Wiki source code of 09 Electronic cam

Last modified by Devin Chen on 2025/01/09 11:57

Show last authors
1 = **Electronic CAM (ECAM) instruction** =
2
3 == **DEGEAR/Electronic gear/32 bit hand wheel instruction** ==
4
5 **DEGEAR**
6
7 Electronic gear function refers to the function of multiplying the speed of the driving axis by the set gear ratio and outputting to the driven axis at this speed to control the mechanical operation.
8
9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)]
10
11 (% style="text-align:center" %)
12 [[image:PixPin_2024-12-31_14-57-19.png||alt="09_html_da882b8c1ba50fe6.png" class="img-thumbnail"]]
13
14 **Content, range and data type**
15
16 (% class="table-bordered" %)
17 |=(% scope="row" %)**Parameter**|=(% style="width: 478px;" %)**Content**|=(% style="width: 218px;" %)**Range**|=(% style="width: 185px;" %)**Data type**|=(% style="width: 108px;" %)**Data type (label)**
18 |=(s1)|(% style="width:478px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:218px" %)-2147483648 to 2147483647|(% style="width:185px" %)Signed BIN 32 bit|(% style="width:108px" %)ANY32
19 |=(s2)|(% style="width:478px" %)Specify the data buffer of the electronic gear command|(% style="width:218px" %) |(% style="width:185px" %)Form type|(% style="width:108px" %)LIST
20 |=(s3)|(% style="width:478px" %)Response time, that is, how often the gear calculation is performed|(% style="width:218px" %)0~~500|(% style="width:185px" %)Signed BIN 32 bit|(% style="width:108px" %)ANY32
21 |=(d)|(% style="width:478px" %)Specify pulse output axis|(% style="width:218px" %)Y0~~Y7|(% style="width:185px" %)Bit|(% style="width:108px" %)ANY_BOOL
22 |=(d)|(% style="width:478px" %)Specify direction output axis|(% style="width:218px" %)Y/M/S/D.b|(% style="width:185px" %)Bit|(% style="width:108px" %)ANY_BOOL
23
24 **Device used**
25
26 (% class="table-bordered" %)
27 |=(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameters**|=(% colspan="10" %)**Device**|=(((
28 **Offset**
29
30 **modification**
31 )))|=(((
32 **Pulse**
33
34 **extension**
35 )))
36 |=**Y**|=**M**|=**S**|=**D.b**|=**D**|=**R**|=**LC**|=**HSC**|=**K**|=**H**|=**[D]**|=**XXP**
37 |=(% rowspan="5" %)DEGEAR|Parameter 1| | | | | | |●|●| | | |
38 |Parameter 2| | | | |●|●| | | | | |
39 |Parameter 3| | | | |●|●| | |●|●| |
40 |Parameter 4|●| | | | | | | | | | |
41 |Parameter 5|●|●|●|●| | | | | | | |
42
43 **Features**
44
45 •When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s3), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven axis is greater than the set maximum frequency, it will output according to the set maximum frequency.
