Changes for page LX3V-2WT

Last modified by Mora Zhou on 2023/11/22 10:57

From version 8.1
edited by Stone Wu
on 2022/09/14 17:08
Change comment: There is no comment for this version
To version 2.2
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Update document after refactoring.

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -1,623 +1,700 @@
1 -= **1 Operating principle** =
1 += **1 Weighing module Operating principle** =
2 2  
3 -When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications.
3 +Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
4 4  
5 5  = **2 Introduction** =
6 6  
7 -1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 -1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 -1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO  through LX3V or LX5V
7 +1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration;
8 +1. Please read through the manual before powering on the module.
9 +1. This manual is only applicable for model number: LX3V-2WT. Please double check the mark on your module.
10 +1. Using FROM/TO command to read/write data on PLC LX3X.
10 10  
11 -(% class="box infomessage" %)
12 -(((
13 -**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
14 -)))
12 +== **2.1 Specification** ==
15 15  
16 -== **Specification** ==
14 +(% class="table-bordered" %)
15 +|**Item**|**Description**
16 +|Channel|Double channels
17 +|A/D converter|24 bit Δˉ∑ A/D
18 +|Resolution|24bit (signed)
19 +|Speed|7.5/10/25/50/60/150/300Hz available
20 +|Polarity|Unipolar and bipolar
21 +|Non-linearity|≤0.01% full scale(25^^o^^C)
22 +|Zero drift|≤0.2μV/^^ o^^C
23 +|Gain drift|≤10ppm/^^ o^^C
24 +|Excitation Voltage/ load|5V, load impedance≥200Ω
25 +|Sensor sensitivity|1mV/V-15mV/V
26 +|Isolation|Transformer (power supply) and the optical coupler (signal)
27 +|Lamp|Power supply lamp, communication lamp
28 +|Power supply|24V±20% 2VA
29 +|Operating temperature|0~~60^^ o^^C
30 +|Storage temperature|-20~~80^^ o^^C
31 +|Dimension|90(L)x58(W)x80(H) mm
17 17  
18 -|=(% scope="row" style="width: 254px;" %)**Item**|=(% style="width: 821px;" %)**Description**
19 -|=(% style="width: 254px;" %)Channel|(% style="width:821px" %)Dual channel
20 -|=(% style="width: 254px;" %)A/D converter|(% style="width:821px" %)24 bit Δˉ∑ A/D
21 -|=(% style="width: 254px;" %)Resolution|(% style="width:821px" %)24 bit (signed)
22 -|=(% style="width: 254px;" %)Speed|(% style="width:821px" %)7.5/10/25/50/60/150/300Hz available
23 -|=(% style="width: 254px;" %)Polarity|(% style="width:821px" %)Unipolar and bipolar
24 -|=(% style="width: 254px;" %)Non-linearity|(% style="width:821px" %)≤0.01% full scale(25^^o^^C)
25 -|=(% style="width: 254px;" %)Zero drift|(% style="width:821px" %)≤0.2μV/^^ o^^C
26 -|=(% style="width: 254px;" %)Gain drift|(% style="width:821px" %)≤10ppm/^^ o^^C
27 -|=(% style="width: 254px;" %)Excitation voltage/ load|(% style="width:821px" %)Dual 5V, single load impedance not less than 200 Ω
28 -|=(% style="width: 254px;" %)Sensor sensitivity|(% style="width:821px" %)1mV/V to 15mV/V
29 -|=(% style="width: 254px;" %)Isolation|(% style="width:821px" %)Transformer (power supply) and the optical coupler (signal)
30 -|=(% style="width: 254px;" %)Indicator light|(% style="width:821px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
31 -|=(% style="width: 254px;" %)Power supply|(% style="width:821px" %)24V±20% 2VA
32 -|=(% style="width: 254px;" %)Operating temperature|(% style="width:821px" %)0 to 60^^ o^^C
33 -|=(% style="width: 254px;" %)Storage temperature|(% style="width:821px" %)-20 to 80^^ o^^C
34 -|=(% style="width: 254px;" %)Dimension|(% style="width:821px" %)90(L)x58(W)x80(H) mm
33 +== **2.2 Valid bits** ==
35 35  
36 -== **Valid bits** ==
35 +Refer to sampling frequency in Section 5.2, Chapter 5 of this manual.
37 37  
38 -Refer to sampling frequency in BFM description, Chapter 5 of this manual.
39 -
40 40  = **3 Dimensions** =
41 41  
42 -== Dimensions ==
39 +(% style="text-align:center" %)
40 +[[image:LX3V-2WT V2.0_html_894c15a18e7135f3.png||class="img-thumbnail" height="384" width="1000"]]
43 43  
44 - [[image:图片1.jpg||height="358" width="301" class="img-thumbnail"]] [[image:图片2.jpg||height="365" width="351" class="img-thumbnail"]]
42 + Extension cable and connector
45 45  
46 -(% style="text-align:center" %)
47 -[[image:图片3.jpg||height="593" width="684" class="img-thumbnail"]]
44 +② LED COMM: Lit when communicating
48 48  
49 -1. Extension cable
50 -1. COM light: Module internal data communication indicator
51 -1. 24V light: Always on when connected to external 24V power supply
52 -1. WT light: Channel input/output indicator; WE light: Channel calibration indicator
53 -1. LINK: Communication indicator between PLC and module (LINK)
54 -1. Expansion module name
55 -1. Expansion module interface
56 -1. DIN rail mounting clip
57 -1. Hook for DIN rail
58 -1. Holes for direct mounting: 2 places (φ4.5)
46 +③ Power LED: Lit when power present
59 59  
60 -|=(% scope="row" style="width: 107px;" %)**Name**|=(% style="width: 374px;" %)**Description**|=(% style="width: 146px;" %)**Light status**|=(% style="width: 449px;" %)**Event status**
61 -|(% rowspan="3" style="width:107px" %)(((
62 -
48 +④ State LED: Lit when normal
63 63  
64 -LINK light
65 -)))|(% rowspan="3" style="width:374px" %)Communication indicator between PLC and module|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal)
66 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed
67 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure
68 -|(% rowspan="3" style="width:107px" %)(((
69 -
50 +⑤ Module number
70 70  
71 -COM light
72 -)))|(% rowspan="3" style="width:374px" %)Module internal data communication indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal)
73 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed
74 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure
