From version 9.1
edited by Jim(Forgotten)
on 2023/01/07 11:01
on 2023/01/07 11:01
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 25 removed)
- image-20220622145005-1.png
- image-20220622145005-10.jpeg
- image-20220622145005-11.jpeg
- image-20220622145005-12.jpeg
- image-20220622145005-13.jpeg
- image-20220622145005-2.png
- image-20220622145005-3.jpeg
- image-20220622145005-4.jpeg
- image-20220622145005-5.jpeg
- image-20220622145005-6.png
- image-20220622145005-7.png
- image-20220622145005-8.jpeg
- image-20220622145005-9.jpeg
- image-20220622145646-14.png
- image-20220705162452-1.jpeg
- image-20220705162505-2.jpeg
- image-20220705162540-3.jpeg
- image-20220705162551-4.jpeg
- image-20220705162602-5.jpeg
- image-20220705162610-6.jpeg
- image-20220705162619-7.jpeg
- image-20220705162627-8.jpeg
- 图片1.jpg
- 图片2.jpg
- 图片3.jpg
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - Expansions.1 Module.Weighing.WebHome1 +1 Module.Weighing.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Jim1 +XWiki.admin - Content
-
... ... @@ -1,624 +1,700 @@ 1 -= **1 Operating principle** = 1 += **1 Weighing module Operating principle** = 2 2 3 - When a metalmaterial issubjectedtotension, themetal materialbecomes thinnerand theelectrical impedanceincreases;conversely,whenit is compressed,themetalmpedancebecomessmaller,andthe strain gauge madeby this method is called a weighing module. This typeof sensingdevice can transformhe pressureofphysicalphenomenaintoelectrical signal output,soitisoftenusedin load,tension andpressureconversionapplications.3 +Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load). 4 4 5 5 = **2 Introduction** = 6 6 7 -1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market. 8 -1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT. 9 -1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO through LX3V or LX5V 7 +1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; 8 +1. Please read through the manual before powering on the module. 9 +1. This manual is only applicable for model number: LX3V-2WT. Please double check the mark on your module. 10 +1. Using FROM/TO command to read/write data on PLC LX3X. 10 10 11 -(% class="box infomessage" %) 12 -((( 13 -**✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage. 14 -))) 12 +== **2.1 Specification** == 15 15 16 -== **Specification** == 14 +(% class="table-bordered" %) 15 +|**Item**|**Description** 16 +|Channel|Double channels 17 +|A/D converter|24 bit Δˉ∑ A/D 18 +|Resolution|24bit (signed) 19 +|Speed|7.5/10/25/50/60/150/300Hz available 20 +|Polarity|Unipolar and bipolar 21 +|Non-linearity|≤0.01% full scale(25^^o^^C) 22 +|Zero drift|≤0.2μV/^^ o^^C 23 +|Gain drift|≤10ppm/^^ o^^C 24 +|Excitation Voltage/ load|5V, load impedance≥200Ω 25 +|Sensor sensitivity|1mV/V-15mV/V 26 +|Isolation|Transformer (power supply) and the optical coupler (signal) 27 +|Lamp|Power supply lamp, communication lamp 28 +|Power supply|24V±20% 2VA 29 +|Operating temperature|0~~60^^ o^^C 30 +|Storage temperature|-20~~80^^ o^^C 31 +|Dimension|90(L)x58(W)x80(H) mm 17 17 18 -|=(% scope="row" style="width: 254px;" %)**Item**|=(% style="width: 821px;" %)**Description** 19 -|=(% style="width: 254px;" %)Channel|(% style="width:821px" %)Dual channel 20 -|=(% style="width: 254px;" %)A/D converter|(% style="width:821px" %)24 bit Δˉ∑ A/D 21 -|=(% style="width: 254px;" %)Resolution|(% style="width:821px" %)24 bit (signed) 22 -|=(% style="width: 254px;" %)Speed|(% style="width:821px" %)7.5/10/25/50/60/150/300Hz available 23 -|=(% style="width: 254px;" %)Polarity|(% style="width:821px" %)Unipolar and bipolar 24 -|=(% style="width: 254px;" %)Non-linearity|(% style="width:821px" %)≤0.01% full scale(25^^o^^C) 25 -|=(% style="width: 254px;" %)Zero drift|(% style="width:821px" %)≤0.2μV/^^ o^^C 26 -|=(% style="width: 254px;" %)Gain drift|(% style="width:821px" %)≤10ppm/^^ o^^C 27 -|=(% style="width: 254px;" %)Excitation voltage/ load|(% style="width:821px" %)Dual 5V, single load impedance not less than 200 Ω 28 -|=(% style="width: 254px;" %)Sensor sensitivity|(% style="width:821px" %)1mV/V to 15mV/V 29 -|=(% style="width: 254px;" %)Isolation|(% style="width:821px" %)Transformer (power supply) and the optical coupler (signal) 30 -|=(% style="width: 254px;" %)Indicator light|(% style="width:821px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light 31 -|=(% style="width: 254px;" %)Power supply|(% style="width:821px" %)24V±20% 2VA 32 -|=(% style="width: 254px;" %)Operating temperature|(% style="width:821px" %)0 to 60^^ o^^C 33 -|=(% style="width: 254px;" %)Storage temperature|(% style="width:821px" %)-20 to 80^^ o^^C 34 -|=(% style="width: 254px;" %)Dimension|(% style="width:821px" %)90(L)x58(W)x80(H) mm 33 +== **2.2 Valid bits** == 35 35 36 - ==**Validbits**==35 +Refer to sampling frequency in Section 5.2, Chapter 5 of this manual. 37 37 38 -Refer to sampling frequency in BFM description, Chapter 5 of this manual. 39 - 40 40 = **3 Dimensions** = 41 41 42 -== Dimensions == 39 +(% style="text-align:center" %) 40 +[[image:LX3V-2WT V2.0_html_894c15a18e7135f3.png||class="img-thumbnail" height="384" width="1000"]] 43 43 44 - [[image:图片1.jpg||height="358"width="301"class="img-thumbnail"]] [[image:图片2.jpg||height="365"width="351"class="img-thumbnail"]]42 +① Extension cable and connector 45 45 46 -(% style="text-align:center" %) 47 -[[image:图片3.jpg||height="593" width="684" class="img-thumbnail"]] 44 +② LED COMM: Lit when communicating 48 48 49 -1. Extension cable 50 -1. COM light: Module internal data communication indicator 51 -1. 24V light: Always on when connected to external 24V power supply 52 -1. WT light: Channel input/output indicator; WE light: Channel calibration indicator 53 -1. LINK: Communication indicator between PLC and module (LINK) 54 -1. Expansion module name 55 -1. Expansion module interface 56 -1. DIN rail mounting clip 57 -1. Hook for DIN rail 58 -1. Holes for direct mounting: 2 places (φ4.5) 46 +③ Power LED: Lit when power present 59 59 60 -|=(% scope="row" style="width: 107px;" %)**Name**|=(% style="width: 374px;" %)**Description**|=(% style="width: 146px;" %)**Light status**|=(% style="width: 449px;" %)**Event status** 61 -|(% rowspan="3" style="width:107px" %)((( 62 - 48 +④ State LED: Lit when normal 63 63 64 -LINK light 65 -)))|(% rowspan="3" style="width:374px" %)Communication indicator between PLC and module|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal) 66 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed 67 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure 68 -|(% rowspan="3" style="width:107px" %)((( 69 - 50 +⑤ Module number 70 70 71 -COM light 72 -)))|(% rowspan="3" style="width:374px" %)Module internal data communication indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Data is interacting normally (communication is normal) 73 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Data interaction is abnormal, stopped or failed 74 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Abnormal software operation or hardware failure 75 -|(% rowspan="3" style="width:107px" %)((( 76 - 52 +⑥ Analog signal output terminal 77 77 78 -WT light 79 -)))|(% rowspan="3" style="width:374px" %)Channel output/input