46
47 •When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
48
49 •When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
50
51 • Electronic gear data buffer (s2) table:
52
53 (% class="table-bordered" %)
54 |=(% colspan="5" scope="row" %)**Electronic gear instruction parameter description table**
55 |=**Offset**|=(% style="width: 348px;" %)**Content**|=(% style="width: 401px;" %)**Instruction**|=(% style="width: 141px;" %)**Range**|=(% style="width: 127px;" %)**Read and write permission**
56 |=0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:401px" %)(((
57 Number of outputs = Number of inputs in response time*numerator/denominator
58 )))|(% style="width:141px" %)0 to 32767|(% rowspan="2" style="width:127px" %)Read/write
59 |=1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:141px" %)1 to 32767
60 |=2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:401px" %)Max frequency|(% rowspan="2" style="width:141px" %)1 to 200000|(% style="width:127px" %)Read/write
61 |=3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:401px" %)Max frequency|(% style="width:127px" %)Read/write
62 |=4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:401px" %)Hand crank input frequency|(% rowspan="2" style="width:141px" %)-|(% style="width:127px" %)Read-only
63 |=5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:401px" %)Hand crank input frequency|(% style="width:127px" %)Read-only
64 |=6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:401px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only
65 |=7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word)
66 |=8|(% style="width:348px" %)Sign|(% style="width:401px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:141px" %)Reserved|(% style="width:127px" %)Reserved
67 |=9|(% style="width:348px" %)interval|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only
68 |=10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only
69 |=11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:401px" %)Confirmation value|(% style="width:141px" %)-|(% style="width:127px" %)Read-only
70 |=12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:401px" %)Confirmation value|(% rowspan="2" style="width:141px" %)1 to 200000|(% style="width:127px" %)Read-only
71 |=13|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:127px" %)Read-only
72 |=14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:401px" %)(((
73 * 1: Switch to the newly set gear ratio immediately. And set the address back to 0.
74 * 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
75 )))|(% style="width:141px" %)0 to 2|(% style="width:127px" %)Read/write
76 |=15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:401px" %)(((
77 * 0: Use 16-bit gear ratio
78 * 1: Use 32-bit gear ratio
79
80 (% class="box infomessage" %)
81 (((
82 ✎**Note: **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.
83 )))
84 )))|(% style="width:141px" %)0 to 1|(% style="width:127px" %)Read/write
85 |=16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:401px" %)(((
86 Number of outputs = Spindle input number within response time*numerator/denominator
87 )))|(% rowspan="2" style="width:141px" %)0 to 214748647|(% rowspan="2" style="width:127px" %)Read/write
88 |=17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
89 |=18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:141px" %)1 to 214748647|(% rowspan="2" style="width:127px" %)Read/write
90 |=19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
91 |=20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:401px" %)Confirmation value|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only
92 |=21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
93 |=22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:141px" %)-|(% rowspan="2" style="width:127px" %)Read-only
94 |=23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
95
96 (% class="box infomessage" %)
97 (((
98 **✎Note:**
99
100 • When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
101
102 • The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, The computing interval is unchanged, that is, the 8-axis electronic gear instruction is executed at the same time, and the computing interval is also 100us.
103
104 • The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
105
106 • The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
107 )))
108
109 **Error code**
110
111 (% class="table-bordered" %)
112 |=(% scope="row" %)**Error code**|=**Content**
113 |=4085H|The read address of (s1), (s2) and (s3) exceeds the device range
114 |=4084H|The data exceeds the settable range
115 |=4EC0H|Electronic gear ratio setting error
116 |=4088H|High-speed pulse instructions use the same output shaft (d1)
117
118 **Example**
119
120 **(1) Realize the 1:1 follow function of Y0 output pulse to Y3 output pulse.**
121
122 Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode.
123
124 (% style="text-align:center" %)
125 [[image:09_html_c27f358df2fb693.png||class="img-thumbnail"]]
126
127 Ladder
128
129 (% style="text-align:center" %)
130 [[image:09_html_242f6504931e93b5.png||class="img-thumbnail"]]
131
132 Connect the Y3 output of the PLC to the X0 input.
133
134 Turn on M1, start M2, and Y3 for output. At this time, Y0 will follow Y3 1:1 (SD880 = SD1060).
135
136 **(2) Use of 32-bit gear ratio.**
137
138 (% style="text-align:center" %)
139 [[image:09_html_5ccccc63668ba219.png||class="img-thumbnail"]]
140
141 Set the 32-bit gear ratio: 18518517: 12345678, set the 15 address of the data buffer to 1, and enable the 32-bit gear ratio function.
142
143 M1 turns ON to turn on the electronic gear command, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 18518517:12345678.