75 -|(% rowspan="3" style="width:107px" %)(((
76 -
52 +⑥ Analog signal output terminal
77 77  
78 -WT light
79 -)))|(% rowspan="3" style="width:374px" %)Channel output/input indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Analog input is out of range
80 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Analog input is within the range
81 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Channel closed
82 -|(% rowspan="2" style="width:107px" %)WE light|(% rowspan="2" style="width:374px" %)Calibration indicator for the channel|(% style="width:146px" %)Lights off|(% style="width:449px" %)Calibration succeeded
83 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Calibration failed or not calibrated
54 +⑦ Extension module interface
84 84  
85 -== **Use of blade terminals** ==
56 + DIN rail mounting slot
86 86  
87 -(% style="text-align:center" %)
88 -[[image:image-20220705162505-2.jpeg||height="218" width="375" class="img-thumbnail"]]
58 +⑨ DIN rail hook
89 89  
90 -Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
60 + Mounting holes (φ4.5)
91 91  
92 -== **Terminals** ==
93 93  
94 -|=**Terminal**|=**Terminal Instructions**
95 -|24V+|External DC24 power supply+
96 -|24V-|External DC24 power supply-
97 -|Ground|Ground
98 -|FG1|Sensor housing
99 -|E1+|First sensor 5V power +
100 -|E1-|First sensor 5V power -
101 -|F1+|First sensor power supply feedback +
102 -|F1-|First sensor power supply feedback -
103 -|S1+|First sensor signal output +
104 -|S1-|First sensor signal output -
105 -|E2+|Second sensor 5V power +
106 -|E2-|Second sensor 5V power -
107 -|F2+|Second sensor power supply feedback +
108 -|F2-|Second sensor power supply feedback -
109 -|S2+|Second sensor signal output +
110 -|S2-|Second sensor signal output -
111 -|FG2|Second sensor housing
112 -|Other empty terminals|Empty pin, not connect any wires
63 +(% style="text-align:center" %)
64 +[[image:LX3V-2WT V2.0_html_6b5398f61ad44c3d.png||class="img-thumbnail" height="199" width="300"]]
113 113  
114 -= **4 Wiring ** =
66 +1. Use the crimp terminals that meet the dimensional requirements showed in the left figure.
67 +1. Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals against disoperation.
115 115  
69 +(% class="table-bordered" %)
70 +|**Terminals**|**Instruction**|**Terminals**|**Instruction**
71 +|24V+|Power supply+|24V-|Power supply-
72 +|GND|Grounding|FG1|CH1 sensor grounding
73 +|E1+|CH1 power supply+ (5V) for sensor|E1-|CH1 power supply- (5V) for sensor
74 +|S1+|CH1 signal output+ of sensor|S1-|CH1 signal output- of sensor
75 +|F1+|CH1 feedback+ of sensor|F1-|CH1 feedback- of sensor
76 +|E2+|CH2 power supply+ (5V) for sensor|E2-|CH2 power supply- (5V) for sensor
77 +|S2+|CH2 signal output+ of sensor|S2-|CH2 signal output- of sensor
78 +|F2+|CH2 feedback+ of sensor|F2-|CH2 feedback- of sensor
79 +|FG2|CH2 sensor grounding|(((
80 +*
81 +)))|
82 +
83 += **4 Wiring** =
84 +
116 116  (% style="text-align:center" %)
117 -[[image:image-20220705162452-1.jpeg||height="508" width="740" class="img-thumbnail"]]
86 +[[image:LX3V-2WT V2.0_html_fca48acd721ccf71.png||class="img-thumbnail" height="468" width="600"]]
118 118  
119 -**✎Note:**
88 +**✎Note: **
120 120  
121 -* Impedance of the weighing sensor is greater than 20Ω.
122 -* Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
90 +1. Impedance of the weighing sensor is greater than 50 Ω.
91 +1. Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
123 123  
124 -= **5 Buffer register (BFM)** =
93 += **5 BFM instruction** =
125 125  
126 -== BFM list ==
95 +== **5.1 BFM list** ==
127 127  
128 -|=(% colspan="2" %)**BFM number**|=(% rowspan="2" %)**Power-off hold**|=(% rowspan="2" %)(((
129 -**Read/**
97 +(% class="table-bordered" %)
98 +|(% colspan="2" %)**BFM**|(% style="width:77px" %)**Latched**|(% style="width:101px" %)**Read/ Write**|(% style="width:159px" %)**Function**|(% style="width:82px" %)**Default**|(% style="width:92px" %)**Range**|(% style="width:486px" %)**Description**
99 +|(% colspan="2" %)0|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Model|(% style="width:82px" %)5012|(% style="width:92px" %) |(% style="width:486px" %)LX3V-2WT model number
100 +|(% colspan="2" %)1|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)System version|(% style="width:82px" %)15004|(% style="width:92px" %) |(% style="width:486px" %)Software & hardware version
101 +|2|42|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Unipolar/ Bipolar|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
102 +0: bipolar
130 130  
131 -**write**
132 -)))|=(% rowspan="2" style="width: 182px;" %)**Register name**|=(% rowspan="2" style="width: 75px;" %)**Default**|=(% rowspan="2" style="width: 134px;" %)**Range**|=(% rowspan="2" style="width: 466px;" %)**Illustrate**
133 -|**CH1**|**CH2**
134 -|(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
135 -|(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number
136 -|#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
137 -* 0: Bipolar
138 -* 1: Unipolar
104 +
105 +(((
106 +5: 150 Hz;
107 +
108 +6: 300 Hz;
109 +
110 +7: 600 Hz;
111 +
112 +8: 960 Hz;
113 +
114 +9: 2400 Hz;
115 +
116 +1: unipolar
139 139  )))
140 -|#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)(((
141 -* 0: 7.5HZ
142 -* 1: 10HZ
143 -* 2: 25HZ
144 -* 3: 50HZ
145 -* 4: 60HZ
146 -* 5: 150HZ
147 -* 6: 300HZ
148 -* 7: 600HZ
149 -* 8: 960HZ
150 -* 9: 2400HZ
151 -* 10 to 4800: 10Hz to 4800Hz
152 152  )))
153 -|#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
154 -|#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)(((
155 -A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time.
119 +|3|43|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Frequency|(% style="width:82px" %)1|(% style="width:92px" %)0-9|(% style="width:486px" %)(((
120 +0: 7.55 Hz;
156 156  
157 -* 0 means normal without error
158 -* 1 means there is an error state.
