Wiki source code of LX3V-2WT

Version 6.4 by Stone Wu on 2022/07/05 16:24

Show last authors
1 = **1 Operating principle** =
2
3 When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications.
4
5 = **2 Introduction** =
6
7 1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO  through LX3V or LX5V
10
11 **✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
12
13 == **Specification** ==
14
15 |(% style="width:225px" %)**Item**|(% style="width:850px" %)**Description**
16 |(% style="width:225px" %)Channel|(% style="width:850px" %)Dual channel
17 |(% style="width:225px" %)A/D converter|(% style="width:850px" %)24 bit Δˉ∑ A/D
18 |(% style="width:225px" %)Resolution|(% style="width:850px" %)24 bit (signed)
19 |(% style="width:225px" %)Speed|(% style="width:850px" %)7.5/10/25/50/60/150/300Hz available
20 |(% style="width:225px" %)Polarity|(% style="width:850px" %)Unipolar and bipolar
21 |(% style="width:225px" %)Non-linearity|(% style="width:850px" %)≤0.01% full scale(25^^o^^C)
22 |(% style="width:225px" %)Zero drift|(% style="width:850px" %)≤0.2μV/^^ o^^C
23 |(% style="width:225px" %)Gain drift|(% style="width:850px" %)≤10ppm/^^ o^^C
24 |(% style="width:225px" %)Excitation voltage/ load|(% style="width:850px" %)Dual 5V, single load impedance not less than 200 Ω
25 |(% style="width:225px" %)Sensor sensitivity|(% style="width:850px" %)1mV/V to 15mV/V
26 |(% style="width:225px" %)Isolation|(% style="width:850px" %)Transformer (power supply) and the optical coupler (signal)
27 |(% style="width:225px" %)Indicator light|(% style="width:850px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
28 |(% style="width:225px" %)Power supply|(% style="width:850px" %)24V±20% 2VA
29 |(% style="width:225px" %)Operating temperature|(% style="width:850px" %)0 to 60^^ o^^C
30 |(% style="width:225px" %)Storage temperature|(% style="width:850px" %)-20 to 80^^ o^^C
31 |(% style="width:225px" %)Dimension|(% style="width:850px" %)90(L)x58(W)x80(H) mm
32
33 == **Valid bits** ==
34
35 Refer to sampling frequency in BFM description, Chapter 5 of this manual.
36
37 = **3 Dimensions** =
38
39 == **Dimensions** ==
40
41 [[image:图片1.jpg||height="358" width="301"]] [[image:图片2.jpg||height="365" width="351"]]
42
43 (% style="text-align:center" %)
44 [[image:图片3.jpg||height="593" width="684"]]
45
46 1. Extension cable
47 1. COM light: Module internal data communication indicator
48 1. 24V light: Always on when connected to external 24V power supply
49 1. WT light: Channel input/output indicator
50
51 * WE light: Channel calibration indicator
52
53 (% start="5" %)
54 1. LINK: Communication indicator between PLC and module (LINK)
55 1. Expansion module name
56 1. Expansion module interface
57 1. DIN rail mounting clip
58 1. Hook for DIN rail
59 1. Holes for direct mounting: 2 places (φ4.5)
60
61 |(% style="width:121px" %)**Name**|(% style="width:346px" %)**Description**|(% style="width:126px" %)**Light status**|(% style="width:483px" %)**Event status**
62 |(% rowspan="3" style="width:121px" %)(((
63
64
65 LINK light
66 )))|(% rowspan="3" style="width:346px" %)Communication indicator between PLC and module|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
67 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
68 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
69 |(% rowspan="3" style="width:121px" %)(((
70
71
72 COM light
73 )))|(% rowspan="3" style="width:346px" %)Module internal data communication indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
74 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
75 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
76 |(% rowspan="3" style="width:121px" %)(((
77
78
79 WT light
80 )))|(% rowspan="3" style="width:346px" %)Channel output/input indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Analog input is out of range
81 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Analog input is within the range
82 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Channel closed
83 |(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:346px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|(% style="width:483px" %)Calibration succeeded
84 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Calibration failed or not calibrated
85
86 == Use of blade terminals ==
87
88 [[image:image-20220705162505-2.jpeg]]
89
90 Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
91
92 == **Terminals** ==
93
94 |**Terminal**|**Terminal Instructions**
95 |24V+|External DC24 power supply+
96 |24V-|External DC24 power supply-
97 |Ground|Ground
98 |FG1|Sensor housing
99 |E1+|First sensor 5V power +
100 |E1-|First sensor 5V power -
101 |F1+|First sensor power supply feedback +
102 |F1-|First sensor power supply feedback -
103 |S1+|First sensor signal output +
104 |S1-|First sensor signal output -
105 |E2+|Second sensor 5V power +
106 |E2-|Second sensor 5V power -
107 |F2+|Second sensor power supply feedback +
108 |F2-|Second sensor power supply feedback -
109 |S2+|Second sensor signal output +
110 |S2-|Second sensor signal output -
111 |FG2|Second sensor housing
112 |Other empty terminals|Empty pin, not connect any wires
113
114 = **4 Wiring ** =
115
116 (% style="text-align:center" %)
117 [[image:image-20220705162452-1.jpeg]]
118
119 **✎Note:**
120
121 * Impedance of the weighing sensor is greater than 200 Ω.
