Changes for page LX3V-2WT

Last modified by Mora Zhou on 2023/11/22 10:57

From version 6.4
edited by Stone Wu
on 2022/07/05 16:24
Change comment: (Autosaved)
To version 4.1
edited by Stone Wu
on 2022/06/22 14:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,12 +1,12 @@
1 1  = **1 Operating principle** =
2 2  
3 -When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications.
3 +Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
4 4  
5 5  = **2 Introduction** =
6 6  
7 7  1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 8  1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 -1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO  through LX3V or LX5V
9 +1. The LX3V-2WT weighing module can read and write data through the LX3V host program with the instruction FROM/TO.
10 10  
11 11  **✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
12 12  
... ... @@ -85,7 +85,8 @@
85 85  
86 86  == Use of blade terminals ==
87 87  
88 -[[image:image-20220705162505-2.jpeg]]
88 +(% style="text-align:center" %)
89 +[[image:image-20220622145005-4.jpeg||height="220" width="366"]]
89 89  
90 90  Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
91 91  
... ... @@ -114,7 +114,7 @@
114 114  = **4 Wiring ** =
115 115  
116 116  (% style="text-align:center" %)
117 -[[image:image-20220705162452-1.jpeg]]
118 +[[image:image-20220622145005-5.jpeg||height="522" width="706"]]
118 118  
119 119  **✎Note:**
120 120  
... ... @@ -129,12 +129,12 @@
129 129  **Read/**
130 130  
131 131  **write**
132 -)))|(% rowspan="2" style="width:182px" %)**Register name**|(% rowspan="2" style="width:75px" %)**Default**|(% rowspan="2" style="width:134px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
133 +)))|(% rowspan="2" style="width:189px" %)**Register name**|(% rowspan="2" style="width:74px" %)**Default**|(% rowspan="2" style="width:128px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
133 133  |**CH1**|**CH2**
134 -|(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
135 -|(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number
136 -|#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
137 -|#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)(((
135 +|(% colspan="2" %)#0|O|R|(% style="width:189px" %)Model type|(% style="width:74px" %)5012|(% style="width:128px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
136 +|(% colspan="2" %)#1|O|R|(% style="width:189px" %)Software version|(% style="width:74px" %)15004|(% style="width:128px" %)-|(% style="width:466px" %)Software version number
137 +|#2|#42|O|R/W|(% style="width:189px" %)Unipolar/Bipolar|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
138 +|#3|#43|O|R/W|(% style="width:189px" %)Sampling frequency|(% style="width:74px" %)1|(% style="width:128px" %)0 to 4800|(% style="width:466px" %)(((
138 138  0: 7.5HZ
139 139  
140 140  1: 10HZ
... ... @@ -157,8 +157,8 @@
157 157  
158 158  10 to 4800: 10Hz to 4800Hz
159 159  )))
160 -|#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
161 -|#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)(((
161 +|#4|#44|X|R|(% style="width:189px" %)Status code|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
162 +|#5|#45|X|R|(% style="width:189px" %)Error code|(% style="width:74px" %)0|(% style="width:128px" %)—|(% style="width:466px" %)(((
162 162  A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
163 163  
164 164  #45: Reserved
... ... @@ -177,7 +177,7 @@
177 177  
178 178  Others: Reserved
179 179  )))
180 -|#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
181 +|#6|#46|X|R/W|(% style="width:189px" %)Tare reading|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
181 181  Read the current average value as the tare weight value.
182 182  
183 183  0: Normal (invalid).
... ... @@ -186,11 +186,11 @@
186 186  
187 187  Others: Invalid.
188 188  )))
189 -|#7|#47|O|R/W|(% style="width:182px" %)(((
190 +|#7|#47|O|R/W|(% style="width:189px" %)(((
190 190  Gross weight/ net weigh
191 191  
192 192  display
193 -)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
194 +)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
194 194  Choose to display the current weight as gross weight (K0) or net weight (K1).
195 195  
196 196  0: display gross weight.
... ... @@ -199,7 +199,7 @@
199 199  
200 200  0xF: Channel closed
201 201  )))
202 -|#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
203 +|#8|#48|X|R/W|(% style="width:189px" %)Calibration|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
203 203  The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
204 204  
205 205  0x0001: CHI zero instruction.