144
145 **(3) Use of gear ratio switching function**
146
147 (% style="text-align:center" %)
148 [[image:09_html_bb25bf2898683582.png||class="img-thumbnail"]]
149
150 Set the gear ratio to 1:1.
151
152 M1 turns ON to turn on the electronic gear instruction, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 1:1. When M3 is turned on, change the gear ratio to 2:1 and enable the switch gear ratio function. After that, the increment of SD880 and the increment of LC0 are always 2:1.
153
154 == {{id name="_Toc4792"/}}**{{id name="_Toc8689"/}}DECAM/32-bit electronic cam instruction** ==
155
156 **DECAM**
157
158 The electronic cam function uses the preset cam curve to determine the slave axis movement amount according to the spindle movement (phase information) and the cam curve, and output. The cam curve refers to each phase (rotation angle (Degree) and CAM curve refers master axis rotation 1 cycle as the movement benchmark. The displacement of the slave axis can be set by the ECAMTBX instruction.
159
160 -[DECAM (s1) (s2) (s3) (d1) (d2)]
161
162 (% style="text-align:center" %)
163 [[image:09_html_a82d001d381b23bb.png||height="476" width="700" class="img-thumbnail"]]
164
165 **Content, range and data type**
166
167 (% class="table-bordered" %)
168 |**Parameter**|(% style="width:790px" %)**Content**|(% style="width:268px" %)**Range**|**Data type**|**Data type (label)**
169 |(s1)|(% style="width:790px" %)Specify to receive the input pulse of the master axis|(% style="width:268px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
170 |(s2)|(% style="width:790px" %)Specify the data buffer of the electronic cam instruction|(% style="width:268px" %) |Form type|LIST
171 |(s3)|(% style="width:790px" %)The external start signal of the electronic cam needs to be enabled in the data buffer area to be effective.|(% style="width:268px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
172 |(d1)|(% style="width:790px" %)Specify pulse output axis|(% style="width:268px" %)Y0~~Y7|Bit|ANY_BOOL
173 |(d2)|(% style="width:790px" %)Specify direction output shaft|(% style="width:268px" %)Y/M/S/D.b|Bit|ANY_BOOL
174
175 **Device used**
176
177 (% class="table-bordered" %)
178 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|(((
179 **Offset**
180
181 **modification**
182 )))|(((
183 **Pulse**
184
185 **extension**
186 )))
187 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|(% style="width:36px" %)**K**|(% style="width:44px" %)**H**|**[D]**|**XXP**
188 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|(% style="width:36px" %)●|(% style="width:44px" %)●| |
189 |Parameter 2| | | | | |●|●| | |(% style="width:36px" %) |(% style="width:44px" %) | |
190 |Parameter 3|●| |●|●|●| | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
191 |Parameter 4| |●| | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
192 |Parameter 5| | | | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
193
194 **Features**
195
196 When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1), calculates the number of pulses that the slave axis needs to output for this calculation according to the set cam curve, and performs the pulse (d1) and direction (d2) Output. When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
197
198 • When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
199
200 • When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
201
202 • When the master axis (s1) uses the constant K/H, the number of input pulses is the time axis. If it is K1, the number of input pulses will increase by 1 every 100 us.
203
204 • Electronic cam data buffer (s2) table:
205
206 (% class="table-bordered" %)
207 |(% style="width:135px" %)**Offset address**|(% style="width:199px" %)**Name**|**Instruction**|**Initial value**|**Range**
208 |(% style="width:135px" %)0|(% style="width:199px" %)Form version number| |5200|
209 |(% rowspan="3" style="width:135px" %)1|(% rowspan="3" style="width:199px" %)Flag register|(((
210 Bit0-Initialization complete flag
211
212 After the electronic cam permission signal is activated, calculate the related
213
214 Data, automatically set to ON after initialization, users need to clear this flag state by themselves
215 )))|0|—
216 |(((
217 Bit1-Cycle complete flag
218
219 Electronic cam completion flag. When the periodic electronic cam is executed
220
221 After completion, this flag will be automatically set to ON; if you want to restart the periodic electronic cam, the user needs to clear this flag state first.