159 -* #45: Reserved
160 -* b0: Abnormal power supply
161 -* b1: Hardware failure
162 -* b2: CH1 conversion error
163 -* b3: CH2 conversion error
164 -* b4: CH1 input calibration parameter error
165 -* b5: CH2 input calibration parameter error
166 -* Others: Reserved
122 +1: 10 HZ;
123 +
124 +2: 25 Hz;
125 +
126 +3: 50 Hz;
127 +
128 +4: 60 Hz;
167 167  )))
168 -|#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
169 -Read the current average value as the tare weight value.
130 +|4|44|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)State|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
131 +b0: CH1 no-load;
170 170  
171 -* 0: Normal (invalid).
172 -* 1: Execute tare setting, then reset to 0.
173 -* Others: Invalid.
133 +b1: CH2 no-load;
134 +
135 +b2: CH1 overload;
136 +
137 +b3: CH2 overload;
138 +
139 +b4: CH1 measured value is stable;
140 +
141 +b5: CH2 measured value is stable;
142 +
143 +b6-b15: Reserved;
144 +
145 +BFM 44: Reserved;
174 174  )))
175 -|#7|#47|O|R/W|(% style="width:182px" %)(((
176 -Gross weight/ net weigh
147 +|5|45|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Error Code|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
148 +It is the data register for all error states, and each error status is displayed in the corresponding bit, possibly with multiple error states
177 177  
178 -display
179 -)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
180 -Choose to display the current weight as gross weight (K0) or net weight (K1).
150 +0: No error;
181 181  
182 -* 0: display gross weight.
183 -* 1: display net weight.
184 -* 0xF: Channel closed
152 +1: Error;
153 +
154 +b0: Power supply error;
155 +
156 +b1: Hardware error;
157 +
158 +b2: CH1 conversion error;
159 +
160 +b3: CH2 conversion error;
161 +
162 +B4 :CH1 input calibration parameter error
163 + B5 :CH2 input calibration parameter error
164 +
165 +Other bit: Reserved;
166 +
167 +BFM45: Reserved;
185 185  )))
186 -|#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
187 -The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
169 +|6|46|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Tare weight Preset|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)(((
170 +Use average weight as tare weight:
188 188  
189 -* 0x0001: CHI zero instruction.
190 -* 0x0002: CH1 weight base point instruction.
191 -* 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
192 -* 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
172 +0: Disabled
193 193  
194 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
174 +1: Set tare weight then reset to 0;
175 +
176 +Others : Reserved;
195 195  )))
196 -|#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)(((
197 -* #49: Reserved
198 -* 1: Reset CH1
199 -* 2: Reset CH2
200 -* 3: Reset all channels
201 -* Others: no action
178 +|7|47|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Gross/Net weight|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
179 +Display gross weight or net weight
180 +
181 +0: Gross weight;
182 +
183 +1: Net weight;
184 +
185 +Others: Channels invalid;
202 202  )))
203 -|#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
204 -|#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
205 -|#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
206 -|#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
207 -* 0: Disable the zero tracking function
208 -* Others: Set the zero tracking range (absolute value)
187 +|8|48|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Weight Calibration|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)(((
188 +Defaulted to 0
189 +
190 +0x0001:Channels 1 set to 0
191 +
192 +0x0002:Channels 1 calibrating:
193 +
194 +0x0003:CH1 without weight
195 +
196 +calibration
197 + 0x0004:CH1 modified calibration
198 +
199 +parameter error
200 +
201 +Step1: Remove all load ;
202 +
203 +Step2: BFM #8 (#48) set to 0x0001;
204 +
205 +Step3: Add known weight;
206 +
207 +Step4: Write known weight to BFM#23 (#63);
208 +
209 +Step5: BFM #8 (#48) set to 0x0002;Calibration without weight:
210 +
211 +Step1: Do not put any weight on the load cell;
212 +
213 +Step2: Write the maximum range of the sensor to #23;
214 +
215 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
216 +
217 +Step4: The value of #8 is written as 0x0003.
218 +
219 +Modify calibration parameters:
220 +
221 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
222 +
223 +Step2: The value of #8 is written as 0x0004.
224 +
225 +Remark: After writing the value to BFM#8 using the device monitoring, it will be automatically reset to 0.
209 209  )))
210 -|#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)(((
211 -* 0: Disable automatic reset at startup
212 -* 1: ±2%MAX
213 -* 2: ±5%MAX
214 -* 3: ±10%MAX
215 -* 4: ±20%MAX
227 +|9|49|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Reset to default|(% style="width:82px" %)0|(% style="width:92px" %)0-3|(% style="width:486px" %)(((
228 +#49: Keep unused
229 +
230 +1: Reset CH1; 2: Reset CH2
231 +
232 +3: Reset all channels
233 +
234 +Other: No action
216 216  )))
217 -|#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)(((
218 -* 0:<1V/V
219 -* 1:<125mV/V
220 -* 2:<62.5mV/V
221 -* 3:<31.25V/V
222 -* 4:<15.625mV/V
223 -* 5:<7.812mV/V
236 +|10|50|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering mode|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)Recalibration required after change
237 +|11|51|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering strength|(% style="width:82px" %)3|(% style="width:92px" %)0-7|(% style="width:486px" %)Recalibration required after change
238 +|12|52|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking intensity|(% style="width:82px" %)0|(% style="width:92px" %)0-200|(% style="width:486px" %)(((
239 +0: Zero tracking disabled
224 224  
225 -**✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
241 +Other: Intensity of zero tracking
226 226  )))
227 -|#16|#56|(% rowspan="2" %)(((
228 -
243 +|13|53|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking range|(% style="width:82px" %)0|(% style="width:92px" %)1-300|(% style="width:486px" %)(((
244 +0: No limit
229 229  
230 -X
231 -)))|(% rowspan="2" %)(((
232 -
246 +Others: Up limit
247 +)))
248 +|14|54|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No load Zeroing at startup|(% style="width:82px" %)0|(% style="width:92px" %)0-4|(% style="width:486px" %)(((
249 +0: Disabled;
233 233  
234 -R
235 -)))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
236 --2147483648 to
251 +1: ±2%MAX;
237 237  
238 -2147483647
239 -)))|(% style="width:466px" %)(((
240 -Average weight display value (low word)
253 +2: ±5%MAX;
254 +
255 +3: ±10%MAX;
256 +
257 +4: ±20%MAX;
241 241  )))
242 -|#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)(((
243 -Average weight display value (high word)
244 -)))
245 -|#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)(((
246 -The setting range is K1 to K50, and the default value is K5.