122 * Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
123
124 = **5 Buffer register (BFM)** =
125
126 == **BFM list** ==
127
128 |(% colspan="2" %)**BFM number**|(% rowspan="2" %)**Power-off hold**|(% rowspan="2" %)(((
129 **Read/**
130
131 **write**
132 )))|(% rowspan="2" style="width:182px" %)**Register name**|(% rowspan="2" style="width:75px" %)**Default**|(% rowspan="2" style="width:134px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
133 |**CH1**|**CH2**
134 |(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
135 |(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number
136 |#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
137 |#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)(((
138 0: 7.5HZ
139
140 1: 10HZ
141
142 2: 25HZ
143
144 3: 50HZ
145
146 4: 60HZ
147
148 5: 150HZ
149
150 6: 300HZ
151
152 7: 600HZ
153
154 8: 960HZ
155
156 9: 2400HZ
157
158 10 to 4800: 10Hz to 4800Hz
159 )))
160 |#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
161 |#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)(((
162 A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
163
164 #45: Reserved
165
166 b0: Abnormal power supply
167
168 b1: Hardware failure
169
170 b2: CH1 conversion error
171
172 b3: CH2 conversion error
173
174 b4: CH1 input calibration parameter error
175
176 b5: CH2 input calibration parameter error
177
178 Others: Reserved
179 )))
180 |#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
181 Read the current average value as the tare weight value.
182
183 0: Normal (invalid).
184
185 1: Execute tare setting, then reset to 0.
186
187 Others: Invalid.
188 )))
189 |#7|#47|O|R/W|(% style="width:182px" %)(((
190 Gross weight/ net weigh
191
192 display
193 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
194 Choose to display the current weight as gross weight (K0) or net weight (K1).
195
196 0: display gross weight.
197
198 1: display net weight.
199
200 0xF: Channel closed
201 )))
202 |#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
203 The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
204
205 0x0001: CHI zero instruction.
206
207 0x0002: CH1 weight base point instruction.
208
209 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
210
211 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
212
213 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
214 )))
215 |#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)(((
216 #49: Reserved
217
218 1: Reset CH1
219
220 2: Reset CH2
221
222 3: Reset all channels
223
224 Others: no action
225 )))
226 |#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
227 |#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
228 |#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
229 |#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
230 0: Disable the zero tracking function
231
232 Others: Set the zero tracking range (absolute value)
233 )))
234 |#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)(((
235 0: Disable automatic reset at startup
236
237 1: ±2%MAX
238
239 2: ±5%MAX
240
241 3: ±10%MAX
242
243 4: ±20%MAX
244 )))
245 |#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)(((
246 0:<1V/V
247
248 1:<125mV/V
249
250 2:<62.5mV/V
251
252 3:<31.25V/V
253
254 4:<15.625mV/V
255
256 5:<7.812mV/V
257
258 **✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
259 )))
260 |#16|#56|(% rowspan="2" %)(((
261
262
263 X
264 )))|(% rowspan="2" %)(((
265
266
267 R
268 )))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
269 -2147483648 to
270
271 2147483647
272 )))|(% style="width:466px" %)(((
273 Average weight display value
274
275 (low word)
276 )))
277 |#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)(((
278 Average weight display value
279
280 (high word)
281 )))
282 |#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)(((
283 The setting range is K1 to K50, and the default value is K5.
284
285 When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
286 )))
287 |#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
288 -2147483648 to
289
290 2147483647
291 )))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
292 |#20|#60|R/W|(% style="width:182px" %)Tare weight value H
293 |#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
294 |#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
295 |#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
296 Weight value calibration L
297 )))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)(((
298 -2147483648 to
299
300 2147483647
301 )))|(% rowspan="2" style="width:466px" %)(((
302 Input weight base point weight with calibration weight
303
304 Input sensor range without calibration weight
305 )))
306 |#24|#64|R/W|(% style="width:182px" %)(((
307 Weight value calibration H
308 )))
309 |#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)(((
310 -2147483648 to
311
312 2147483647
313 )))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
314 |#26|#66|R/W|(% style="width:182px" %)Weight upper limit H
315 |#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
316 Zero judgment check
317
318 upper limit L
319 )))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)(((
320 -2147483648 to
321
322 2147483647
323 )))|(% rowspan="4" style="width:466px" %)(((
324 Zero point judgment function:
325
326 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
327 )))
328 |#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H
329 |#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((
330 -2147483648 to
331
332 2147483647
333 )))
334 |#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H
335 |#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
336 0: Default value. Additional functions are not enabled
337
338 1: Enable filter reset function.