222 )))|0|—
223 |(((
224 Bit2-Pulse transmission delayed flag bit
225
226 Bit3-Error electronic cam stop running flag bit
227
228 Bit4-Parameter error error, electronic cam stop running flag bit
229
230 Bit5-Table error, electronic cam stop running flag
231
232 Bit6-Periodic electronic cam flag
233
234 Bit7-Aperiodic electronic cam flag
235
236 Bit9-Stop flag for current cycle completion
237
238 Bit10-synchronization zone flag
239
240 Bit11-Time axis flag
241
242 Bit12-New form loading complete flag
243
244 Bit13-Periodic delay electronic cam flag
245
246 Bit14-Delayed start function, delayed waiting flag bit
247 )))|0|
248 \\\\\\—
249 |(% style="width:135px" %)2|(% style="width:199px" %)Error register|(((
250 Operation error condition (check Bit3 of address 1): Display Error code.
251
252 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
253
254 Table error condition (check Bit5 of address 1): display Incorrect table segment number.
255 )))|0|
256 \\—
257 |(% style="width:135px" %)3|(% style="width:199px" %)(((
258 Function register
259
260 (Confirm before using electronic cam)
261 )))|(((
262 Bit0-Delayed start enable Bit1-Start at specified position
263
264 Bit2-Spindle zoom Bit3-zoom from axis
265
266 Bit5-Use external start signal Bit6-Start from current position
267
268 *Bit1 and Bit6 cannot both be 1.
269 )))|0|—
270 |(% style="width:135px" %)4|(% style="width:199px" %)(((
271 Function register
272
273 (can be changed while the electronic cam is running)
274 )))|(((
275 Bit0-Sync signal enable
276
277 Bit1-Stop the electronic cam after the current cycle is completed
278
279 Bit2-Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
280 )))|0|
281
282
283 **✎Note:**
284
285 When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
286
287 The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, the time will increase accordingly. If the 8-axis electronic gear command is executed at the same time, the calculation cycle will become 800us.
288
289 The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
290
291 The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
292
293 **Error code**
294
295 (% class="table-bordered" %)
296 |**Error code**|**Content**
297 |4E80H|E-cam table loading error
298 |4E81H|The currently numbered form has a cam in use
299 |4E82H|E-cam table address error
300 |4E83H|The electronic cam table exceeds the device range
301
302 **Example**
303
304 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
305
306 == {{id name="_Toc17791"/}}**{{id name="_Toc17882"/}}{{id name="OLE_LINK605"/}}ECAMCUT/Electronic cam table switching instruction** ==
307
308 **ECAMCUT**
309
310 This instruction needs to be used in conjunction with the electronic cam instruction (DECAM) to specify the newly defined table address to realize the function of switching the electronic cam table periodically during the operation of the electronic cam.
311
312 -[ECAMCUT (s1) (s2)]
313
314 **Content, range and data type**
315
316 (% class="table-bordered" %)
317 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
318 |(s1)|Specify the table number, currently only supports one table|1 to 2 (LX5VT: 1 to 16)|Signed BIN 16 bit|ANY16
319 |(s2)|Specify the first address of the data buffer area of the electronic cam table|-|Form type|LIST
320
321 **Device used**
322
323 (% class="table-bordered" %)
324 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
325 **Offset modification**
326 )))|(((
327 **Pulse extension**
328 )))
329 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
330 |(% rowspan="2" %)ECAMCUT|Parameter 1|●|●|●|●| |
331 |Parameter 2|●|●| | | |
332
333 **Features**
334
335 Table format definition:
336
337 (% class="table-bordered" %)
338 |**Offset**|**Instruction**
339 |0|Number of table segments
340 |1|Table version
341 |2 to 3|Spindle section 0 (double word)
342 |4 to 5|Section 0 slave axis (double word)
343 |6 to 7|Spindle section 1
344 |8 to 9|Section 1 slave axis
345 |(% colspan="2" %)......
346
347 **Instruction function description**
348
349 (1) In the (s1) parameter, only K1 or K2 can be used to specify the location of the table. The format of the table must be as above.