indicator|(% style="width:146px" %)Light flashes|(% style="width:449px" %)Analog input is out of range 80 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Analog input is within the range 81 -|(% style="width:146px" %)Lights off|(% style="width:449px" %)Channel closed 82 -|(% rowspan="2" style="width:107px" %)WE light|(% rowspan="2" style="width:374px" %)Calibration indicator for the channel|(% style="width:146px" %)Lights off|(% style="width:449px" %)Calibration succeeded 83 -|(% style="width:146px" %)Always ON|(% style="width:449px" %)Calibration failed or not calibrated 54 +⑦ Extension module interface 84 84 85 - ==**Useof bladeterminals**==56 +⑧ DIN rail mounting slot 86 86 87 -(% style="text-align:center" %) 88 -[[image:image-20220705162505-2.jpeg||height="218" width="375" class="img-thumbnail"]] 58 +⑨ DIN rail hook 89 89 90 - Usecrimp terminalsof the size shown in the figure. Terminaltighteningtorqueis0.5to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.60 +⑩ Mounting holes (φ4.5) 91 91 92 -== **Terminals** == 93 93 94 -|=**Terminal**|=**Terminal Instructions** 95 -|24V+|External DC24 power supply+ 96 -|24V-|External DC24 power supply- 97 -|Ground|Ground 98 -|FG1|Sensor housing 99 -|E1+|First sensor 5V power + 100 -|E1-|First sensor 5V power - 101 -|F1+|First sensor power supply feedback + 102 -|F1-|First sensor power supply feedback - 103 -|S1+|First sensor signal output + 104 -|S1-|First sensor signal output - 105 -|E2+|Second sensor 5V power + 106 -|E2-|Second sensor 5V power - 107 -|F2+|Second sensor power supply feedback + 108 -|F2-|Second sensor power supply feedback - 109 -|S2+|Second sensor signal output + 110 -|S2-|Second sensor signal output - 111 -|FG2|Second sensor housing 112 -|Other empty terminals|Empty pin, not connect any wires 63 +(% style="text-align:center" %) 64 +[[image:LX3V-2WT V2.0_html_6b5398f61ad44c3d.png||class="img-thumbnail" height="199" width="300"]] 113 113 114 -= **4 Wiring ** = 66 +1. Use the crimp terminals that meet the dimensional requirements showed in the left figure. 67 +1. Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals against disoperation. 115 115 69 +(% class="table-bordered" %) 70 +|**Terminals**|**Instruction**|**Terminals**|**Instruction** 71 +|24V+|Power supply+|24V-|Power supply- 72 +|GND|Grounding|FG1|CH1 sensor grounding 73 +|E1+|CH1 power supply+ (5V) for sensor|E1-|CH1 power supply- (5V) for sensor 74 +|S1+|CH1 signal output+ of sensor|S1-|CH1 signal output- of sensor 75 +|F1+|CH1 feedback+ of sensor|F1-|CH1 feedback- of sensor 76 +|E2+|CH2 power supply+ (5V) for sensor|E2-|CH2 power supply- (5V) for sensor 77 +|S2+|CH2 signal output+ of sensor|S2-|CH2 signal output- of sensor 78 +|F2+|CH2 feedback+ of sensor|F2-|CH2 feedback- of sensor 79 +|FG2|CH2 sensor grounding|((( 80 +* 81 +)))| 82 + 83 += **4 Wiring** = 84 + 116 116 (% style="text-align:center" %) 117 -[[image: image-20220705162452-1.jpeg||height="508" width="740"class="img-thumbnail"]]86 +[[image:LX3V-2WT V2.0_html_fca48acd721ccf71.png||class="img-thumbnail" height="468" width="600"]] 118 118 119 -**✎Note:** 88 +**✎Note: ** 120 120 121 - *Impedance200Ω.122 - *Sensors90 +1. Impedance of the weighing sensor is greater than 50 Ω. 91 +1. Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected. 123 123 124 -= **5 B ufferregister(BFM)** =93 += **5 BFM instruction** = 125 125 126 -== BFM list == 95 +== **5.1 BFM list** == 127 127 128 -|=(% colspan="2" %)**BFM number**|=(% rowspan="2" %)**Power-off hold**|=(% rowspan="2" %)((( 129 -**Read/** 97 +(% class="table-bordered" %) 98 +|(% colspan="2" %)**BFM**|(% style="width:77px" %)**Latched**|(% style="width:101px" %)**Read/ Write**|(% style="width:159px" %)**Function**|(% style="width:82px" %)**Default**|(% style="width:92px" %)**Range**|(% style="width:486px" %)**Description** 99 +|(% colspan="2" %)0|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Model|(% style="width:82px" %)5012|(% style="width:92px" %) |(% style="width:486px" %)LX3V-2WT model number 100 +|(% colspan="2" %)1|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)System version|(% style="width:82px" %)15004|(% style="width:92px" %) |(% style="width:486px" %)Software & hardware version 101 +|2|42|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Unipolar/ Bipolar|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)((( 102 +0: bipolar 130 130 131 -**write** 132 -)))|=(% rowspan="2" style="width: 182px;" %)**Register name**|=(% rowspan="2" style="width: 75px;" %)**Default**|=(% rowspan="2" style="width: 134px;" %)**Range**|=(% rowspan="2" style="width: 466px;" %)**Illustrate** 133 -|**CH1**|**CH2** 134 -|(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT 135 -|(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number 136 -|#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)((( 137 -* 0: Bipolar 138 -* 1: Unipolar 104 + 105 +((( 106 +5: 150 Hz; 107 + 108 +6: 300 Hz; 109 + 110 +7: 600 Hz; 111 + 112 +8: 960 Hz; 113 + 114 +9: 2400 Hz; 115 + 116 +1: unipolar 139 139 ))) 140 -|#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)((( 141 -* 0: 7.5HZ 142 -* 1: 10HZ 143 -* 2: 25HZ 144 -* 3: 50HZ 145 -* 4: 60HZ 146 -* 5: 150HZ 147 -* 6: 300HZ 148 -* 7: 600HZ 149 -* 8: 960HZ 150 -* 9: 2400HZ 151 -* 10 to 4800: 10Hz to 4800Hz 152 152 ))) 153 -|#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description" 154 -|#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)((( 155 -A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 119 +|3|43|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Frequency|(% style="width:82px" %)1|(% style="width:92px" %)0-9|(% style="width:486px" %)((( 120 +0: 7.55 Hz; 156 156 157 -* 0 means normal without error 158 -* 1 means there is an error state. 159 -* #45: Reserved 160 -* b0: Abnormal power supply 161 -* b1: Hardware failure 162 -* b2: CH1 conversion error 163 -* b3: CH2 conversion error 164 -* b4: CH1 input calibration parameter error 165 -* b5: CH2 input calibration parameter error 166 -* Others: Reserved 122 +1: 10 HZ; 123 + 124 +2: 25 Hz; 125 + 126 +3: 50 Hz; 127 + 128 +4: 60 Hz; 167 167 ))) 168 -| #6|#46|X|R/W|(% style="width:182px" %)Tarereading|(% style="width:75px" %)0|(% style="width:134px" %)0to 1|(% style="width:466px" %)(((169 - Readthecurrent average valueas the tare weight value.130 +|4|44|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)State|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 131 +b0: CH1 no-load; 170 170 171 -* 0: Normal (invalid). 172 -* 1: Execute tare setting, then reset to 0. 173 -* Others: Invalid. 133 +b1: CH2 no-load; 134 + 135 +b2: CH1 overload; 136 + 137 +b3: CH2 overload; 138 + 139 +b4: CH1 measured value is stable; 140 + 141 +b5: CH2 measured value is stable; 142 + 143 +b6-b15: Reserved; 144 + 145 +BFM 44: Reserved; 174 174 ))) 175 -| #7|#47|O|R/W|(% style="width:182px" %)(((176 - Grossweight/netweigh147 +|5|45|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Error Code|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 148 +It is the data register for all error states, and each error status is displayed in the corresponding bit, possibly with multiple error states 177 177 178 -display 179 -)))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)((( 180 -Choose to display the current weight as gross weight (K0) or net weight (K1). 