339
340 Others: Reserved
341 )))
342 |#32|#72|X|R/W|(% style="width:182px" %)(((
343 Additional functions
344
345 Parameter 1
346 )))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
347 Enable filter reset function:
348
349 0: The default value does not work
350
351 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
352 )))
353 |#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
354 |#34|#74|X|R|(% style="width:182px" %)Digital value H
355 |#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((
356 -3.402823E+38
357
358 to 3.402823E+38
359 )))|(% rowspan="4" style="width:466px" %)Described in CH1:
360 After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
361 |#36|#76
362 |#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
363 -3.402823E+38
364
365 to 3.402823E+38
366 )))
367 |#38|#78
368 |#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
369 For example: Modified to 1942 represent 1.942mV/V.
370 |#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
371 Write:
372
373 0: not displayed
374
375 1: Display the current sensor feedback voltage in real time
376
377 2: Display the zero-point voltage during calibration
378
379 3: Display the voltage reading of the applied weight during calibration:
380
381 Displays the low bit of the voltage value. Unit: uV.
382 )))
383 |#41|#81|X|R|(% style="width:182px" %)(((
384 Sensor feedback
385
386 voltage H
387 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
388
389 **✎Note:**
390
391 * O means retentive type.
392 * X means non-retentive type.
393 * R means readable data.
394 * W means writable data.
395
396 == **BFM description** ==
397
398 **BFM0: Module code**
399
400 LX3V-2WT model code: 5012
401
402 **BFM1: module version**
403
404 The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
405
406 **BFM2: Polarity**
407
408 For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
409
410 **BFM3: Sampling frequency**
411
412 The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
413
414 |**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
415 |0|7.5|23.5|5|150|21.5
416 |1|10|23.5|6|300|21
417 |2|25|23|7|600|20.5
418 |3|50|22|8|960|20
419 |4|60|22|9|2400|17.5
420
421 **BFM4: State code**
422
423 |(% rowspan="2" %)**Bit NO.**|(% colspan="2" %)**Status code**
424 |**1**|**0**
425 |Bit0|CH1 zero weight (no load)|CH1 is not empty
426 |Bit1|CH2 zero weight (no load)|CH2 is not empty
427 |Bit2|(((
428 CH1 exceeds weight upper limit (overload)
429
430 **✎Note: **The upper limit weight is set by #27 and #28.
431 )))|CH1 is not overloaded
432 |Bit3|(((
433 CH2 exceeds weight upper limit (overload)
434
435 **✎Note: **The upper limit weight is set by #27 and #28.
436 )))|CH2 is not overloaded
437 |Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
438 |Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
439 |Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
440 |Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
441 |(((
442 Bit8
443
444 Bit9
445 )))|(((
446 00: no error
447
448 10: The weight of the base point of weight is too large
449 )))|(((
450 01: No-load calibration
451
452 11: Uncalibrated
453 )))
454 |(((
455 Bit10
456
457 Bit11
458 )))|(((
459 00: no error
460
461 10: The weight of the base point of weight is too large
462 )))|(((
463 01: No-load calibration
464
465 11: Uncalibrated
466 )))
467 |Bit12|(((
468 CH1 exceeds the sensor range
469
470 **✎Note:** Determined by sensor feedback voltage
471 )))|CH1 is within the sensor range
472 |Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
473 |Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
474
475 **BFM5: Error code**
476
477 |**Bit NO.**|**Content**|**Error state**
478 |Bit0|K1 (H0001)|Abnormal power supply
479 |Bit1|K2 (H0002)|Hardware fault
480 |Bit2|K4 (H0004)|CH1 conversion error
481 |Bit3|K8 (H0008)|CH2 conversion error
482 |Bit4|K16 (H0010)|CH1 write calibration parameter error
483 |Bit5|K32 (H0020)|CH2 write calibration parameter error
484 |Others|(% colspan="2" %)Reserved
485 |BFM#45|(% colspan="2" %)Reserved
486 |(% colspan="3" %)(((
487 **✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
488 )))
489
490 **Tare setting: **CH1-BFM6, CH2-BFM46
491
492 Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
493
494 The current weight value is 100, after tare setting:
495
496 * If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
497 * If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
498
499 **BFM8: Weight calibration instruction**
500
501 Steps are as follows. (Described with CH1)
502
503 * Calibration with weights
504 ** Step1: Do not put any weights on the load cell.
