Changes for page 09 Electronic cam
Last modified by Devin Chen on 2025/01/09 11:57
From version 11.1
edited by Theodore Xu
on 2024/05/27 10:47
on 2024/05/27 10:47
Change comment:
There is no comment for this version
To version 2.1
edited by Joey
on 2022/06/14 17:30
on 2022/06/14 17:30
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. AiXia1 +XWiki.Joey - Content
-
... ... @@ -1,10 +1,10 @@ 1 1 = **Electronic CAM (ECAM) instruction** = 2 2 3 -== **DEGEAR/Electronic gear/32 bit hand wheel instruction** == 3 +== {{id name="_Toc15695"/}}**{{id name="_Toc25745"/}}{{id name="_Toc16425"/}}DEGEAR/Electronic gear/32 bit hand wheel instruction** == 4 4 5 5 **DEGEAR** 6 6 7 -Electronic gear function refers to the function of multiplying the speed of the driving axis by the set gear ratio and outputting to the drivenaxis at this speed to control the mechanical operation.7 +Electronic gear function refers to the function of multiplying the speed of the driving shaft by the set gear ratio and outputting to the driven shaft at this speed to control the mechanical operation. 8 8 9 9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)] 10 10 ... ... @@ -14,27 +14,27 @@ 14 14 **Content, range and data type** 15 15 16 16 (% class="table-bordered" %) 17 -| =(% scope="row" %)**Parameter**|=(% style="width:478px;" %)**Content**|=(% style="width:18px;" %)**Range**|=(% style="width: 185px;" %)**Data type**|=(% style="width: 108px;" %)**Data type (label)**18 -| =(s1)|(% style="width:478px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:218px" %)-2147483648 to 2147483647|(% style="width:185px" %)Signed BIN 32 bit|(% style="width:108px" %)ANY3219 -| =(s2)|(% style="width:478px" %)Specify the data buffer of the electronic gear command|(% style="width:218px" %) |(% style="width:185px" %)Form type|(% style="width:108px" %)LIST20 -| =(s3)|(% style="width:478px" %)Response time, that is, how often the gear calculation is performed|(% style="width:218px" %)0~~500|(% style="width:185px" %)Signed BIN 32 bit|(% style="width:108px" %)ANY3221 -| =(d)|(% style="width:478px" %)Specify pulse output axis|(% style="width:218px" %)Y0~~Y7|(% style="width:185px" %)Bit|(% style="width:108px" %)ANY_BOOL22 -| =(d)|(% style="width:478px" %)Specify direction outputaxis|(% style="width:218px" %)Y/M/S/D.b|(% style="width:185px" %)Bit|(% style="width:108px" %)ANY_BOOL17 +|**Parameter**|(% style="width:778px" %)**Content**|(% style="width:269px" %)**Range**|**Data type**|**Data type (label)** 18 +|(s1)|(% style="width:778px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:269px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32 19 +|(s2)|(% style="width:778px" %)Specify the data buffer of the electronic gear command|(% style="width:269px" %) |Form type|LIST 20 +|(s3)|(% style="width:778px" %)Response time, that is, how often the gear calculation is performed|(% style="width:269px" %)0~~500|Signed BIN 32 bit|ANY32 21 +|(d)|(% style="width:778px" %)Specify pulse output axis|(% style="width:269px" %)Y0~~Y7|Bit|ANY_BOOL 22 +|(d)|(% style="width:778px" %)Specify direction output shaft|(% style="width:269px" %)Y/M/S/D.b|Bit|ANY_BOOL 23 23 24 24 **Device used** 25 25 26 26 (% class="table-bordered" %) 27 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameters**|=(% colspan="10" %)**Device**|=(((27 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="10" %)**Device**|((( 28 28 **Offset** 29 29 30 30 **modification** 31 -)))| =(((31 +)))|((( 32 32 **Pulse** 33 33 34 34 **extension** 35 35 ))) 36 -| =**Y**|=**M**|=**S**|=**D.b**|=**D**|=**R**|=**LC**|=**HSC**|=**K**|=**H**|=**[D]**|=**XXP**37 -| =(% rowspan="5" %)DEGEAR|Parameter 1| | | | | | |●|●| | | |36 +|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP** 37 +|(% rowspan="5" %)DECAM|Parameter 1| | | | | | |●|●| | | | 38 38 |Parameter 2| | | | |●|●| | | | | | 39 39 |Parameter 3| | | | |●|●| | |●|●| | 40 40 |Parameter 4|●| | | | | | | | | | | ... ... @@ -42,7 +42,7 @@ 42 42 43 43 **Features** 44 44 45 -•When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s 3), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the drivenaxis is greater than the set maximum frequency, it will