259 +|15|55|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Sensor sensitivity setting|(% style="width:82px" %)4|(% style="width:92px" %)0-5|(% style="width:486px" %)(((
260 +0: < 1V/V
247 247  
248 -When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
262 +1: < 125mV/V
263 +
264 +2: < 62.5mV/V
265 +
266 +3: < 31.25V/V
267 +
268 +4: < 15.625mV/V
269 +
270 +5: <7.812 mV/V
271 +
272 +Note: Please recalibrate after setting
273 +
274 +(This function only is available in Software & hardware version 13904 or later)
249 249  )))
250 -|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
251 --2147483648 to
276 +|16|56|(% rowspan="2" style="width:77px" %)X|(% rowspan="2" style="width:101px" %)R|(% style="width:159px" %)Average weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)Signed 32-bit integer|(% style="width:486px" %)Average weight (Low word)
277 +|17|57|(% style="width:159px" %)Average weight H|(% style="width:486px" %)Average weight (High word)
278 +|18|58|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sliding average|(% style="width:82px" %)5|(% style="width:92px" %)1-50|(% style="width:486px" %)Setting range: K1~~K50; settings outside of this range will be changed to the nearest value in the range.
279 +|19|59|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Tare weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
280 +-2147483648~~
252 252  
253 253  2147483647
254 -)))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
255 -|#20|#60|R/W|(% style="width:182px" %)Tare weight value H
256 -|#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
257 -|#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
258 -|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
259 -Weight value calibration L
260 -)))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)(((
261 --2147483648 to
283 +)))|(% rowspan="2" style="width:486px" %)User can write or read tare weight by command #7
284 +|20|60|(% style="width:159px" %)Tare weight H
285 +|21|61|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)CH1 stability check time|(% style="width:82px" %)200|(% style="width:92px" %)0-20000|(% style="width:486px" %)Stability inspection time, used in conjunction with the stability inspection range, unit: ms
286 +|22|62|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Stability inspection range|(% style="width:82px" %)1|(% style="width:92px" %)1-100|(% style="width:486px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, then the current weight fluctuation range is within 100 and lasts for 200ms, then the value is considered stable, otherwise it is considered unstable, and the stability flag is displayed on BFM#4
287 +|23|63|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Weight value adjustment L|(% rowspan="2" style="width:82px" %)1000|(% rowspan="2" style="width:92px" %)(((
288 +-2147483648~~
262 262  
263 263  2147483647
264 -)))|(% rowspan="2" style="width:466px" %)(((
265 -Input weight base point weight with calibration weight
291 +)))|(% rowspan="2" style="width:486px" %)(((
292 +Please refer to #8
266 266  
267 -Input sensor range without calibration weight
294 +With weight calibration, enter the weight base point weight, without weight calibration enter the sensor range
268 268  )))
269 -|#24|#64|R/W|(% style="width:182px" %)(((
270 -Weight value calibration H
271 -)))
272 -|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)(((
273 --2147483648 to
296 +|24|64|(% style="width:159px" %)Weight value adjustment H
297 +|25|65|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Maximum L|(% rowspan="2" style="width:82px" %)32767|(% rowspan="2" style="width:92px" %)(((
298 +-2147483648~~
274 274  
275 275  2147483647
276 -)))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
277 -|#26|#66|R/W|(% style="width:182px" %)Weight upper limit H
278 -|#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
279 -Zero judgment check
301 +)))|(% rowspan="2" style="width:486px" %)User can set the max value, it will record the error code when measured value exceed set value
302 +|26|66|(% style="width:159px" %)Maximum H
303 +|27|67|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection up limit|(% rowspan="2" style="width:82px" %)10|(% rowspan="2" style="width:92px" %)(((
304 +-2147483648~~
280 280  
281 -upper limit L
282 -)))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)(((
283 --2147483648 to
284 -
285 285  2147483647
286 -)))|(% rowspan="4" style="width:466px" %)(((
287 -Zero point judgment function:
307 +)))|(% rowspan="4" style="width:486px" %)(((
308 +Zero weight detection function, used to tell if all loads have been removed.
288 288  
289 -You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
310 +Reading of the bit to indicate stable reading becoming 0 means all loads have been removed.
290 290  )))
291 -|#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H
292 -|#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((
293 --2147483648 to
312 +|28|68
313 +|29|69|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection down limit|(% rowspan="2" style="width:82px" %)-10|(% rowspan="2" style="width:92px" %)(((
314 +-2147483648~~
294 294  
295 295  2147483647
296 296  )))
297 -|#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H
298 -|#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
299 -* 0: Default value. Additional functions are not enabled
300 -* 1: Enable filter reset function.
301 -* Others: Reserved
302 -)))
303 -|#32|#72|X|R/W|(% style="width:182px" %)(((
304 -Additional functions
318 +|30|70
319 +|31|71|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function options|(% style="width:82px" %)0|(% style="width:92px" %)0~~1|(% style="width:486px" %)(((
320 +0: Default, disable additional functions;
305 305  
306 -Parameter 1
307 -)))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
322 +1: Enable filter reset function.
323 +
324 +Other: Reserved
325 +)))
326 +|32|72|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function parameters|(% style="width:82px" %)0|(% style="width:92px" %)0~~100|(% style="width:486px" %)(((
308 308  Enable filter reset function:
309 309  
310 -* 0: The default value does not work
311 -* 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
329 +0: Default;
330 +
331 +0~~100: The number of sampling cycles to wait for the filter to restart.
332 +
333 +The value collected during the accumulation of the average, as the initial value of filtering
312 312  )))
313 -|#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
314 -|#34|#74|X|R|(% style="width:182px" %)Digital value H
315 -|#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((
316 --3.402823E+38
335 +|33|73|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)The number of ADC acquisitions
336 +|34|74|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value H|(% style="width:82px" %) |(% style="width:92px" %) |(% style="width:486px" %)
337 +|35|75|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter A|(% rowspan="2" style="width:82px" %)1|(% rowspan="2" style="width:92px" %)(((
338 +-3.402823E+38~~
317 317  
318 -to 3.402823E+38
319 -)))|(% rowspan="4" style="width:466px" %)Described in CH1:
320 -After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
321 -|#36|#76
322 -|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
323 --3.402823E+38
340 +3.402823E+38
341 +)))|(% rowspan="4" style="width:486px" %)(((
342 +Explain by CH1:
324 324  
325 -to 3.402823E+38
344 +After modifying the calibration parameters, #8 does not write 4, which is only displayed, not used for weight value calculation, and does not save after power off; #8 After writing 4, if the parameter range is correct, write and save it for weight value calculation 4 Error code Bit4 is set to 0, if the parameter range is wrong, no write operation will be performed, #4 error code Bit4 is set to 1.
