  
658 -**✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
693 +**✎Note:** BFM35, BFM36, BFM37, and BFM38 are real number types (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
659 659  
660 -= **7 Diagnosis ** =
695 += **7 Diagnosis** =
661 661  
662 -== **Check** ==
697 +== **7.1 Check** ==
663 663  
664 664  1. Make sure all cables are connected properly;
665 665  1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
... ... @@ -667,17 +667,30 @@
667 667  1. Make sure power supply is working properly;
668 668  1. LX3V CPU unit is in RUN mode;
669 669  
670 -== **Check errors** ==
705 +== **7.2 Check the error** ==
671 671  
672 -If the special function module LX3V-2WT does not operate normally, please check the following items.
707 +* If the special function module LX3V-2WT V3 does not operate normally, please check the following items.
673 673  
674 -* Check the status of the LINK indicator
675 -** Blink: Expansion cables are properly connected.
676 -** Otherwise: Check the connection of the extension cable.
677 -* Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
678 -** Light on LX3V-2WT is normal, and 24VDC power is normal.
679 -** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
680 -* Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
681 -** Blink: Numeric conversion works fine.
682 -** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
683 -* Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.
709 +Check the status of the LINK indicator
710 +
711 +Flashing: The extension cable is connected correctly
712 +
713 +Otherwise: Check the connection of the extension cable.
714 +
715 +* Check the status of the "24V" LED indicator (upper right corner of LX3V-2WT V3)
716 +
717 +Lit: LX3V-2WT V3 is normal, and the 24VDC power supply is normal.
718 +
719 +Otherwise: the 24V DC power supply may be faulty. If the power supply is normal, it is LX3V-2WT V3 fault.
720 +
721 +* Check the status of the "COM" LED indicator (upper right corner of LX3V-2WT V3)
722 +
723 +Flashing: Value conversion is operating normally.
724 +
725 +Otherwise: check buffer memory #5 (error status).
726 +
727 +If any bit (b0, b1, b2) is ON, that is why the COM indicator is off. Detailed description
728 +
729 +Please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
730 +
731 +* Check the sensor and measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv. The sensitivity of the sensor can be found on the sensor manual, and the unit is (mv/v). If the voltage at this point exceeds the range, it means the sensor Deformation or wiring error occurred. Measure whether the voltage between F+ and F- is 5V. If it is not 5V, check the sensor wiring.
image-20220622145005-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -15.0 KB
Content
image-20220622145005-10.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -62.9 KB
Content
image-20220622145005-11.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -67.0 KB
Content
image-20220622145005-12.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -209.0 KB
Content
image-20220622145005-13.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -183.1 KB
Content
image-20220622145005-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.2 KB
Content
image-20220622145005-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -83.4 KB
Content
image-20220622145005-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -36.7 KB
Content
image-20220622145005-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -151.7 KB
Content
image-20220622145005-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -26.0 KB
Content
image-20220622145005-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220622145005-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -125.2 KB
Content
image-20220622145005-9.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -123.2 KB
Content
image-20220622145646-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -65.8 KB
Content
图片1.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.1 KB
Content
图片2.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -36.2 KB
Content
图片3.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -142.9 KB
Content