350
351 K1 means Form 1
352
353 K2 means Form 2
354
355 Form 0 is the original form of the cam (optional)
356
357 (2) When the instruction is running, check the table data in the start address specified by (s2) and verify the correctness of the data. After the operation is successful, the table with the specified table number should point to the starting address of (s2). In the process of command pointing, if the corresponding numbered table is in the current cam operation, an operation error will be reported.
358
359 Before using the table, you need to run this command to configure the address where the table is located. After the table address is specified, it will not be saved after power off.
360
361 (3) Related registers and flags
362
363 •Electronic cam buffer offset 1 (flag bit register)
364
365 bit12 ~-~-- table switching completed flag
366
367 •Electronic cam buffer offset 4 (function register)
368
369 After bit2-cycle is completed, switch to the specified table operation
370
371 •Electronic cam buffer offset 31
372
373 Number of the table to be run in the next cycle (0 ~~ 2)
374
375 •Electronic cam buffer offset 32
376
377 The table number of current cycle operation (0 ~~ 2)
378
379 **✎Note:**
380
381 Table 0 is the self-contained table of the electronic cam, that is, the continuous address starting at offset 38 of the electronic cam data buffer. Therefore, the electronic cam can specify up to 3 tables at the same time, which can be switched freely during operation.
382
383 If the curve generated by the electronic cam table generation command ECAMTBX is used, the data buffer of the ECAMTBX generated table should be offset by 38 addresses and then specified.
384
385 (% style="text-align:center" %)
386 [[image:09_html_214525e2311bb039.png||class="img-thumbnail"]]
387
388 **Error code**
389
390 (% class="table-bordered" %)
391 |**Error code**|**Content**
392 |4E80H|E-cam table loading error
393 |4E81H|The currently numbered form has a cam in use
394 |4084H|Data exceeding 1 to 2 is specified in (s1)
395 |4085H|The (s2) table exceeds the device range
396
397 **Example**
398
399 Realize the mutual switching between electronic cam form 1 and form 2
400
401 (% style="text-align:center" %)
402 [[image:09_html_e4c32bd6a926ac39.png||class="img-thumbnail"]]
403
404 (% style="text-align:center" %)
405 [[image:09_html_808130957dbf9656.png||class="img-thumbnail"]]
406
407 **✎Note:**
408
409 1. According to the above Circuit program, first set M2, configure table 1 data, and use ECAMCUT to designate table 1 as electronic cam operation table 1.
410 1. Set M200 to configure the cam running command DECAM.
411 1. Set M201 to enable electronic cam operation. And automatically prepare table 2 data, and assign table 2 data as electronic cam operation table 2.
412 1. Set the second position of D2004 to 1 to turn on the electronic cam switching table function. At this time, table 1 is run in the current cycle, and table 2 is run in the next cycle.
413 1. Use manual addition (M110) to change the master axis (LC0), and the slave axis pulse number SD880 will also change, and the ratio is the ratio of Table 1 (1:2).
414 1. When LC0 = 100, the program automatically switches to Table 2 to run, LC0 increment: SD880 increment = 2000:120500. And currently running table 2 and next cycle running table 1. When LC0 = 2100, switch back to Table 1 to run.
415
416 == {{id name="_Toc24615"/}}**ECAMTBX/Electronic cam table generation instruction** ==