326 326  )))
327 -|#38|#78
328 -|#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
329 -For example: Modified to 1942 represent 1.942mV/V.
330 -|#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
346 +|36|76
347 +|37|77|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter B|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)(((
348 +-3.402823E+38~~
349 +
350 +3.402823E+38
351 +)))
352 +|38|78
353 +|39|79|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor sensitivity (specification)|(% style="width:82px" %)2000|(% style="width:92px" %)0-32767|(% style="width:486px" %)(((
354 +The default setting of 2000 represents 2mV/V, and calibration without weights needs to set the sensor sensitivity accuracy. The sensitivity range can be set to 0~~32.767mV/V, the sensor sensitivity BFM#39 enters a negative value, and it is directly converted to 32767 for execution.
355 +
356 +Example: Modified to 1942 means 1.942mV/V.
357 +)))
358 +|40|80|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor feedback voltage L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
331 331  Write:
332 332  
333 -* 0: not displayed
334 -* 1: Display the current sensor feedback voltage in real time
335 -* 2: Display the zero-point voltage during calibration
336 -* 3: Display the voltage reading of the applied weight during calibration:
361 +0: do not display
337 337  
338 -Displays the low bit of the voltage value. Unit: uV.
363 +1: Real-time display of current sensor feedback voltage
364 +
365 +2: Display the zero point voltage during calibration
366 +
367 +3: Display the voltage of the weight applied during calibration
368 +
369 +Read:
370 +
371 +Display the low digit of the voltage value in uV.
339 339  )))
340 -|#41|#81|X|R|(% style="width:182px" %)(((
341 -Sensor feedback
373 +|41|81|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Sensor feedback voltage H|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)(((
374 +Read:
342 342  
343 -voltage H
344 -)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
376 +Display the high digit of the voltage value in uV.
377 +)))
345 345  
346 -**✎Note:**
379 +**✎Note: **
347 347  
348 -* O means retentive type.
349 -* X means non-retentive type.
350 -* R means readable data.
351 -* W means writable data.
381 +1. O: yes;
382 +1. X: no;
383 +1. R: read;
384 +1. W: write;
352 352  
353 -== **BFM description** ==
386 +== **5.2 Buffer (BFM) description** ==
354 354  
355 -**BFM0: Module code**
388 +* **BFM0: Module code**
356 356  
357 -LX3V-2WT model code: 5012
390 +LX3V-2WT V3 code: 5012
358 358  
359 -**BFM1: module version**
392 +* **BFM1: module version**
360 360  
361 -The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
394 +Module version (decimal)
362 362  
363 -**BFM2: Polarity**
396 +**Example**
364 364  
365 -For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
398 +BFM1=120, means V1.2.0
366 366  
367 -**BFM3: Sampling frequency**
400 +* **BFM2: Polarity**
368 368  
369 -The frequency of input signal readingthe lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
402 +For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
370 370  
371 -|=(% scope="row" %)**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**|=**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**
372 -|=0|7.5|23.5|5|150|21.5
373 -|=1|10|23.5|6|300|21
374 -|=2|25|23|7|600|20.5
375 -|=3|50|22|8|960|20
376 -|=4|60|22|9|2400|17.5
404 +* **BFM3: Sampling frequency**
377 377  
378 -**BFM4: State code**
406 +The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
379 379  
380 -|=(% rowspan="2" scope="row" %)**Bit NO.**|(% colspan="2" %)**Status code**
381 -|=**1**|**0**
382 -|=Bit0|CH1 zero weight (no load)|CH1 is not empty
383 -|=Bit1|CH2 zero weight (no load)|CH2 is not empty
384 -|=Bit2|(((
385 -CH1 exceeds weight upper limit (overload)
408 +(% class="table-bordered" %)
409 +|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
410 +|0|7.5|23.5|5|150|21.5
411 +|1|10|23.5|6|300|21
412 +|2|25|23|7|600|20.5
413 +|3|50|22|8|960|20
414 +|4|60|22|9|2400|17.5
386 386  
387 -**✎Note: **The upper limit weight is set by #27 and #28.
388 -)))|CH1 is not overloaded
389 -|=Bit3|(((
390 -CH2 exceeds weight upper limit (overload)
416 +* **BFM4: State code**
391 391  
392 -**✎Note: **The upper limit weight is set by #27 and #28.
393 -)))|CH2 is not overloaded
394 -|=Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
395 -|=Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
396 -|=Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
397 -|=Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
398 -|=(((
399 -Bit8
418 +(% class="table-bordered" %)
419 +|(% rowspan="2" %)**Bit No.**|(% colspan="2" %)**Description**
420 +|**1**|**0**
421 +|Bit 0|CH1 no-load|CH1 load
422 +|Bit 2|CH1 over-load|CH1 not over-load
423 +|Bit 4|CH1 stable|CH1 unstable
424 +|Bit 6|CH1 uncalibrated/calibrated error|CH1 calibration successful
425 +|(((
426 +Bit 8
400 400  
401 -Bit9
428 +Bit 9
402 402  )))|(((
403 -* 00: no error
404 -* 10: The weight of the base point of weight is too large
405 -)))|(((
406 -* 01: No-load calibration
407 -* 11: Uncalibrated
408 -)))
409 -|=(((
410 -Bit10
430 +00: no error
411 411  
412 -Bit11
432 +10: The base point of the weight is too heavy
413 413  )))|(((
414 -* 00: no error
415 -* 10: The weight of the base point of weight is too large
416 -)))|(((
417 -* 01: No-load calibration
418 -* 11: Uncalibrated
434 +01: No-load calibration
435 +
436 +11: Not calibrated
419 419  )))
420 -|=Bit12|(((
438 +|Bit 12|(((
421 421  CH1 exceeds the sensor range
422 422  
423 -**✎Note:** Determined by sensor feedback voltage
424 -)))|CH1 is within the sensor range
425 -|=Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
426 -|=Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
441 +Note: Determined by sensor feedback voltage
442 +)))|CH1 within the sensor range
427 427  
428 -**BFM5: Error code**
444 +* **BFM5: Error code**
429 429  
430 -|=**Bit NO.**|=**Content**|=**Error state**
431 -|Bit0|K1 (H0001)|Abnormal power supply
432 -|Bit1|K2 (H0002)|Hardware fault
433 -|Bit2|K4 (H0004)|CH1 conversion error
434 -|Bit3|K8 (H0008)|CH2 conversion error
435 -|Bit4|K16 (H0010)|CH1 write calibration parameter error
436 -|Bit5|K32 (H0020)|CH2 write calibration parameter error
437 -|Others|(% colspan="2" %)Reserved
438 -|BFM#45|(% colspan="2" %)Reserved
439 -(% class="info" %)|(% colspan="3" %)(((
440 -**✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
441 -)))
446 +(% class="table-bordered" %)
447 +|**Bit No.**|**Value**|**Error**|(% colspan="2" %)**Bit No.**|**Value**|**Error**
448 +|bit 0|K1(H0001)|Power failure|(% colspan="2" %)bit 1|K1(H0001)|Hardware failure
449 +|bit 2|K4(H0004)|CH1 conversion error|(% colspan="2" %)bit 3|K8(H0008)|CH2 conversion error
450 +|bit 4|K16(H0010)|CH1 write calibration parameter error|(% colspan="2" %)bit 5|K32(H0020)|CH2 write calibration parameter error
451 +|Other|(% colspan="3" %)Reserved|(% colspan="2" %)BFM#45|Reserved
452 +|(% colspan="7" %)**✎Note: **The data register that stores all error states. Each error state is determined by a corresponding bit. More than two error states may occur at the same time. 0 means normal and no error, and 1 means there is a state.