... ... @@ -212,7 +212,7 @@
212 212  
213 213  **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
214 214  )))
215 -|#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)(((
216 +|#9|#49|X|R/W|(% style="width:189px" %)Reset|(% style="width:74px" %)0|(% style="width:128px" %)0 to 3|(% style="width:466px" %)(((
216 216  #49: Reserved
217 217  
218 218  1: Reset CH1
... ... @@ -223,15 +223,15 @@
223 223  
224 224  Others: no action
225 225  )))
226 -|#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
227 -|#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
228 -|#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
229 -|#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
227 +|#10|#50|O|R/W|(% style="width:189px" %)Filtering method|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
228 +|#11|#51|O|R/W|(% style="width:189px" %)Filter strength|(% style="width:74px" %)0|(% style="width:128px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
229 +|#12|#52|O|R/W|(% style="width:189px" %)Zero tracking intervals|(% style="width:74px" %)0|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
230 +|#13|#53|O|R/W|(% style="width:189px" %)Zero tracking range|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
230 230  0: Disable the zero tracking function
231 231  
232 232  Others: Set the zero tracking range (absolute value)
233 233  )))
234 -|#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)(((
235 +|#14|#54|O|R/W|(% style="width:189px" %)Automatically reset after boot|(% style="width:74px" %)0|(% style="width:128px" %)0 to 4|(% style="width:466px" %)(((
235 235  0: Disable automatic reset at startup
236 236  
237 237  1: ±2%MAX
... ... @@ -242,7 +242,7 @@
242 242  
243 243  4: ±20%MAX
244 244  )))
245 -|#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)(((
246 +|#15|#55|O|R/W|(% style="width:189px" %)Sensor sensitivity setting (inside the module)|(% style="width:74px" %)4|(% style="width:128px" %)0 to 5|(% style="width:466px" %)(((
246 246  0:<1V/V
247 247  
248 248  1:<125mV/V
... ... @@ -265,7 +265,7 @@
265 265  
266 266  
267 267  R
268 -)))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
269 +)))|(% style="width:189px" %)Average weight L|(% style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
269 269  -2147483648 to
270 270  
271 271  2147483647
... ... @@ -274,27 +274,29 @@
274 274  
275 275  (low word)
276 276  )))
277 -|#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)(((
278 +|#17|#57|(% style="width:189px" %)Average weight H|(% style="width:74px" %)0|(% style="width:466px" %)(((
278 278  Average weight display value
279 279  
280 280  (high word)
281 281  )))
282 -|#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)(((
283 +|#18|#58|O|R/W|(% style="width:189px" %)Sliding average|(% style="width:74px" %)5|(% style="width:128px" %)1 to 50|(% style="width:466px" %)(((
283 283  The setting range is K1 to K50, and the default value is K5.
284 284  
285 285  When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
286 286  )))
287 -|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
288 +|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Tare weight value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
288 288  -2147483648 to
289 289  
290 290  2147483647
291 291  )))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
292 -|#20|#60|R/W|(% style="width:182px" %)Tare weight value H
293 -|#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
294 -|#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
295 -|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
296 -Weight value calibration L
297 -)))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)(((
293 +|#20|#60|R/W|(% style="width:189px" %)Tare weight value H
294 +|#21|#61|O|R/W|(% style="width:189px" %)CH1 Stability check time|(% style="width:74px" %)200|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
295 +|#22|#62|O|R/W|(% style="width:189px" %)Stability check range|(% style="width:74px" %)1|(% style="width:128px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
296 +|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:189px" %)(((
297 +Weight value
298 +
299 +calibration L
300 +)))|(% rowspan="2" style="width:74px" %)1000|(% rowspan="2" style="width:128px" %)(((
298 298  -2147483648 to
299 299  
300 300  2147483647
... ... @@ -303,20 +303,18 @@
303 303  
304 304  Input sensor range without calibration weight
305 305  )))
306 -|#24|#64|R/W|(% style="width:182px" %)(((
307 -Weight value calibration H
309 +|#24|#64|R/W|(% style="width:189px" %)(((
310 +Weight value
311 +
312 +calibration H
308 308  )))
309 -|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)(((
314 +|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Weight upper limit L|(% rowspan="2" style="width:74px" %)32767|(% rowspan="2" style="width:128px" %)(((
310 310  -2147483648 to
311 311  
312 312  2147483647
313 313  )))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
314 -|#26|#66|R/W|(% style="width:182px" %)Weight upper limit H
315 -|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
316 -Zero judgment check
317 -
318 -upper limit L
319 -)))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)(((
319 +|#26|#66|R/W|(% style="width:189px" %)Weight upper limit H
320 +|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment check upper limit L|(% rowspan="2" style="width:74px" %)10|(% rowspan="2" style="width:128px" %)(((
320 320  -2147483648 to
321 321  
322 322  2147483647
... ... @@ -325,14 +325,14 @@
325 325  
326 326  You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
327 327  )))
328 -|#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H
329 -|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((
329 +|#28|#68|R/W|(% style="width:189px" %)Zero judgment check upper limit H
330 +|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checklower limit L|(% rowspan="2" style="width:74px" %)-10|(% rowspan="2" style="width:128px" %)(((
330 330  -2147483648 to
331 331  
332 332  2147483647
333 333  )))
334 -|#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H
335 -|#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
335 +|#30|#70|R/W|(% style="width:189px" %)Zero judgment check lower limit H
336 +|#31|#71|X|R/W|(% style="width:189px" %)Additional function options|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
336 336  0: Default value. Additional functions are not enabled
337 337  
338 338  1: Enable filter reset function.