150 +0: No error; 181 181 182 -* 0: display gross weight. 183 -* 1: display net weight. 184 -* 0xF: Channel closed 152 +1: Error; 153 + 154 +b0: Power supply error; 155 + 156 +b1: Hardware error; 157 + 158 +b2: CH1 conversion error; 159 + 160 +b3: CH2 conversion error; 161 + 162 +B4 :CH1 input calibration parameter error 163 + B5 :CH2 input calibration parameter error 164 + 165 +Other bit: Reserved; 166 + 167 +BFM45: Reserved; 185 185 ))) 186 -| #8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((187 - Thecalibration is to makethe module match theweightvalueofthe load cellof theweighing module. The defaultvalue is 0.169 +|6|46|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Tare weight Preset|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)((( 170 +Use average weight as tare weight: 188 188 189 -* 0x0001: CHI zero instruction. 190 -* 0x0002: CH1 weight base point instruction. 191 -* 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above) 192 -* 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above) 172 +0: Disabled 193 193 194 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0. 174 +1: Set tare weight then reset to 0; 175 + 176 +Others : Reserved; 195 195 ))) 196 -|#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)((( 197 -* #49: Reserved 198 -* 1: Reset CH1 199 -* 2: Reset CH2 200 -* 3: Reset all channels 201 -* Others: no action 178 +|7|47|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Gross/Net weight|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 179 +Display gross weight or net weight 180 + 181 +0: Gross weight; 182 + 183 +1: Net weight; 184 + 185 +Others: Channels invalid; 202 202 ))) 203 -|#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change 204 -|#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change 205 -|#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms. 206 -|#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)((( 207 -* 0: Disable the zero tracking function 208 -* Others: Set the zero tracking range (absolute value) 187 +|8|48|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Weight Calibration|(% style="width:82px" %)0|(% style="width:92px" %) |(% style="width:486px" %)((( 188 +Defaulted to 0 189 + 190 +0x0001:Channels 1 set to 0 191 + 192 +0x0002:Channels 1 calibrating: 193 + 194 +0x0003:CH1 without weight 195 + 196 +calibration 197 + 0x0004:CH1 modified calibration 198 + 199 +parameter error 200 + 201 +Step1: Remove all load ; 202 + 203 +Step2: BFM #8 (#48) set to 0x0001; 204 + 205 +Step3: Add known weight; 206 + 207 +Step4: Write known weight to BFM#23 (#63); 208 + 209 +Step5: BFM #8 (#48) set to 0x0002;Calibration without weight: 210 + 211 +Step1: Do not put any weight on the load cell; 212 + 213 +Step2: Write the maximum range of the sensor to #23; 214 + 215 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places; 216 + 217 +Step4: The value of #8 is written as 0x0003. 218 + 219 +Modify calibration parameters: 220 + 221 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38; 222 + 223 +Step2: The value of #8 is written as 0x0004. 224 + 225 +Remark: After writing the value to BFM#8 using the device monitoring, it will be automatically reset to 0. 209 209 ))) 210 -|#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)((( 211 -* 0: Disable automatic reset at startup 212 -* 1: ±2%MAX 213 -* 2: ±5%MAX 214 -* 3: ±10%MAX 215 -* 4: ±20%MAX 227 +|9|49|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Reset to default|(% style="width:82px" %)0|(% style="width:92px" %)0-3|(% style="width:486px" %)((( 228 +#49: Keep unused 229 + 230 +1: Reset CH1; 2: Reset CH2 231 + 232 +3: Reset all channels 233 + 234 +Other: No action 216 216 ))) 217 -|#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)((( 218 -* 0:<1V/V 219 -* 1:<125mV/V 220 -* 2:<62.5mV/V 221 -* 3:<31.25V/V 222 -* 4:<15.625mV/V 223 -* 5:<7.812mV/V 236 +|10|50|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering mode|(% style="width:82px" %)0|(% style="width:92px" %)0-1|(% style="width:486px" %)Recalibration required after change 237 +|11|51|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Filtering strength|(% style="width:82px" %)3|(% style="width:92px" %)0-7|(% style="width:486px" %)Recalibration required after change 238 +|12|52|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking intensity|(% style="width:82px" %)0|(% style="width:92px" %)0-200|(% style="width:486px" %)((( 239 +0: Zero tracking disabled 224 224 225 - **✎Note:** Recalibrationis required aftersetting. (Onlysupportedby version13904and above)241 +Other: Intensity of zero tracking 226 226 ))) 227 -| #16|#56|(%rowspan="2" %)(((228 - 243 +|13|53|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No Load Zero tracking range|(% style="width:82px" %)0|(% style="width:92px" %)1-300|(% style="width:486px" %)((( 244 +0: No limit 229 229 230 -X 231 -)))|(% rowspan="2" %)((( 232 - 246 +Others: Up limit 247 +))) 248 +|14|54|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)No load Zeroing at startup|(% style="width:82px" %)0|(% style="width:92px" %)0-4|(% style="width:486px" %)((( 249 +0: Disabled; 233 233 234 -R 235 -)))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 236 --2147483648 to 251 +1: ±2%MAX; 237 237 238 -2147483647 239 -)))|(% style="width:466px" %)((( 240 -Average weight display value (low word) 253 +2: ±5%MAX; 254 + 255 +3: ±10%MAX; 256 + 257 +4: ±20%MAX; 241 241 ))) 242 -|#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)((( 243 -Average weight display value (high word) 244 -))) 245 -|#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)((( 246 -The setting range is K1 to K50, and the default value is K5. 259 +|15|55|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Sensor sensitivity setting|(% style="width:82px" %)4|(% style="width:92px" %)0-5|(% style="width:486px" %)((( 260 +0: < 1V/V 247 247 248 -When the set value exceeds the range, it is automatically changed to the critical value K1 or K50. 262 +1: < 125mV/V 263 + 264 +2: < 62.5mV/V 265 + 266 +3: < 31.25V/V 267 + 268 +4: < 15.625mV/V 269 + 270 +5: <7.812 mV/V 271 + 272 +Note: Please recalibrate after setting 273 + 274 +(This function only is available in Software & hardware version 13904 or later) 249 249 ))) 250 -|#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 251 --2147483648 to 276 +|16|56|(% rowspan="2" style="width:77px" %)X|(% rowspan="2" style="width:101px" %)R|(% style="width:159px" %)Average weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)Signed 32-bit integer|(% style="width:486px" %)Average weight (Low word) 277 +|17|57|(% style="width:159px" %)Average weight H|(% style="width:486px" %)Average weight (High word) 278 +|18|58|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sliding average|(% style="width:82px" %)5|(% style="width:92px" %)1-50|(% style="width:486px" %)Setting range: K1~~K50; settings outside of this range will be changed to the nearest value in the range. 279 +|19|59|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Tare weight L|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)((( 280 +-2147483648~~ 252 252 253 253 2147483647 254 -)))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction. 