output according to the set maximum frequency.45 +•When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s2), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency. 46 46 47 47 •When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse. 48 48 ... ... @@ -51,50 +51,51 @@ 51 51 • Electronic gear data buffer (s2) table: 52 52 53 53 (% class="table-bordered" %) 54 -|=(% colspan="5" scope="row" %)**Electronic gear instruction parameter description table** 55 -|=**Offset**|=(% style="width: 348px;" %)**Content**|=(% style="width: 401px;" %)**Instruction**|=(% style="width: 141px;" %)**Range**|=(% style="width: 127px;" %)**Read and write permission** 56 -|=0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:401px" %)((( 57 -Number of outputs = Number of inputs in response time*numerator/denominator 58 -)))|(% style="width:141px" %)0 to 32767|(% rowspan="2" style="width:127px" %)Read/write 59 -|=1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:141px" %)1 to 32767 60 -|=2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:401px" %)Max frequency|(% rowspan="2" style="width:141px" %)1 to 200000|(% style="width:127px" %)Read/write 61 -|=3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:401px" %)Max frequency|(% style="width:127px" %)Read/write 62 -|=4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:401px" %)Hand crank input frequency|(% rowspan="2" style="width:141px" %)-|(% style="width:127px" %)Read-only 63 -|=5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:401px" %)Hand crank input frequency|(% style="width:127px" %)Read-only 64 -|=6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:401px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only 65 -|=7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word) 66 -|=8|(% style="width:348px" %)Sign|(% style="width:401px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:141px" %)Reserved|(% style="width:127px" %)Reserved 67 -|=9|(% style="width:348px" %)interval|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only 68 -|=10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only 69 -|=11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only 70 -|=12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:401px" %)Confirmation value|(% rowspan="2" style="width:141px" %)1 to 200000|(% style="width:127px" %)Read-only 71 -|=13|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:127px" %)Read-only 72 -|=14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:401px" %)((( 73 -* 1: Switch to the newly set gear ratio immediately. And set the address back to 0. 74 -* 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle) 75 -)))|(% style="width:141px" %)0 to 2|(% style="width:127px" %)Read/write 76 -|=15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:401px" %)((( 77 -* 0: Use 16-bit gear ratio 78 -* 1: Use 32-bit gear ratio 54 +|(% colspan="5" %)**Electronic gear instruction parameter description table** 55 +|**Offset**|(% style="width:348px" %)**Content**|(% style="width:724px" %)**Instruction**|(% style="width:209px" %)**Range**|**Read and write permission** 56 +|0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:724px" %)((( 57 +Number of outputs = 79 79 80 -(% class="box infomessage" %) 81 -((( 82 -✎**Note: **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used. 83 -))) 84 -)))|(% style="width:141px" %)0 to 1|(% style="width:127px" %)Read/write 85 -|=16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:401px" %)((( 86 -Number of outputs = Spindle input number within response time*numerator/denominator 87 -)))|(% rowspan="2" style="width:141px" %)0 to 214748647|(% rowspan="2" style="width:127px" %)Read/write 88 -|=17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 89 -|=18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:141px" %)1 to 214748647|(% rowspan="2" style="width:127px" %)Read/write 90 -|=19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 91 -|=20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:401px" %)Confirmation value|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only 92 -|=21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 93 -|=22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only 