417
418 **ECAMTBX**
419
420 This instruction is used to generate the table data of the electronic cam.
421
422 -[ECAMTBX (S0) (S1) (D0) (D1)]
423
424 **Content, range and data type**
425
426 (% class="table-bordered" %)
427 |**Parameter**|(% style="width:700px" %)**Content**|(% style="width:138px" %)**Range**|(% style="width:255px" %)**Data type**|**Data type (label)**
428 |(S0)|(% style="width:700px" %)Specify the first address of the electronic cam table parameter|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
429 |(S1)|(% style="width:700px" %)Specify the curve type of the electronic cam|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
430 |(D0)|(% style="width:700px" %)Specify the first address of the data buffer area of the E-cam table|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
431 |(D1)|(% style="width:700px" %)Table generation results|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
432
433 **Device used**
434
435 (% class="table-bordered" %)
436 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
437 **Offset modification**
438 )))|(((
439 **Pulse extension**
440 )))
441 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
442 |(% rowspan="4" %)ECAMTBX|Parameter 1|●|●| | | |
443 |Parameter 2|●|●|●|●| |
444 |Parameter 3|●|●| | | |
445 |Parameter 4|●|●| | | |
446
447 **Features**
448
449 S0~-~-parameter address, allowable Devices: D, R.
450
451 {{id name="OLE_LINK386"/}}Description: Indicate the parameters to be set to generate the curve.
452
453 S1~-~-curve type, allowable Devicess: D, R, H, K.
454
455 Description: Indicates the type of curve to be generated.
456
457 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
458
459 K2: Customize the designated key point to generate a table
460
461 K100: Generate rotary saw curve
462
463 K101: Generate flying saw curve
464
465 D0~-~-The first address of cam parameters, allowable devices: D, R
466
467 Description: The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
468
469 D1-table generation result, allowable Devices: D, R
470
471 D1 <0 generates a table error;
472
473 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
474
475 **Error code**
476
477 ECAMTBX instruction generates curve Error code:
478
479 (% class="table-bordered" %)
480 |**Error code**|**Content**
481 |-1|Condition parameter error
482 |-2|The spindle pulse number is too few, not enough for synchronization area
483 |-3|Unknown cam curve type
484 |-4|Resolution range error
485 |-5|Too many pulses of the slave axis calculated
486 |-6|The calculated number of pulses from the slave axis is too small
487 |-7|The calculated number of spindle pulses exceeds the set length
488 |-8|The pulse number of the slave axis is set to 0
489 |-10|S type acceleration and deceleration curve calculation error
490 |-11|Unknown curve type
491 |-12|Curve left wrong
492 |-13|The number of slave axes exceeds the range
493
494 Key point generating curve Error code:
495
496 (% class="table-bordered" %)
497 |**Error code**|**Content**
498 |-21|The number of key points is out of range
499 |-22|Total resolution exceeds range
500 |-23|Incorrect relationship between spindle size
501 |-24|The resolution setting of each segment is incorrect
502 |-25|When calculating, the number of control points is insufficient
503 |-26|Unknown acceleration curve type
504 |-27|Spindle pulse number is negative
505
506 S-type acceleration and deceleration generated curve Error code:
507
508 (% class="table-bordered" %)
509 |**Error code**|**Content**
510 |-31|The number of pulses exceeds the range
511 |-32|Maximum frequency out of range
512 |-33|Acceleration and deceleration time out of range
513 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
514
515 **✎Note:**
516
517 After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
518
519 **Example**
520
521 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
522
523 = {{id name="_Toc30498"/}}**Instruction manual of Electronic CAM (ECAM )** =
524
525 == {{id name="_Toc4483"/}}**{{id name="_Toc15753"/}}{{id name="_Toc16335"/}}{{id name="一、电子凸轮原理"/}}{{id name="_Toc18423"/}}{{id name="_Toc19697"/}}{{id name="_电子凸轮说明手册"/}}{{id name="电子凸轮功能使用指南V2.0版"/}}Principle of ECAM** ==
526
527 The traditional mechanical cam is composed of cam, follower and frame. A mechanical cam is an irregular part, generally an input part with a constant speed, which can transmit motion to a follower through direct contact, so that the action moves according to a set law. The follower is a passive part driven by a mechanical cam, and is generally an output part that produces unequal speed, discontinuous, and irregular motion.
528
529 ECAM is a software system that uses the constructed concave wheel curve to simulate mechanical cam to achieve the same relative motion between the camshaft and the main shaft of the mechanical cam system.