255 -|#20|#60|R/W|(% style="width:182px" %)Tare weight value H 256 -|#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms. 257 -|#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4. 258 -|#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)((( 259 -Weight value calibration L 260 -)))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)((( 261 --2147483648 to 283 +)))|(% rowspan="2" style="width:486px" %)User can write or read tare weight by command #7 284 +|20|60|(% style="width:159px" %)Tare weight H 285 +|21|61|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)CH1 stability check time|(% style="width:82px" %)200|(% style="width:92px" %)0-20000|(% style="width:486px" %)Stability inspection time, used in conjunction with the stability inspection range, unit: ms 286 +|22|62|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Stability inspection range|(% style="width:82px" %)1|(% style="width:92px" %)1-100|(% style="width:486px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, then the current weight fluctuation range is within 100 and lasts for 200ms, then the value is considered stable, otherwise it is considered unstable, and the stability flag is displayed on BFM#4 287 +|23|63|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Weight value adjustment L|(% rowspan="2" style="width:82px" %)1000|(% rowspan="2" style="width:92px" %)((( 288 +-2147483648~~ 262 262 263 263 2147483647 264 -)))|(% rowspan="2" style="width:46 6px" %)(((265 - Input weight basepoint weightwith calibrationweight291 +)))|(% rowspan="2" style="width:486px" %)((( 292 +Please refer to #8 266 266 267 - Inputsensorrange without calibrationweight294 +With weight calibration, enter the weight base point weight, without weight calibration enter the sensor range 268 268 ))) 269 -|#24|#64|R/W|(% style="width:182px" %)((( 270 -Weight value calibration H 271 -))) 272 -|#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)((( 273 --2147483648 to 296 +|24|64|(% style="width:159px" %)Weight value adjustment H 297 +|25|65|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% style="width:159px" %)Maximum L|(% rowspan="2" style="width:82px" %)32767|(% rowspan="2" style="width:92px" %)((( 298 +-2147483648~~ 274 274 275 275 2147483647 276 -)))|(% rowspan="2" style="width:46 6px" %)Youcouldset the maximumweightvalue.Whenthe measured value exceedstheset value, an error code will be recorded.277 -| #26|#66|R/W|(% style="width:182px" %)Weightupper limitH278 -| #27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((279 - Zero judgment check301 +)))|(% rowspan="2" style="width:486px" %)User can set the max value, it will record the error code when measured value exceed set value 302 +|26|66|(% style="width:159px" %)Maximum H 303 +|27|67|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection up limit|(% rowspan="2" style="width:82px" %)10|(% rowspan="2" style="width:92px" %)((( 304 +-2147483648~~ 280 280 281 -upper limit L 282 -)))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)((( 283 --2147483648 to 284 - 285 285 2147483647 286 -)))|(% rowspan="4" style="width:46 6px" %)(((287 -Zero pointjudgment function:307 +)))|(% rowspan="4" style="width:486px" %)((( 308 +Zero weight detection function, used to tell if all loads have been removed. 288 288 289 - Youcouldusethezero pointjudgmentfunctionto know thattheitem hasbeenremovedfrom the weighingmodule. Youcould judgesthatthemeasurement value isstableandthe Bit is1, which means that theitem hasbeen removedfrom the weighing module, and you could perform the next step at this time.(The zero point weight Bit in the zero point judgment range is 1)310 +Reading of the bit to indicate stable reading becoming 0 means all loads have been removed. 290 290 ))) 291 -| #28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H292 -| #29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)ZerojudgmentchecklowerlimitL|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((293 --2147483648 to312 +|28|68 313 +|29|69|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Zero weight detection down limit|(% rowspan="2" style="width:82px" %)-10|(% rowspan="2" style="width:92px" %)((( 314 +-2147483648~~ 294 294 295 295 2147483647 296 296 ))) 297 -|#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H 298 -|#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)((( 299 -* 0: Default value. Additional functions are not enabled 300 -* 1: Enable filter reset function. 301 -* Others: Reserved 302 -))) 303 -|#32|#72|X|R/W|(% style="width:182px" %)((( 304 -Additional functions 318 +|30|70 319 +|31|71|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function options|(% style="width:82px" %)0|(% style="width:92px" %)0~~1|(% style="width:486px" %)((( 320 +0: Default, disable additional functions; 305 305 306 -Parameter 1 307 -)))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)((( 322 +1: Enable filter reset function. 323 + 324 +Other: Reserved 325 +))) 326 +|32|72|(% style="width:77px" %)X|(% style="width:101px" %)R/W|(% style="width:159px" %)Additional function parameters|(% style="width:82px" %)0|(% style="width:92px" %)0~~100|(% style="width:486px" %)((( 308 308 Enable filter reset function: 309 309 310 -* 0: The default value does not work 311 -* 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering. 329 +0: Default; 330 + 331 +0~~100: The number of sampling cycles to wait for the filter to restart. 332 + 333 +The value collected during the accumulation of the average, as the initial value of filtering 312 312 ))) 313 -| #33|#73|X|R|(% style="width:182px" %)Digital value L|(%rowspan="2" style="width:75px" %)0|(%rowspan="2" style="width:134px" %)-|(%rowspan="2" style="width:466px" %)DigitalquantitycollectedbyADC314 -| #34|#74|X|R|(% style="width:182px" %)Digital value H315 -| #35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((316 --3.402823E+38 335 +|33|73|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)The number of ADC acquisitions 336 +|34|74|(% style="width:77px" %)X|(% style="width:101px" %)R|(% style="width:159px" %)Digital value H|(% style="width:82px" %) |(% style="width:92px" %) |(% style="width:486px" %) 337 +|35|75|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter A|(% rowspan="2" style="width:82px" %)1|(% rowspan="2" style="width:92px" %)((( 338 +-3.402823E+38~~ 317 317 318 -to 3.402823E+38 319 -)))|(% rowspan="4" style="width:466px" %)Described in CH1: 320 -After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1. 321 -|#36|#76 322 -|#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)((( 323 --3.402823E+38 340 +3.402823E+38 341 +)))|(% rowspan="4" style="width:486px" %)((( 342 +Explain by CH1: 324 324 325 -to 3.402823E+38344 +After modifying the calibration parameters, #8 does not write 4, which is only displayed, not used for weight value calculation, and does not save after power off; #8 After writing 4, if the parameter range is correct, write and save it for weight value calculation 4 Error code Bit4 is set to 0, if the parameter range is wrong, no write operation will be performed, #4 error code Bit4 is set to 1. 