442 442  
443 -**Tare setting: **CH1-BFM6, CH2-BFM46
454 +* **BFM6: Tare weight setting**
444 444  
445 -Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
456 +Set the current weight value (BFM16-17) as a tare (BFM19-20) weight. Every bit represents a different channel, which is set to 1 to mean enabled, reset to 0 after being set.
446 446  
447 -The current weight value is 100, after tare setting:
458 +**Use CH1 as example**
448 448  
449 -* If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
450 -* If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
460 +The current weight is 100, after setting tare weight;
451 451  
452 -**BFM8: Weight calibration instruction**
462 +If it displays gross weight (BFM7 = 0) currently, the tare weight (BFM19-20) will become 100, the current weight is still 100;
453 453  
454 -Steps are as follows. (Described with CH1)
464 +If it displays net weight (BFM7 = 1), the tare weight (BFM19-20) will be original value + current weight value, the current weight value becomes zero;
455 455  
456 -* Calibration with weights
457 -** Step1: Do not put any weights on the load cell.
458 -** Step2: Write 0x0001 to #8.
459 -** Step3: Add standard weights to the load cell.
460 -** Step4: Write the weight of the current weight on the chassis into #23.
461 -** Step5: Write 0x0002 to #8.
462 -* Weightless calibration
463 -** Step1: Do not put any weights on the load cell.
464 -** Step2: Write the maximum range of the sensor into #23.
465 -** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
466 -** Step4: Write 0x0003 to #8.
467 -* Modify calibration parameters:
468 -** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
469 -** Step2: Write 0x0004 to #8.
466 +* **BFM8: Adjust the weight command. User adjustment steps: (describe with CH1)**
470 470  
471 -(% class="box infomessage" %)
472 -(((
473 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
474 -)))
468 +There is a weight calibration:
475 475  
476 -**BFM11: filtering strength**
470 +Step1: Do not put any weight on the load cell;
477 477  
472 +Step2: #8 value is written as 0x0001;
473 +
474 +Step3: Add standard weights to the load cell;
475 +
476 +Step4: Write the weight of the current weight on the chassis to #23;
477 +
478 +Step5: The #8 value is written as 0x0002.
479 +
480 +Calibration without weight:
481 +
482 +Step1: Do not put any weight on the load cell;
483 +
484 +Step2: Write the maximum range of the sensor to #23;
485 +
486 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places;
487 +
488 +Step4: The #8 value is written as 0x0003.
489 +
490 +Modify calibration parameters:
491 +
492 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38;
493 +
494 +Step2: The #8 value is written as 0x0004.
495 +
496 +Remarks: After using the device monitoring to write a value to BFM#8 or BFM#48, it will automatically reset to 0.
497 +
498 +* **BFM11: filtering strength**
499 +
478 478  The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
479 479  
480 -**BFM12: zero tracking interval**
502 +* **BFM12: zero tracking strength**
481 481  
482 -BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
504 +Zero-tracking is to have a constant 0 when there’s no load. Zero tracking intensity means the weight counts 0 when its within the range to reduce the influence of temperature drift.
483 483  
484 -(% class="box infomessage" %)
485 -(((
486 -**✎Note:** This function is generally used to correct sensor temperature drift.
487 -)))
506 +(% class="table-bordered" %)
507 +|**Setting**|**Description**|**Note**
508 +|0|Zero tracking OFF|Default
509 +|1-200|Range of weight value|10 means ± 10
510 +|Others|Reserved|
511 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
488 488  
489 -**BFM13: Zero tracking range**
513 +* **BFM13:Range of Zero tracking**
490 490  
491 -The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
515 +Accumulated range of zero tracking, stop tracking when out of range
492 492  
493 -|=(% scope="row" style="width: 95px;" %)**Settings**|=(% style="width: 612px;" %)**Description**|=(% style="width: 369px;" %)**Remark**
494 -|(% style="width:95px" %)0|(% style="width:612px" %)Do not enable zero tracking|(% style="width:369px" %)Default
495 -|(% style="width:95px" %)1 to 300|(% style="width:612px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:369px" %)(((
496 -If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
497 -)))
498 -(% class="info" %)|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
517 +Table 5‑6
499 499  
500 -E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
519 +(% class="table-bordered" %)
520 +|**Setting**|**Description**|**Note**
521 +|0|Disable zero tracking|Default
522 +|1-300|Range of weight value|10 means ±10
523 +|Others|Reserved|
524 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required.
501 501  
502 -**BFM15: Set the AD chip gain**
526 +**Example**
503 503  
504 -**I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
528 +Setting value is 100, when the position within ± 100, it will be read as no-load.