530
531 Compared with mechanical cams, ECAM makes the design of mechanical and electrical parts more and more simple. ECAM allows the equipment to be flexibly used in different templates and plate styles, and also allows the operation process and cycle of the equipment to be modified, either during the design phase of the equipment or after the equipment is formed. It reduces the complexity of the equipment, makes the equipment run more smoothly and doubles the production efficiency.
532
533 == {{id name="_Toc10338"/}}**{{id name="_Toc21791"/}}{{id name="_Toc18361"/}}{{id name="_Toc4935"/}}Description of ECAM function** ==
534
535 **A.Establish ECAM data**
536
537 {{id name="二、电子凸轮功能描述"/}}{{id name="1、建立电子凸轮数据"/}}LX5V provides 3 ways to establish ECAM data:
538
539 ① Write table data to the table data area by DMOV instruction.
540
541 ② Generate ECAM data automatically by ECAMTBX instruction.
542
543 ③ Draw ECAM data with PLC Editor software.
544
545 **{{id name="2、主轴脉冲选择"/}}B.Spindle pulse selection**
546
547 The selectable spindles of LX5V series PLC are HSC, LC type and virtual time axis K.
548
549 Among them, external high-speed input uses high-speed counter, which supports single-phase single-count input\single-phase double-count input and biphase double-count input. As for the assignment of counters, refer to the instructions for high-speed counters in the PLC help.
550
551 When using HSC register (high-speed counter), the pulse of spindle is obtained internally. Modifying the value of the counter does not affect the cam to judge the actual pulse input quantity.
552
553 When using the normal counter LC, the pulse of spindle is obtained from devices. Modifying the value of the register will affect the judgment of the pulse of spindle .
554
555 When using the K type register, it means to use the internal virtual time axis, and the minimum unit is 100us, K1=100us, K10=1ms.
556
557 **{{id name="3、启用电子凸轮配置"/}}C.Enable ECAM configuration**
558
559 Use the DECAM instruction to configure the ECAM function of PLC.
560
561 (% class="table-bordered" %)
562 |**Name**|**Function**|**Bits**|**Whether pulse type**|**Instruction format**|**Step number**
563 |DECAM|ECAM configuration|32|No|DECAM s1 s2 s3 d1 d2|10
564
565 Ladder :
566
567 (% style="text-align:center" %)
568 [[image:09_html_763f6b25c0dc7c9b.png||class="img-thumbnail"]]
569
570 **(1) Parameters**
571
572 (% class="table-bordered" %)
573 |**Parameter**|(% style="width:527px" %)**Content**|(% style="width:226px" %)**Range**|(% style="width:143px" %)**Data type**|**Data type (label)**
574 |(s1)|(% style="width:527px" %)Specify to receive the input pulse of the master axis|(% style="width:226px" %)(((
575 -2147483648 to +2147483647
576 )))|(% style="width:143px" %)Signed BIN 32 bit|ANY32
577 |(s2)|(% style="width:527px" %)Specify the data buffer area of the ECAM instruction|(% style="width:226px" %) |(% style="width:143px" %)Form|LIST
578 |(s3)|(% style="width:527px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:226px" %)X/M/S/D.b|(% style="width:143px" %)Signed BIN 32 bit|ANY32
579 |(d1)|(% style="width:527px" %)Specify pulse output axis|(% style="width:226px" %)Y0 to Y7|(% style="width:143px" %)Bit|ANY_BOOL
580 |(d2)|(% style="width:527px" %)Specify direction output axis|(% style="width:226px" %)Y/M/S/D.b|(% style="width:143px" %)Bit|ANY_BOOL
581
582 **{{id name="_Toc9293"/}}Device used:**
583
584 (% class="table-bordered" %)
585 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="11" %)**Device**|(((
586 **Offset**
587
588 **modification**
589 )))|(((
590 **Pulse**
591
592 **extension**
593 )))
594 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
595 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|●|●| |
596 |Parameter 2| | | | | | | | | | | | |
597 |Parameter 3|●| |●|●|●|●|●| | | | | |
598 |Parameter 4| |●| | | | | | | | | | |
599 |Parameter 5| |●|●| |●| | | | | | | |
600
601 **(2) Function description**
602
603 When the contact M0 is turned on, the PLC activates ECAM function, but the ECAM function is not yet running at this time, it just initializes the parameters of the cam. It includes that D1000 to D1005, D1031, D1032 will be cleared and check whether the cam table is correct. After initialization, these registers still need to be set for control.