505 ** Step2: Write 0x0001 to #8.
506 ** Step3: Add standard weights to the load cell.
507 ** Step4: Write the weight of the current weight on the chassis into #23.
508 ** Step5: Write 0x0002 to #8.
509 * Weightless calibration
510 ** Step1: Do not put any weights on the load cell.
511 ** Step2: Write the maximum range of the sensor into #23.
512 ** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
513 ** Step4: Write 0x0003 to #8.
514 * Modify calibration parameters:
515 ** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
516 ** Step2: Write 0x0004 to #8.
517
518 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
519
520 **BFM11: filtering strength**
521
522 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
523
524 **BFM12: zero tracking interval**
525
526 BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
527
528 **✎Note:** This function is generally used to correct sensor temperature drift.
529
530 **BFM13: Zero tracking range**
531
532 The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
533
534 |**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
535 |0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
536 |1 to 300|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
537 If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
538 )))
539 |(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
540
541 E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
542
543 **BFM15: Set the AD chip gain**
544
545 **I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
546
547 |**BFM15**|**voltage range**|**Sensor sensitivity**
548 |0|±5V|<1V/V
549 |1|±625mV|<125mV/V
550 |2|±312.5mV|<62.5mV/V
551 |3|±156.2mV|<31.25mV/V
552 |4|±78.125mV|<15.625mV/V
553 |5|±39.06mV|<7.812mV/V
554
555 == **Function description** ==
556
557 **Net weight measurement function**
558
559 You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
560
561 * Tare weigh:t Refers to the weight of the outer packaging.
562 * Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
563 * Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
564 * Gross weight = net weight + tare weight
565
566 E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
567
568 * Net weight=10KG
569 * Tare weight=0.2KG
570 * Gross weight=10.2KG
571
572 E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
573
574 * Read the tare value
575 ** Write H0000 in BFM7;
576 ** Place the package on the CH1 weighing module;
577 ** Write H0001 in BFM6, and take the current package weight as the tare weight.
578 * Set BFM7=H0001
579
580 **Stability check**
581
582 When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
583
584 * If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
585 * When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
586
587 E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
588
589 **Zero point judgment**
590
591 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
592
593 **Filter function**
594
595 The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
596
597 = **6 Example** =
598
599 **Current state of weight**
600
601 (% style="text-align:center" %)
602 [[image:image-20220622145646-14.png||height="51" width="330"]]
603
604 Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
605
606 **Get current weight value**
607
608 (% style="text-align:center" %)
609 [[image:image-20220622145005-7.png||height="51" width="385"]]
610
611 Write the average weight value (BFM16) of CH1 in the weighing module into D0.
612
613 **Calibrating weight**
614
615 *In the new version, the first step can also be used for manual reset.
616
617 The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
618
619 (% style="text-align:center" %)
620 [[image:image-20220622145005-8.jpeg||height="193" width="797"]]
621
622 **Tare weight and gross weight**
623
624 (% style="text-align:center" %)
625 [[image:image-20220622145005-9.jpeg||height="274" width="749"]]
626
627 **Filter mode setting**
628
629 After setting the filtering mode and filtering strength, you need to calibrate it again.
630
631 (% style="text-align:center" %)
632 [[image:image-20220622145005-10.jpeg||height="196" width="791"]]
633
634 **Zero tracking**
635
636 Zero tracking is used to reduce the temperature drift interference;
637
638 Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
639
640 (% style="text-align:center" %)
641 [[image:image-20220622145005-11.jpeg||height="242" width="601"]]
642
643 **Calibration without weights**
644
645 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
646
647 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
648
649 (% style="text-align:center" %)
650 [[image:image-20220622145005-12.jpeg||height="323" width="774"]]
651
652 **Modify calibration parameters**
653
654 (% style="text-align:center" %)
655 [[image:image-20220622145005-13.jpeg||height="315" width="838"]]
656
657 **✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
658
659 = **7 Diagnosis ** =
660
661 == **Check** ==
662
663 1. Make sure all cables are connected properly;
664 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
665 1. Make sure to select the correct operating range in application;
666 1. Make sure power supply is working properly;
667 1. LX3V CPU unit is in RUN mode;
668
669 == **Check errors** ==
670
671 If the special function module LX3V-2WT does not operate normally, please check the following items.
672
673 * Check the status of the LINK indicator
674 ** Blink: Expansion cables are properly connected.
675 ** Otherwise: Check the connection of the extension cable.
676 * Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
677 ** Light on LX3V-2WT is normal, and 24VDC power is normal.
678 ** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
679 * Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
680 ** Blink: Numeric conversion works fine.
681 ** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
682 * Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.