... |
... |
@@ -1,12 +1,12 @@ |
1 |
1 |
= **1 Operating principle** = |
2 |
2 |
|
3 |
|
-When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications. |
|
3 |
+Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load). |
4 |
4 |
|
5 |
5 |
= **2 Introduction** = |
6 |
6 |
|
7 |
7 |
1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market. |
8 |
8 |
1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT. |
9 |
|
-1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO through LX3V or LX5V |
|
9 |
+1. The LX3V-2WT weighing module can read and write data through the LX3V host program with the instruction FROM/TO. |
10 |
10 |
|
11 |
11 |
**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage. |
12 |
12 |
|
... |
... |
@@ -83,10 +83,10 @@ |
83 |
83 |
|(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:346px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|(% style="width:483px" %)Calibration succeeded |
84 |
84 |
|(% style="width:126px" %)Always ON|(% style="width:483px" %)Calibration failed or not calibrated |
85 |
85 |
|
86 |
|
-== **Use of blade terminals** == |
|
86 |
+== Use of blade terminals == |
87 |
87 |
|
88 |
88 |
(% style="text-align:center" %) |
89 |
|
-[[image:image-20220705162505-2.jpeg||height="218" width="375"]] |
|
89 |
+[[image:image-20220622145005-4.jpeg||height="220" width="366"]] |
90 |
90 |
|
91 |
91 |
Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction. |
92 |
92 |
|
... |
... |
@@ -115,7 +115,7 @@ |
115 |
115 |
= **4 Wiring ** = |
116 |
116 |
|
117 |
117 |
(% style="text-align:center" %) |
118 |
|
-[[image:image-20220705162452-1.jpeg]] |
|
118 |
+[[image:image-20220622145005-5.jpeg||height="522" width="706"]] |
119 |
119 |
|
120 |
120 |
**✎Note:** |
121 |
121 |
|
... |
... |
@@ -503,18 +503,18 @@ |
503 |
503 |
|
504 |
504 |
* Calibration with weights |
505 |
505 |
** Step1: Do not put any weights on the load cell. |
506 |
|
-** Step2: Write 0x0001 to #8. |
|
506 |
+** Step2: #8 value is written as 0x0001. |
507 |
507 |
** Step3: Add standard weights to the load cell. |
508 |
508 |
** Step4: Write the weight of the current weight on the chassis into #23. |
509 |
|
-** Step5: Write 0x0002 to #8. |
|
509 |
+** Step5: #8 value is written as 0x0002. |
510 |
510 |
* Weightless calibration |
511 |
511 |
** Step1: Do not put any weights on the load cell. |
512 |
512 |
** Step2: Write the maximum range of the sensor into #23. |
513 |
513 |
** Step3: Write the sensor sensitivity into #39, accurate to three decimal places. |
514 |
|
-** Step4: Write 0x0003 to #8. |
|
514 |
+** Step4: #8 value is written as 0x0003. |
515 |
515 |
* Modify calibration parameters: |
516 |
516 |
** Step1: Modify the calibration parameter values in BFM#35 to BFM#38; |
517 |
|
-** Step2: Write 0x0004 to #8. |
|
517 |
+** Step2: #8 value is written as 0x0004. |
518 |
518 |
|
519 |
519 |
**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0. |
520 |
520 |
|
... |
... |
@@ -534,7 +534,7 @@ |
534 |
534 |
|
535 |
535 |
|**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark** |
536 |
536 |
|0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default |
537 |
|
-|1 to 300|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)((( |
|
537 |
+|1 to 100|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)((( |
538 |
538 |
If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared. |
539 |
539 |
))) |
540 |
540 |
|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required. |
... |
... |
@@ -618,12 +618,12 @@ |
618 |
618 |
The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1. |
619 |
619 |
|
620 |
620 |
(% style="text-align:center" %) |
621 |
|
-[[image:image-20220705162540-3.jpeg]] |
|
621 |
+[[image:image-20220622145005-8.jpeg||height="193" width="797"]] |
622 |
622 |
|
623 |
623 |
**Tare weight and gross weight** |
624 |
624 |
|
625 |
625 |
(% style="text-align:center" %) |
626 |
|
-[[image:image-20220705162551-4.jpeg]] |
|
626 |
+[[image:image-20220622145005-9.jpeg||height="274" width="749"]] |
627 |
627 |
|
628 |
628 |
**Filter mode setting** |
629 |
629 |
|
... |
... |
@@ -630,7 +630,7 @@ |
630 |
630 |
After setting the filtering mode and filtering strength, you need to calibrate it again. |
631 |
631 |
|
632 |
632 |
(% style="text-align:center" %) |
633 |
|
-[[image:image-20220705162602-5.jpeg]] |
|
633 |
+[[image:image-20220622145005-10.jpeg||height="196" width="791"]] |
634 |
634 |
|
635 |
635 |
**Zero tracking** |
636 |
636 |
|
... |
... |
@@ -639,7 +639,7 @@ |
639 |
639 |
Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited. |
640 |
640 |
|
641 |
641 |
(% style="text-align:center" %) |
642 |
|
-[[image:image-20220705162610-6.jpeg]] |
|
642 |
+[[image:image-20220622145005-11.jpeg||height="242" width="601"]] |
643 |
643 |
|
644 |
644 |
**Calibration without weights** |
645 |
645 |
|
... |
... |
@@ -648,12 +648,12 @@ |
648 |
648 |
Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function. |
649 |
649 |
|
650 |
650 |
(% style="text-align:center" %) |
651 |
|
-[[image:image-20220705162619-7.jpeg]] |
|
651 |
+[[image:image-20220622145005-12.jpeg||height="323" width="774"]] |
652 |
652 |
|
653 |
653 |
**Modify calibration parameters** |
654 |
654 |
|
655 |
655 |
(% style="text-align:center" %) |
656 |
|
-[[image:image-20220705162627-8.jpeg]] |
|
656 |
+[[image:image-20220622145005-13.jpeg||height="315" width="838"]] |
657 |
657 |
|
658 |
658 |
**✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters. |
659 |
659 |
|