505 505  
506 -|=**BFM15**|=**voltage range**|=**Sensor sensitivity**
507 -|0|±5V|<1V/V
508 -|1|±625mV|<125mV/V
509 -|2|±312.5mV|<62.5mV/V
510 -|3|±156.2mV|<31.25mV/V
511 -|4|±78.125mV|<15.625mV/V
512 -|5|±39.06mV|<7.812mV/V
530 +* **BFM15: Set AD chip gain**
513 513  
514 -== **Function description** ==
532 +It can be set according to the sensor range
515 515  
516 -**Net weight measurement function**
534 +(% class="table-bordered" %)
535 +|**BFM15**|**Voltage range**|**Sensor sensitivity**
536 +|0|± 5V|< 1V/V
537 +|1|± 625mV|< 125mV/V
538 +|2|±312.5 mV|< 62.5mV/V
539 +|3|±156.2 mV|< 31.25V/V
540 +|4|±78.125 mV|< 15.625mV/V
541 +|5|±39.06 mV|<7.812 mV/V
517 517  
518 -You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
543 +== **5.3 Function Instructions** ==
519 519  
520 -* Tare weigh:t Refers to the weight of the outer packaging.
521 -* Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
522 -* Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
523 -* Gross weight = net weight + tare weight
545 +**Net weight measurement**
524 524  
525 -E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
547 +It can be set to measure net weight or gross weight. The Net weight means the weight of the product itself, that is, the actual weight of the product without its external packaging.
526 526  
527 -* Net weight=10KG
528 -* Tare weight=0.2KG
529 -* Gross weight=10.2KG
549 +The weight of the packaging is called the tare weight. The gross weight is the total weight, namely the net weight plus the tare weight.
530 530  
531 -E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
551 +1. Tare weight: weight of the packaging
552 +1. Net weight: the weight of the product, excluding the packaging.
553 +1. Gross weight: the net weight plus the tare of the product.
554 +1. Gross weight= net weight + tare weight.
532 532  
533 -* Read the tare value
534 -** Write H0000 in BFM7;
535 -** Place the package on the CH1 weighing module;
536 -** Write H0001 in BFM6, and take the current package weight as the tare weight.
537 -* Set BFM7=H0001
556 +**Example 1**
538 538  
539 -**Stability check**
558 +A product weighs 10kg and the carton contains it weighs 0.2kg, then its gross weight is 10.2 kg (net weight=10kg, tare weight=0.2kg, gross weight=10.2kg)
540 540  
541 -When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
560 +**Example2**
542 542  
543 -* If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
544 -* When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
562 +Use the measured value at CH1 as the net weight. If you know the weight of the packaging already, you can skip the step of reading tare weight.
545 545  
546 -E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
564 +* Read the tare weight
547 547  
548 -**Zero point judgment**
566 +Step 1: Write H0000 into BFM7.
549 549  
550 -You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
568 +Step 2: Place the packaging on the CH1 load cell.
551 551  
552 -**Filter function**
570 +Step 3: Write H0001 into BFM6 to take the weight of the packaging as the tare weight.
553 553  
554 -The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
572 +* Set BFM7 = H00F1.
555 555  
574 +**Standstill check function**
575 +
576 +When an object is placed on the load cell to measure its weight, you can use the standstill check function to know whether the current reading has been stabilized.
577 +
578 +* If the measured value shifts within the range (BFM 22) of standstill check set up by the user, BFM4’bit 4 will be set to “1”.
579 +* If the measured value shifts beyond the range for standstill check set up by the user, bit4 will be set to “0”. They will be set to “1” again when the range is returned to the set range.
580 +
581 +**Example**
582 +
583 +The measuring time is 10ms, the times of standstill check is 10, and the range for standstill check is 1,000. When the range for standstill check exceeds 1,000, the reading is considered unstable, i.e. BFM4’bit4 will be set to 0. When the measuring time is within 100ms (10 × 10ms) and the range returns to be within 1,000, BFM4’bit4 will be set to 1 again. We recommend you check if the measured value is stable enough before operating it.
584 +
585 +* **Zero detection function**
586 +
587 +Users can use this function to know whether the object has been removed from the load cell. If the BFM4’bit4 is 1, and the BFM4’bit0 and bit1 are 1 as well, the object has been removed from the load cell already, and you can proceed to the next step.
588 +
589 +* **Filtering**
590 +
591 +This setting is used to exclude noises from the readings, which are introduced by environmental factors.
592 +
556 556  = **6 Example** =
557 557  
558 -**Current state of weight**
595 +* **Current state of weight**
559 559  
560 560  (% style="text-align:center" %)
561 -[[image:image-20220622145646-14.png||height="51" width="330" class="img-thumbnail"]]
598 +[[image:LX3V-2WT V2.0_html_6bc45b23c2b79282.png||class="img-thumbnail" height="77" width="500"]]
562 562  
563 -Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
600 +Read the current state BFM4. More information, please refer to __[[5.2>>path:#_5.2_Buffer_(BFM)]]__
564 564  
565 -**Get current weight value**
602 +* **Get current weight value**
566 566  
567 567  (% style="text-align:center" %)
568 -[[image:image-20220622145005-7.png||height="51" width="385" class="img-thumbnail"]]
605 +[[image:LX3V-2WT V2.0_html_5f4a500276a0a3a0.png||class="img-thumbnail" height="66" width="500"]]
569 569  
570 -Write the average weight value (BFM16) of CH1 in the weighing module into D0.
607 +Write average weight value (BFM16) to D0
571 571  
572 -**Calibrating weight**
609 +* **Calibrating weight**
573 573  
574 -*In the new version, the first step can also be used for manual reset.
611 +(% style="text-align:center" %)
612 +[[image:LX3V-2WT V2.0_html_c4b24548535207d3.png||class="img-thumbnail" height="252" width="500"]]
575 575  
576 -The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
614 +Step 1: Remove all weights;
577 577  
578 -(% style="text-align:center" %)
579 -[[image:image-20220705162540-3.jpeg||height="194" width="779" class="img-thumbnail"]]
616 +Step 2: Write 0x0001 to #8;
580 580  
581 -**Tare weight and gross weight**
618 +Step 3: Add known weights;
582 582  
620 +Step 4: Write known weights (D2) to #23;
621 +
622 +Step 5: Write 0x0002 to #8
623 +
624 +*In the new version, the step 1 can be used for manual reset.
625 +
626 +Adjustment and calibration are to make sure the weight values of module and the heavy load units of module to be consistent.
627 +
628 +* **Tare weight and gross weight**
629 +
583 583  (% style="text-align:center" %)
584 -[[image:image-20220705162551-4.jpeg||height="289" width="778" class="img-thumbnail"]]
631 +[[image:LX3V-2WT V2.0_html_5b9b9b62d33c4a7e.png||class="img-thumbnail" height="293" width="500"]]
585 585  
586 -**Filter mode setting**
633 +Set value as tare weight by writing K1 to BFM6
587 587  
588 -After setting the filtering mode and filtering strength, you need to calibrate it again.