... ... @@ -339,11 +339,11 @@
339 339  
340 340  Others: Reserved
341 341  )))
342 -|#32|#72|X|R/W|(% style="width:182px" %)(((
343 +|#32|#72|X|R/W|(% style="width:189px" %)(((
343 343  Additional functions
344 344  
345 345  Parameter 1
346 -)))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
347 +)))|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
347 347  Enable filter reset function:
348 348  
349 349  0: The default value does not work
... ... @@ -350,9 +350,9 @@
350 350  
351 351  0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
352 352  )))
353 -|#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
354 -|#34|#74|X|R|(% style="width:182px" %)Digital value H
355 -|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((
354 +|#33|#73|X|R|(% style="width:189px" %)Digital value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
355 +|#34|#74|X|R|(% style="width:189px" %)Digital value H
356 +|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter A|(% rowspan="2" style="width:74px" %)1|(% rowspan="2" style="width:128px" %)(((
356 356  -3.402823E+38
357 357  
358 358  to 3.402823E+38
... ... @@ -359,15 +359,15 @@
359 359  )))|(% rowspan="4" style="width:466px" %)Described in CH1:
360 360  After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
361 361  |#36|#76
362 -|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
363 +|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter B|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
363 363  -3.402823E+38
364 364  
365 365  to 3.402823E+38
366 366  )))
367 367  |#38|#78
368 -|#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
369 +|#39|#79|O|R/W|(% style="width:189px" %)Sensor sensitivity (specification)|(% style="width:74px" %)2000|(% style="width:128px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
369 369  For example: Modified to 1942 represent 1.942mV/V.
370 -|#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
371 +|#40|#80|X|R/W|(% style="width:189px" %)Sensor feedback voltage L|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
371 371  Write:
372 372  
373 373  0: not displayed
... ... @@ -380,11 +380,11 @@
380 380  
381 381  Displays the low bit of the voltage value. Unit: uV.
382 382  )))
383 -|#41|#81|X|R|(% style="width:182px" %)(((
384 +|#41|#81|X|R|(% style="width:189px" %)(((
384 384  Sensor feedback
385 385  
386 386  voltage H
387 -)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
388 +)))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
388 388  
389 389  **✎Note:**
390 390  
... ... @@ -502,18 +502,18 @@
502 502  
503 503  * Calibration with weights
504 504  ** Step1: Do not put any weights on the load cell.
505 -** Step2: Write 0x0001 to #8.
506 +** Step2: #8 value is written as 0x0001.
506 506  ** Step3: Add standard weights to the load cell.
507 507  ** Step4: Write the weight of the current weight on the chassis into #23.
508 -** Step5: Write 0x0002 to #8.
509 +** Step5: #8 value is written as 0x0002.
509 509  * Weightless calibration
510 510  ** Step1: Do not put any weights on the load cell.
511 511  ** Step2: Write the maximum range of the sensor into #23.
512 512  ** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
513 -** Step4: Write 0x0003 to #8.
514 +** Step4: #8 value is written as 0x0003.
514 514  * Modify calibration parameters:
515 515  ** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
516 -** Step2: Write 0x0004 to #8.
517 +** Step2: #8 value is written as 0x0004.
517 517  
518 518  **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
519 519  
... ... @@ -533,7 +533,7 @@
533 533  
534 534  |**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
535 535  |0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
536 -|1 to 300|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
537 +|1 to 100|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
537 537  If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
538 538  )))
539 539  |(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
image-20220705162452-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -193.9 KB
Content
image-20220705162505-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -44.3 KB
Content