326 326 ))) 327 -|#38|#78 328 -|#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute. 329 -For example: Modified to 1942 represent 1.942mV/V. 330 -|#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)((( 346 +|36|76 347 +|37|77|(% rowspan="2" style="width:77px" %)O|(% rowspan="2" style="width:101px" %)R/W|(% rowspan="2" style="width:159px" %)Calibration parameter B|(% rowspan="2" style="width:82px" %)0|(% rowspan="2" style="width:92px" %)((( 348 +-3.402823E+38~~ 349 + 350 +3.402823E+38 351 +))) 352 +|38|78 353 +|39|79|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor sensitivity (specification)|(% style="width:82px" %)2000|(% style="width:92px" %)0-32767|(% style="width:486px" %)((( 354 +The default setting of 2000 represents 2mV/V, and calibration without weights needs to set the sensor sensitivity accuracy. The sensitivity range can be set to 0~~32.767mV/V, the sensor sensitivity BFM#39 enters a negative value, and it is directly converted to 32767 for execution. 355 + 356 +Example: Modified to 1942 means 1.942mV/V. 357 +))) 358 +|40|80|(% style="width:77px" %)O|(% style="width:101px" %)R/W|(% style="width:159px" %)Sensor feedback voltage L|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)((( 331 331 Write: 332 332 333 -* 0: not displayed 334 -* 1: Display the current sensor feedback voltage in real time 335 -* 2: Display the zero-point voltage during calibration 336 -* 3: Display the voltage reading of the applied weight during calibration: 361 +0: do not display 337 337 338 -Displays the low bit of the voltage value. Unit: uV. 363 +1: Real-time display of current sensor feedback voltage 364 + 365 +2: Display the zero point voltage during calibration 366 + 367 +3: Display the voltage of the weight applied during calibration 368 + 369 +Read: 370 + 371 +Display the low digit of the voltage value in uV. 339 339 ))) 340 -| #41|#81|X|R|(% style="width:182px" %)(((341 - Sensor feedback373 +|41|81|(% style="width:77px" %)O|(% style="width:101px" %)R|(% style="width:159px" %)Sensor feedback voltage H|(% style="width:82px" %)0|(% style="width:92px" %)-|(% style="width:486px" %)((( 374 +Read: 342 342 343 -voltage H344 -))) |(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.376 +Display the high digit of the voltage value in uV. 377 +))) 345 345 346 -**✎Note:** 379 +**✎Note: ** 347 347 348 - *Omeans retentive type.349 - *Xmeans non-retentive type.350 - *Rmeansreadable data.351 - *Wmeanswritabledata.381 +1. O: yes; 382 +1. X: no; 383 +1. R: read; 384 +1. W: write; 352 352 353 -== **BFM description** == 386 +== **5.2 Buffer (BFM) description** == 354 354 355 -**BFM0: Module code** 388 +* **BFM0: Module code** 356 356 357 -LX3V-2WT modelcode: 5012390 +LX3V-2WT V3 code: 5012 358 358 359 -**BFM1: module version** 392 +* **BFM1: module version** 360 360 361 - The software versionisdisplayed in decimal, which is used to indicate the software version of the expansion module.394 +Module version (decimal) 362 362 363 -** BFM2: Polarity**396 +**Example** 364 364 365 -F or bipolar,the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion fromanalog valueto digital value is signed,sofor bipolar signal the value could be minus.398 +BFM1=120, means V1.2.0 366 366 367 -**BFM 3:Sampling frequency**400 +* **BFM2: Polarity** 368 368 369 - The frequencyofinput signalreading,thelowerthefrequencyis,themoretablethe valueit gets,andthehighertheprecisionis, butthe lowerspeedgets.402 +For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus. 370 370 371 -|=(% scope="row" %)**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)**|=**Setting**|=**Sample frequency (HZ)**|=**Sample precision (Bits)** 372 -|=0|7.5|23.5|5|150|21.5 373 -|=1|10|23.5|6|300|21 374 -|=2|25|23|7|600|20.5 375 -|=3|50|22|8|960|20 376 -|=4|60|22|9|2400|17.5 377 -|=4800|4800|15|-|-|- 404 +* **BFM3: Sampling frequency** 378 378 379 - **BFM4:State code**406 +The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets. 380 380 381 -|=(% rowspan="2" scope="row" %)**Bit NO.**|(% colspan="2" %)**Status code** 382 -|=**1**|**0** 383 -|=Bit0|CH1 zero weight (no load)|CH1 is not empty 384 -|=Bit1|CH2 zero weight (no load)|CH2 is not empty 385 -|=Bit2|((( 386 -CH1 exceeds weight upper limit (overload) 408 +(% class="table-bordered" %) 409 +|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)** 410 +|0|7.5|23.5|5|150|21.5 411 +|1|10|23.5|6|300|21 412 +|2|25|23|7|600|20.5 413 +|3|50|22|8|960|20 414 +|4|60|22|9|2400|17.5 387 387 388 -**✎Note: **The upper limit weight is set by #27 and #28. 389 -)))|CH1 is not overloaded 390 -|=Bit3|((( 391 -CH2 exceeds weight upper limit (overload) 416 +* **BFM4: State code** 392 392 393 -**✎Note: **The upper limit weight is set by #27 and #28. 394 -)))|CH2 is not overloaded 395 -|=Bit4|CH1 measurement value is stable|CH1 measurement value is unstable 396 -|=Bit5|CH2 measurement value is stable|CH2 measurement value is unstable 397 -|=Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully 398 -|=Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully 399 -|=((( 400 -Bit8 418 +(% class="table-bordered" %) 419 +|(% rowspan="2" %)**Bit No.**|(% colspan="2" %)**Description** 420 +|**1**|**0** 421 +|Bit 0|CH1 no-load|CH1 load 422 +|Bit 2|CH1 over-load|CH1 not over-load 423 +|Bit 4|CH1 stable|CH1 unstable 424 +|Bit 6|CH1 uncalibrated/calibrated error|CH1 calibration successful 425 +|((( 426 +Bit 8 401 401 402 -Bit9 428 +Bit 9 403 403 )))|((( 404 -* 00: no error 405 -* 10: The weight of the base point of weight is too large 406 -)))|((( 407 -* 01: No-load calibration 408 -* 11: Uncalibrated 409 -))) 410 -|=((( 411 -Bit10 430 +00: no error 412 412 413 - Bit11432 +10: The base point of the weight is too heavy 414 414 )))|((( 415 -* 00: no error 416 -* 10: The weight of the base point of weight is too large 417 -)))|((( 418 -* 01: No-load calibration 419 -* 11: Uncalibrated 434 +01: No-load calibration 435 + 436 +11: Not calibrated 420 420 ))) 421 -| =Bit12|(((438 +|Bit 12|((( 422 422 CH1 exceeds the sensor range 423 423 424 -**✎Note:** Determined by sensor feedback voltage 425 -)))|CH1 is within the sensor range 426 -|=Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights 427 -|=Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights 441 +Note: Determined by sensor feedback voltage 442 +)))|CH1 within the sensor range 428 428 429 -**BFM5: Error code** 444 +* **BFM5: Error code** 430 430 431 -|=**Bit NO.**|=**Content**|=**Error state** 432 -|Bit0|K1 (H0001)|Abnormal power supply 433 -|Bit1|K2 (H0002)|Hardware fault 434 -|Bit2|K4 (H0004)|CH1 conversion error 435 -|Bit3|K8 (H0008)|CH2 conversion error 436 -|Bit4|K16 (H0010)|CH1 write calibration parameter error 437 -|Bit5|K32 (H0020)|CH2 write calibration parameter error 438 -|Others|(% colspan="2" %)Reserved 439 -|BFM#45|(% colspan="2" %)Reserved 440 -(% class="info" %)|(% colspan="3" %)((( 441 -**✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state. 442 -))) 446 +(% class="table-bordered" %) 447 +|**Bit No.**|**Value**|**Error**|(% colspan="2" %)**Bit No.