94 -|=23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 59 +Number of inputs in response time*numerator/denominator 60 +)))|(% style="width:209px" %)0 to 32767|(% rowspan="2" %)Read/write 61 +|1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:209px" %)1 to 32767 62 +|2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:724px" %)Max frequency|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write 63 +|3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:724px" %)Max frequency|Read/write 64 +|4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:724px" %)Hand crank input frequency|(% rowspan="2" style="width:209px" %)-|Read-only 65 +|5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:724px" %)Hand crank input frequency|Read-only 66 +|6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:724px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 67 +|7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word) 68 +|8|(% style="width:348px" %)Sign|(% style="width:724px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:209px" %)Reserved|Reserved 69 +|9|(% style="width:348px" %)interval|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 70 +|10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 71 +|11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 72 +|12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write 73 +|13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write 74 +|14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:724px" %)((( 75 +1: Switch to the newly set gear ratio immediately. And set the address back to 0. 95 95 96 -(% class="box infomessage" %) 97 -((( 77 +2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle) 78 +)))|(% style="width:209px" %)0 to 2|Read/write 79 +|15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:724px" %)((( 80 +0: Use 16-bit gear ratio 81 + 82 +1: Use 32-bit gear ratio 83 + 84 +✎**Note: **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used. 85 +)))|(% style="width:209px" %)0 to 1|Read/write 86 +|16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)((( 87 +Number of inputs = 88 + 89 +Spindle input number within response time*numerator/denominator 90 +)))|(% rowspan="2" style="width:209px" %)0 to 214748647|(% rowspan="2" %)Read/write 91 +|17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 92 +|18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)1 to 214748647|(% rowspan="2" %)Read/write 93 +|19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 94 +|20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 95 +|21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 96 +|22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 97 +|23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 98 + 98 98 **✎Note:** 99 99 100 100 • When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed. ... ... @@ -104,27 +104,26 @@ 104 104 • The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time. 105 105 106 106 • The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse. 107 -))) 108 108 109 109 **Error code** 110 110 111 111 (% class="table-bordered" %) 112 -| =(% scope="row" %)**Error code**|=**Content**113 -| =4085H|The read address of (s1), (s2) and (s3) exceeds the device range114 -| =4084H|The data exceeds the settable range115 -| =4EC0H|Electronic gear ratio setting error116 -| =4088H|High-speed pulse instructions use the same output shaft (d1)112 +|**Error code**|**Content** 113 +|4085H|The read address of (s1), (s2) and (s3) exceeds the device range 114 +|4084H|The data exceeds the settable range 115 +|4EC0H|Electronic gear ratio setting error 116 +|4088H|High-speed pulse instructions use the same output shaft (d1) 117 117 118 118 **Example** 119 119 120 120 **(1) Realize the 1:1 follow function of Y0 output pulse to Y3 output pulse.