635 +Set the value as Net weight by writing K1 to BFM7
589 589  
637 +Set the value as gross weight by writing K0 to BFM7
638 +
639 +* **Filter method and strength**
640 +
590 590  (% style="text-align:center" %)
591 -[[image:image-20220705162602-5.jpeg||height="197" width="774" class="img-thumbnail"]]
642 +[[image:LX3V-2WT V2.0_html_187c088ffaacd7f1.png||class="img-thumbnail" height="194" width="500"]]
592 592  
593 -**Zero tracking**
644 +Set filtering by writing value to BFM10
594 594  
595 -Zero tracking is used to reduce the temperature drift interference;
646 +Set filtering by writing value to BFM11
596 596  
597 -Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
648 +After setting the filtering mode and filtering strength, need to calibrate again.
598 598  
650 +* **Zero tracking**
651 +
599 599  (% style="text-align:center" %)
600 -[[image:image-20220705162610-6.jpeg||class="img-thumbnail"]]
653 +[[image:LX3V-2WT V2.0_html_9b603f9448600b12.png||class="img-thumbnail" height="196" width="500"]]
601 601  
602 -**Calibration without weights**
655 +Zero tracking is used to reduce the temperature drift interference;
603 603  
657 +Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
658 +
659 +* **Calibration without weights**
660 +
604 604  Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
605 605  
606 606  Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
607 607  
608 608  (% style="text-align:center" %)
609 -[[image:image-20220705162619-7.jpeg||height="319" width="756" class="img-thumbnail"]]
666 +[[image:LX3V-2WT V2.0_html_735f5d0ddc4d01c3.png||class="img-thumbnail" height="391" width="500"]]
610 610  
611 -**Modify calibration parameters**
668 +(((
669 +Step1: Write the sensor range in D8 to BFM23:
612 612  
671 +Example: measuring range 3kg, D8 value setting 3000
672 +
673 +Step2: write the sensor sensitivity in D9 into BFM39:
674 +
675 +Example: Sensitivity: 1.942mV/V, D9 value set to 1942;
676 +
677 +Step3: write value K4 to BFM8 and confirm to write calibration parameters.
678 +)))
679 +
680 +* **Modify calibration parameters**
681 +
682 +Step1: Write the floating point number in D10 into BFM35~~BFM36;
683 +
684 +(((
685 +Step2: Write the floating point number in D11 into BFM37~~BFM38;
686 +
687 +Step3: Write value K4 to BFM8 and confirm to write calibration parameters.
688 +
613 613  (% style="text-align:center" %)
614 -[[image:image-20220705162627-8.jpeg||height="291" width="761" class="img-thumbnail"]]
690 +[[image:LX3V-2WT V2.0_html_592dd08d03d2ad0d.png||class="img-thumbnail" height="259" width="700"]]
691 +)))
615 615  
616 -**✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
693 +**✎Note:** BFM35, BFM36, BFM37, and BFM38 are real number types (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
617 617  
618 -= **7 Diagnosis ** =
695 += **7 Diagnosis** =
619 619  
620 -== Check ==
697 +== **7.1 Check** ==
621 621  
622 622  1. Make sure all cables are connected properly;
623 623  1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
... ... @@ -625,17 +625,30 @@
625 625  1. Make sure power supply is working properly;
626 626  1. LX3V CPU unit is in RUN mode;
627 627  
628 -== Check errors ==
705 +== **7.2 Check the error** ==
629 629  
630 -If the special function module LX3V-2WT does not operate normally, please check the following items.
707 +* If the special function module LX3V-2WT V3 does not operate normally, please check the following items.
631 631  
632 -* Check the status of the LINK indicator
633 -** Blink: Expansion cables are properly connected.
634 -** Otherwise: Check the connection of the extension cable.
635 -* Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
636 -** Light on LX3V-2WT is normal, and 24VDC power is normal.
637 -** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
638 -* Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
639 -** Blink: Numeric conversion works fine.
640 -** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
641 -* Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.
709 +Check the status of the LINK indicator
710 +
711 +Flashing: The extension cable is connected correctly
712 +
713 +Otherwise: Check the connection of the extension cable.
714 +
715 +* Check the status of the "24V" LED indicator (upper right corner of LX3V-2WT V3)
716 +
717 +Lit: LX3V-2WT V3 is normal, and the 24VDC power supply is normal.
718 +
719 +Otherwise: the 24V DC power supply may be faulty. If the power supply is normal, it is LX3V-2WT V3 fault.
720 +
721 +* Check the status of the "COM" LED indicator (upper right corner of LX3V-2WT V3)
722 +
723 +Flashing: Value conversion is operating normally.
724 +
725 +Otherwise: check buffer memory #5 (error status).
726 +
727 +If any bit (b0, b1, b2) is ON, that is why the COM indicator is off. Detailed description
728 +
729 +Please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
730 +
731 +* Check the sensor and measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv. The sensitivity of the sensor can be found on the sensor manual, and the unit is (mv/v). If the voltage at this point exceeds the range, it means the sensor Deformation or wiring error occurred. Measure whether the voltage between F+ and F- is 5V. If it is not 5V, check the sensor wiring.
image-20220622145005-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -15.0 KB
Content
image-20220622145005-10.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -62.9 KB
Content
image-20220622145005-11.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -67.0 KB
Content
image-20220622145005-12.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -209.0 KB
Content
image-20220622145005-13.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -183.1 KB
Content
image-20220622145005-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.2 KB
Content
image-20220622145005-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -83.4 KB
Content
image-20220622145005-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -36.7 KB
Content
image-20220622145005-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -151.7 KB
Content
image-20220622145005-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -26.0 KB
Content
image-20220622145005-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220622145005-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -125.2 KB
Content
image-20220622145005-9.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -123.2 KB
Content
image-20220622145646-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -65.8 KB
Content
image-20220705162452-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -193.9 KB
Content
image-20220705162505-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -44.3 KB
Content
image-20220705162540-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -118.9 KB
Content
image-20220705162551-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -123.2 KB
Content
image-20220705162602-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -62.9 KB
Content
image-20220705162610-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -67.0 KB
Content
image-20220705162619-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -209.0 KB
Content
image-20220705162627-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -183.1 KB
Content
图片1.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.1 KB
Content
图片2.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -36.2 KB
Content
图片3.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -142.9 KB
Content