**|**Value**|**Error** 448 +|bit 0|K1(H0001)|Power failure|(% colspan="2" %)bit 1|K1(H0001)|Hardware failure 449 +|bit 2|K4(H0004)|CH1 conversion error|(% colspan="2" %)bit 3|K8(H0008)|CH2 conversion error 450 +|bit 4|K16(H0010)|CH1 write calibration parameter error|(% colspan="2" %)bit 5|K32(H0020)|CH2 write calibration parameter error 451 +|Other|(% colspan="3" %)Reserved|(% colspan="2" %)BFM#45|Reserved 452 +|(% colspan="7" %)**✎Note: **The data register that stores all error states. Each error state is determined by a corresponding bit. More than two error states may occur at the same time. 0 means normal and no error, and 1 means there is a state. 443 443 444 -**Tare setting :**CH1-BFM6, CH2-BFM46454 +* **BFM6: Tare weight setting** 445 445 446 - Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0.Select the current weight value (BFM16-17) as the weight valuefor thetareweight(BFM19-20).TakesCH1asan example.456 +Set the current weight value (BFM16-17) as a tare (BFM19-20) weight. Every bit represents a different channel, which is set to 1 to mean enabled, reset to 0 after being set. 447 447 448 - Thecurrentweight value is100, after taresetting:458 +**Use CH1 as example** 449 449 450 -* If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100; 451 -* If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0. 460 +The current weight is 100, after setting tare weight; 452 452 453 - **BFM8:Weightcalibrationinstruction**462 +If it displays gross weight (BFM7 = 0) currently, the tare weight (BFM19-20) will become 100, the current weight is still 100; 454 454 455 - Stepsasfollows. (DescribedwithCH1)464 +If it displays net weight (BFM7 = 1), the tare weight (BFM19-20) will be original value + current weight value, the current weight value becomes zero; 456 456 457 -* Calibration with weights 458 -** Step1: Do not put any weights on the load cell. 459 -** Step2: Write 0x0001 to #8. 460 -** Step3: Add standard weights to the load cell. 461 -** Step4: Write the weight of the current weight on the chassis into #23. 462 -** Step5: Write 0x0002 to #8. 463 -* Weightless calibration 464 -** Step1: Do not put any weights on the load cell. 465 -** Step2: Write the maximum range of the sensor into #23. 466 -** Step3: Write the sensor sensitivity into #39, accurate to three decimal places. 467 -** Step4: Write 0x0003 to #8. 468 -* Modify calibration parameters: 469 -** Step1: Modify the calibration parameter values in BFM#35 to BFM#38; 470 -** Step2: Write 0x0004 to #8. 466 +* **BFM8: Adjust the weight command. User adjustment steps: (describe with CH1)** 471 471 472 -(% class="box infomessage" %) 473 -((( 474 -**✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0. 475 -))) 468 +There is a weight calibration: 476 476 477 - **BFM11:filteringstrength**470 +Step1: Do not put any weight on the load cell; 478 478 472 +Step2: #8 value is written as 0x0001; 473 + 474 +Step3: Add standard weights to the load cell; 475 + 476 +Step4: Write the weight of the current weight on the chassis to #23; 477 + 478 +Step5: The #8 value is written as 0x0002. 479 + 480 +Calibration without weight: 481 + 482 +Step1: Do not put any weight on the load cell; 483 + 484 +Step2: Write the maximum range of the sensor to #23; 485 + 486 +Step3: Write the sensor sensitivity to #39, accurate to three decimal places; 487 + 488 +Step4: The #8 value is written as 0x0003. 489 + 490 +Modify calibration parameters: 491 + 492 +Step1: Modify the calibration parameter values in BFM#35~~BFM#38; 493 + 494 +Step2: The #8 value is written as 0x0004. 495 + 496 +Remarks: After using the device monitoring to write a value to BFM#8 or BFM#48, it will automatically reset to 0. 497 + 498 +* **BFM11: filtering strength** 499 + 479 479 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease. 480 480 481 -**BFM12: zero tracking interval**502 +* **BFM12: zero tracking strength** 482 482 483 - BFM#12isusedinconjunctionwithBFM#13.WhenBFM#13 is not0,BFM#12indicatestheintervalbetween thecurrentautomaticweightresetandthe nextautomaticresetto preventcontinuousreset.504 +Zero-tracking is to have a constant 0 when there’s no load. Zero tracking intensity means the weight counts 0 when it’s within the range to reduce the influence of temperature drift. 484 484 485 -(% class="box infomessage" %) 486 -((( 487 -**✎Note:** This function is generally used to correct sensor temperature drift. 488 -))) 506 +(% class="table-bordered" %) 507 +|**Setting**|**Description**|**Note** 508 +|0|Zero tracking OFF|Default 509 +|1-200|Range of weight value|10 means ± 10 510 +|Others|Reserved| 511 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required. 489 489 490 -**BFM13: Zero tracking range**513 +* **BFM13:Range of Zero tracking** 491 491 492 - The accumulationrange of zeropointtracking.Ifthe accumulationexceedsthisrange, the tracking willnotcontinue.515 +Accumulated range of zero tracking, stop tracking when out of range 493 493 494 -|=(% scope="row" style="width: 95px;" %)**Settings**|=(% style="width: 612px;" %)**Description**|=(% style="width: 369px;" %)**Remark** 495 -|(% style="width:95px" %)0|(% style="width:612px" %)Do not enable zero tracking|(% style="width:369px" %)Default 496 -|(% style="width:95px" %)1 to 300|(% style="width:612px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:369px" %)((( 497 -If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared. 498 -))) 499 -(% class="info" %)|(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required. 517 +Table 5‑6 500 500 501 -E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed. 519 +(% class="table-bordered" %) 520 +|**Setting**|**Description**|**Note** 521 +|0|Disable zero tracking|Default 522 +|1-300|Range of weight value|10 means ±10 523 +|Others|Reserved| 524 +|(% colspan="3" %)**✎Note: **This feature can be disabled when high precision is not required. 502 502 503 -** BFM15: Set the AD chip gain**526 +**Example** 504 504 505 - **I**tcanbe setaccordingto the sensor range.After the BFMisset, itneedstobe re-calibrated.528 +Setting value is 100, when the position within ± 100, it will be read as no-load. 506 506 507 -|=**BFM15**|=**voltage range**|=**Sensor sensitivity** 508 -|0|±5V|<1V/V 509 -|1|±625mV|<125mV/V 510 -|2|±312.5mV|<62.5mV/V 511 -|3|±156.2mV|<31.25mV/V 512 -|4|±78.125mV|<15.625mV/V 513 -|5|±39.06mV|<7.812mV/V 530 +* **BFM15: Set AD chip gain** 514 514 515 - ==**Functiondescription**==532 +It can be set according to the sensor range 516 516 517 -**Net weight measurement function** 534 +(% class="table-bordered" %) 535 +|**BFM15**|**Voltage range**|**Sensor sensitivity** 536 +|0|± 5V|< 1V/V 537 +|1|± 625mV|< 125mV/V 538 +|2|±312.5 mV|< 62.5mV/V 539 +|3|±156.2 mV|< 31.25V/V 540 +|4|±78.125 mV|< 15.625mV/V 541 +|5|±39.06 mV|<7.812 mV/V 518 518 519 - Youcould choose whether the measured weight is net weight or gross weight.Net weight refers to the weight of the producttself, that is, the actual weightof the product after removingthe weight of the outer packaging. The weightof the outerpackaging is generally calledthe tare weight, and the gross weight is the total weight, which refers tonet weight plustare weight.543 +== **5.3 Function Instructions** == 520 520 521 -* Tare weigh:t Refers to the weight of the outer packaging. 522 -* Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. 