** 121 121 122 -Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode. 122 +1) Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode. 123 123 124 124 (% style="text-align:center" %) 125 125 [[image:09_html_c27f358df2fb693.png||class="img-thumbnail"]] 126 126 127 -Ladder 127 +2) Ladder 128 128 129 129 (% style="text-align:center" %) 130 130 [[image:09_html_242f6504931e93b5.png||class="img-thumbnail"]] ... ... @@ -570,15 +570,17 @@ 570 570 **(1) Parameters** 571 571 572 572 (% class="table-bordered" %) 573 -|**Parameter**|(% style="width:527px" %)**Content**|(% style="width:226px" %)**Range**|(% style="width:143px" %)**Data type**|**Data type (label)** 574 -|(s1)|(% style="width:527px" %)Specify to receive the input pulse of the master axis|(% style="width:226px" %)((( 575 --2147483648 to +2147483647 576 -)))|(% style="width:143px" %)Signed BIN 32 bit|ANY32 577 -|(s2)|(% style="width:527px" %)Specify the data buffer area of the ECAM instruction|(% style="width:226px" %) |(% style="width:143px" %)Form|LIST 578 -|(s3)|(% style="width:527px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:226px" %)X/M/S/D.b|(% style="width:143px" %)Signed BIN 32 bit|ANY32 579 -|(d1)|(% style="width:527px" %)Specify pulse output axis|(% style="width:226px" %)Y0 to Y7|(% style="width:143px" %)Bit|ANY_BOOL 580 -|(d2)|(% style="width:527px" %)Specify direction output axis|(% style="width:226px" %)Y/M/S/D.b|(% style="width:143px" %)Bit|ANY_BOOL 573 +|**Parameter**|(% style="width:812px" %)**Content**|(% style="width:185px" %)**Range**|**Data type**|**Data type (label)** 574 +|(s1)|(% style="width:812px" %)Specify to receive the input pulse of the master axis|(% style="width:185px" %)((( 575 +-2147483648 to 581 581 577 ++2147483647 578 +)))|Signed BIN 32 bit|ANY32 579 +|(s2)|(% style="width:812px" %)Specify the data buffer area of the ECAM instruction|(% style="width:185px" %) |Form|LIST 580 +|(s3)|(% style="width:812px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:185px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32 581 +|(d1)|(% style="width:812px" %)Specify pulse output axis|(% style="width:185px" %)Y0 to Y7|Bit|ANY_BOOL 582 +|(d2)|(% style="width:812px" %)Specify direction output axis|(% style="width:185px" %)Y/M/S/D.b|Bit|ANY_BOOL 583 + 582 582 **{{id name="_Toc9293"/}}Device used:** 583 583 584 584 (% class="table-bordered" %) ... ... @@ -670,7 +670,7 @@ 670 670 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle. 671 671 672 672 (% style="text-align:center" %) 673 -[[image: image-20220926115030-2.jpeg||class="img-thumbnail"]]675 +[[image:09_html_230c69b0429b0c.gif||height="259" width="800" class="img-thumbnail"]] 674 674 675 675 {{id name="_Toc18782"/}}2) Periodic ECAM stop 676 676 ... ... @@ -680,7 +680,8 @@ 680 680 681 681 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again. 682 682 683 -[[image:image-20220926115519-3.jpeg]] 685 +(% style="text-align:center" %) 686 +[[image:09_html_cfb2abe40245003c.gif||height="373" width="900" class="img-thumbnail"]] 684 684 685 685 {{id name="_Toc31992"/}}3) Example description 686 686 ... ... @@ -730,7 +730,7 @@ 730 730 1. Sync signal terminal output. 731 731 732 732 (% style="text-align:center" %) 733 -[[image: image-20220926120124-4.jpeg]]736 +[[image:09_html_8efdb40d8fd3ece6.gif||height="357" width="900" class="img-thumbnail"]] 734 734 735 735 2) Aperiodic electronic cam stop 736 736 ... ... @@ -741,7 +741,7 @@ 741 741 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below. 742 742 743 743 (% style="text-align:center" %) 744 -[[image: image-20220926120303-5.jpeg]]747 +[[image:09_html_93e0a854c1e8db80.gif||height="333" width="800" class="img-thumbnail"]] 745 745 746 746 3) Example explanation 747 747 ... ... @@ -769,7 +769,7 @@ 769 769 [PLC program] 770 770 771 771 (% style="text-align:center" %) 772 -[[image: image-20220926114246-1.jpeg]]775 +[[image:09_html_d46ee9de94f51e8b.jpg||height="983" width="500" class="img-thumbnail"]] 773 773 774 774 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register** 775 775
- image-20220926114246-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.2 KB - Content
- image-20220926115030-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -110.6 KB - Content
- image-20220926115519-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -149.2 KB - Content
- image-20220926120124-4.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -164.6 KB - Content
- image-20220926120303-5.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -152.7 KB - Content