523 -* Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight) 524 -* Gross weight = net weight + tare weight 545 +**Net weight measurement** 525 525 526 - E.g:There isaproduct that is10KG,thecartonit ispackedinweighs0.2KG,andthetotalweight is10.2KG.547 +It can be set to measure net weight or gross weight. The Net weight means the weight of the product itself, that is, the actual weight of the product without its external packaging. 527 527 528 -* Net weight=10KG 529 -* Tare weight=0.2KG 530 -* Gross weight=10.2KG 549 +The weight of the packaging is called the tare weight. The gross weight is the total weight, namely the net weight plus the tare weight. 531 531 532 -E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight). 551 +1. Tare weight: weight of the packaging 552 +1. Net weight: the weight of the product, excluding the packaging. 553 +1. Gross weight: the net weight plus the tare of the product. 554 +1. Gross weight= net weight + tare weight. 533 533 534 -* Read the tare value 535 -** Write H0000 in BFM7; 536 -** Place the package on the CH1 weighing module; 537 -** Write H0001 in BFM6, and take the current package weight as the tare weight. 538 -* Set BFM7=H0001 556 +**Example 1** 539 539 540 - **Stabilitycheck**558 +A product weighs 10kg and the carton contains it weighs 0.2kg, then its gross weight is 10.2 kg (net weight=10kg, tare weight=0.2kg, gross weight=10.2kg) 541 541 542 - When placing the itemon the weighing moduleto measure the weight, the user can use the stability check function to know that the current measurement value is stable.560 +**Example2** 543 543 544 -* If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1. 545 -* When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again. 562 +Use the measured value at CH1 as the net weight. If you know the weight of the packaging already, you can skip the step of reading tare weight. 546 546 547 - E.g:Thestability check time is set to 200ms, and thestability checkrangeis 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured valuewill beset to 0. When the beatingrange is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).564 +* Read the tare weight 548 548 549 - **Zeropointjudgment**566 +Step 1: Write H0000 into BFM7. 550 550 551 - You could usethezeropointjudgmentfunction to know that the item has been removed from the weighing module. Youcould judge that themeasurement value is stable and the Bit is 1, which means that the item has been removed from the weighingmodule, andyou could performthenextstep at this time. (The zeropoint weight Bit in the zero point judgmentrangeis 1).568 +Step 2: Place the packaging on the CH1 load cell. 552 552 553 - **Filterfunction**570 +Step 3: Write H0001 into BFM6 to take the weight of the packaging as the tare weight. 554 554 555 - Theaverage value isthefunctionofsumming and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value.The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.572 +* Set BFM7 = H00F1. 556 556 574 +**Standstill check function** 575 + 576 +When an object is placed on the load cell to measure its weight, you can use the standstill check function to know whether the current reading has been stabilized. 577 + 578 +* If the measured value shifts within the range (BFM 22) of standstill check set up by the user, BFM4’bit 4 will be set to “1”. 579 +* If the measured value shifts beyond the range for standstill check set up by the user, bit4 will be set to “0”. They will be set to “1” again when the range is returned to the set range. 580 + 581 +**Example** 582 + 583 +The measuring time is 10ms, the times of standstill check is 10, and the range for standstill check is 1,000. When the range for standstill check exceeds 1,000, the reading is considered unstable, i.e. BFM4’bit4 will be set to 0. When the measuring time is within 100ms (10 × 10ms) and the range returns to be within 1,000, BFM4’bit4 will be set to 1 again. We recommend you check if the measured value is stable enough before operating it. 584 + 585 +* **Zero detection function** 586 + 587 +Users can use this function to know whether the object has been removed from the load cell. If the BFM4’bit4 is 1, and the BFM4’bit0 and bit1 are 1 as well, the object has been removed from the load cell already, and you can proceed to the next step. 588 + 589 +* **Filtering** 590 + 591 +This setting is used to exclude noises from the readings, which are introduced by environmental factors. 592 + 557 557 = **6 Example** = 558 558 559 -**Current state of weight** 595 +* **Current state of weight** 560 560 561 561 (% style="text-align:center" %) 562 -[[image: image-20220622145646-14.png||height="51" width="330"class="img-thumbnail"]]598 +[[image:LX3V-2WT V2.0_html_6bc45b23c2b79282.png||class="img-thumbnail" height="77" width="500"]] 563 563 564 -Read the current weighingstate BFM4and judge it by Bit state. Fordetails, please refer tothe description of BFM4 in "5.2Register Description".600 +Read the current state BFM4. More information, please refer to __[[5.2>>path:#_5.2_Buffer_(BFM)]]__ 565 565 566 -**Get current weight value** 602 +* **Get current weight value** 567 567 568 568 (% style="text-align:center" %) 569 -[[image: image-20220622145005-7.png||height="51" width="385"class="img-thumbnail"]]605 +[[image:LX3V-2WT V2.0_html_5f4a500276a0a3a0.png||class="img-thumbnail" height="66" width="500"]] 570 570 571 -Write theaverage weight value (BFM16)of CH1 inthe weighing moduleintoD0.607 +Write average weight value (BFM16) to D0 572 572 573 -**Calibrating weight** 609 +* **Calibrating weight** 574 574 575 -*In the new version, the first step can also be used for manual reset. 611 +(% style="text-align:center" %) 612 +[[image:LX3V-2WT V2.0_html_c4b24548535207d3.png||class="img-thumbnail" height="252" width="500"]] 576 576 577 - The adjustmentisto makethemodule match the weightvalueof the load cellof theweighing module. The adjustmentsteps are as follows. Described with CH1.614 +Step 1: Remove all weights; 578 578 579 -(% style="text-align:center" %) 580 -[[image:image-20220705162540-3.jpeg||height="194" width="779" class="img-thumbnail"]] 616 +Step 2: Write 0x0001 to #8; 581 581 582 - **Tareweightandgrossweight**618 +Step 3: Add known weights; 583 583 620 +Step 4: Write known weights (D2) to #23; 621 + 622 +Step 5: Write 0x0002 to #8 623 + 624 +*In the new version, the step 1 can be used for manual reset. 625 + 626 +Adjustment and calibration are to make sure the weight values of module and the heavy load units of module to be consistent. 627 + 628 +* **Tare weight and gross weight** 629 + 584 584 (% style="text-align:center" %) 585 -[[image: image-20220705162551-4.jpeg||height="289" width="778"class="img-thumbnail"]]631 +[[image:LX3V-2WT V2.0_html_5b9b9b62d33c4a7e.png||class="img-thumbnail" height="293" width="500"]] 586 586 587 - **Filtermode setting**633 +Set value as tare weight by writing K1 to BFM6 588 588 589 - After settingthefilteringmodeandfilteringstrength, you needtocalibrateitagain.635 +Set the value as Net weight by writing K1 to BFM7 590 590 637 +Set the value as gross weight by writing K0 to BFM7 638 + 639 +* **Filter method and strength** 640 + 591 591 (% style="text-align:center" %) 592 -[[image: image-20220705162602-5.jpeg||height="197" width="774"class="img-thumbnail"]]642 +[[image:LX3V-2WT V2.0_html_187c088ffaacd7f1.png||class="img-thumbnail" height="194" width="500"]] 593 593 594 - **Zerotracking**644 +Set filtering by writing value to BFM10 595 595 596 - Zerotrackingisused toreducethetemperaturedriftinterference;646 +Set filtering by writing value to BFM11 597 597 598 - SetZeroTrackingIntensityto0 todisabletracking.SetZero TrackingRange to0 to makeit is unlimited.648 +After setting the filtering mode and filtering strength, need to calibrate again. 599 599 650 +* **Zero tracking** 651 + 600 600 (% style="text-align:center" %) 601 -[[image: image-20220705162610-6.jpeg||class="img-thumbnail"]]653 +[[image:LX3V-2WT V2.0_html_9b603f9448600b12.png||class="img-thumbnail" height="196" width="500"]] 602 602 603 - **Calibrationwithoutweights**655 +Zero tracking is used to reduce the temperature drift interference; 604 604 657 +Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited. 658 + 659 +* **Calibration without weights** 660 + 605 605 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V). 606 606 607 607 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function. 608 608 609 609 (% style="text-align:center" %) 610 -[[image: image-20220705162619-7.jpeg||height="319" width="756"class="img-thumbnail"]]666 +[[image:LX3V-2WT V2.0_html_735f5d0ddc4d01c3.png||class="img-thumbnail" height="391" width="500"]] 611 611 612 -**Modify calibration parameters** 668 +((( 669 +Step1: Write the sensor range in D8 to BFM23: 613 613 671 +Example: measuring range 3kg, D8 value setting 3000 672 + 673 +Step2: write the sensor sensitivity in D9 into BFM39: 674 + 675 +Example: Sensitivity: 1.942mV/V, D9 value set to 1942; 676 + 677 +Step3: write value K4 to BFM8 and confirm to write calibration parameters. 678 +))) 679 + 680 +* **Modify calibration parameters** 681 + 682 +Step1: Write the floating point number in D10 into BFM35~~BFM36; 683 + 684 +((( 685 +Step2: Write the floating point number in D11 into BFM37~~BFM38; 686 + 687 +Step3: Write value K4 to BFM8 and confirm to write calibration parameters. 688 + 614 614 (% style="text-align:center" %) 615 -[[image:image-20220705162627-8.jpeg||height="291" width="761" class="img-thumbnail"]] 690 +[[image:LX3V-2WT V2.0_html_592dd08d03d2ad0d.png||class="img-thumbnail" height="259" width="700"]] 691 +))) 616 616 617 -**✎Note: 693 +**✎Note:** BFM35, BFM36, BFM37, and BFM38 are real number types (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters. 618 618 619 -= **7 Diagnosis 695 += **7 Diagnosis** = 620 620 621 -== Check == 697 +== **7.1 Check** == 622 622 623 623 1. Make sure all cables are connected properly; 624 624 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256. ... ... @@ -626,17 +626,30 @@ 626 626 1. Make sure power supply is working properly; 627 627 1. LX3V CPU unit is in RUN mode; 628 628 629 -== Check error s==705 +== **7.2 Check the error** == 630 630 631 -If the special function module LX3V-2WT 707 +* If the special function module LX3V-2WT V3 does not operate normally, please check the following items. 632 632 633 -* Check the status of the LINK indicator 634 -** Blink: Expansion cables are properly connected. 635 -** Otherwise: Check the connection of the extension cable. 636 -* Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT) 637 -** Light on LX3V-2WT is normal, and 24VDC power is normal. 638 -** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty. 639 -* Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT) 640 -** Blink: Numeric conversion works fine. 641 -** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual. 642 -* Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring. 709 +Check the status of the LINK indicator 710 + 711 +Flashing: The extension cable is connected correctly 712 + 713 +Otherwise: Check the connection of the extension cable. 714 + 715 +* Check the status of the "24V" LED indicator (upper right corner of LX3V-2WT V3) 716 + 717 +Lit: LX3V-2WT V3 is normal, and the 24VDC power supply is normal. 718 + 719 +Otherwise: the 24V DC power supply may be faulty. If the power supply is normal, it is LX3V-2WT V3 fault. 720 + 721 +* Check the status of the "COM" LED indicator (upper right corner of LX3V-2WT V3) 722 + 723 +Flashing: Value conversion is operating normally. 724 + 725 +Otherwise: check buffer memory #5 (error status). 726 + 727 +If any bit (b0, b1, b2) is ON, that is why the COM indicator is off. Detailed description 728 + 729 +Please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual. 730 + 731 +* Check the sensor and measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv. The sensitivity of the sensor can be found on the sensor manual, and the unit is (mv/v). If the voltage at this point exceeds the range, it means the sensor Deformation or wiring error occurred. Measure whether the voltage between F+ and F- is 5V. If it is not 5V, check the sensor wiring.
- image-20220622145005-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -15.0 KB - Content
- image-20220622145005-10.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -62.9 KB - Content
- image-20220622145005-11.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -67.0 KB - Content
- image-20220622145005-12.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.0 KB - Content
- image-20220622145005-13.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -183.1 KB - Content
- image-20220622145005-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.2 KB - Content
- image-20220622145005-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.4 KB - Content
- image-20220622145005-4.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.7 KB - Content
- image-20220622145005-5.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -151.7 KB - Content
- image-20220622145005-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.0 KB - Content
- image-20220622145005-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220622145005-8.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -125.2 KB - Content
- image-20220622145005-9.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -123.2 KB - Content
- image-20220622145646-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -65.8 KB - Content
- image-20220705162452-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -193.9 KB - Content
- image-20220705162505-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -44.3 KB - Content
- image-20220705162540-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -118.9 KB - Content
- image-20220705162551-4.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -123.2 KB - Content
- image-20220705162602-5.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -62.9 KB - Content
- image-20220705162610-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -67.0 KB - Content
- image-20220705162619-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -209.0 KB - Content
- image-20220705162627-8.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -183.1 KB - Content
- 图片1.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.1 KB - Content
- 图片2.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.2 KB - Content
- 图片3.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.9 KB - Content