604
605 This instruction configures the relevant registers and required data for cam operation, and enables the function of ECAM, but the cam does not actually run. To actually enable the ECAM function, the relevant device in the cache address of the instruction (such as D1000 in the instruction) is also needed to control the start and stop of the cam.
606
607 If the instruction is disconnected, the cam stops working.
608
609 Refer to the description of "9.2.2.5 ECAM function register" for the definition of cam parameter devices.
610
611 **(3) Instruction error description**
612
613 When the instruction is running, PLC will check the relevant cam parameters in the cache address and prompt the corresponding error. You can find the error according to the prompt [PLC Error code information]:
614
615 (% class="table-bordered" %)
616 |**Error code**|**Content**
617 |4084H|The parameter set in the instruction exceeds the limit
618 |4085H|The device used in the instruction exceeds the maximum device number
619 |4088H|Multiple application instructions use the same output axis for pulse output
620 |4E80H|ECAM table loading error
621 |4E81H|The currently numbered form has a cam in use
622 |4E82H|ECAM table address error
623 |4E83H|The electronic cam table exceeds the device range
624
625 When an error occurs, the ECAM function is not enabled at this time.
626
627 **(4) Devices involved in instruction execution**
628
629 (% class="table-bordered" %)
630 |**Devices**|**Content**
631 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
632 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
633 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
634 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
635 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
636 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
637 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
638 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
639
640 (% class="table-bordered" %)
641 |**Devices**|**Content**|**Devices**|**Content**
642 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
643 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
644 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
645 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
646 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
647 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
648 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
649 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
650
651 **{{id name="4、电子凸轮启动/停止"/}}D.ECAM start/stop**
652
653 **{{id name="4.1周期式电子凸轮启动/停止"/}}(1) Periodic ECAM start/stop**
654
655 Periodic ECAM means that while the main axis is continuously advancing, the cam axis will realize the corresponding position according to the "ECAM curve table (table)", but the table only defines one period of data, so the positional relationship of master/slave axis in this mode is the continuous repetitive extension of the table.
656
657 (% style="text-align:center" %)
658 [[image:09_html_b2aea2b9660ae563.gif||class="img-thumbnail"]]
659
660 {{id name="_Toc9"/}}1) {{id name="(1)周期式电子凸轮启动"/}}Periodic ECAM start
661
662 Periodic ECAM start sequence is as below.
663
664 ✎At time T1, address 5=1, start periodic electronic cam.
665
666 ✎After the time T2 has elapsed, the PLC takes the initiative to set address 1-bit0 (ECAM initialization complete flag).
667
668 ✎During time T3, ECAM initialization is completed and the periodic action is started. The slave axis follows the movement of the spindle according to the position relationship in the table, and the synchronization signal terminal is output according to the synchronization point range.
669
670 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.
671
672 (% style="text-align:center" %)
673 [[image:image-20220926115030-2.jpeg||class="img-thumbnail"]]
674
675 {{id name="_Toc18782"/}}2) Periodic ECAM stop
676
677 The periodic ECAM stop sequence is as below.
678
679 ✎When ECAM starts register (address 5) = 0, the ECAM stops operating immediately.
680
681 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again.
682
683 [[image:image-20220926115519-3.jpeg]]
684
685 {{id name="_Toc31992"/}}3) Example description
686
687 The following figure shows the ECAM data, where the spindle length is 50000, the output unit is the number of pulses, and the synchronization range is 20000 to 30000. When running into the synchronization zone, the synchronization terminal output can be used as a control signal. To create ECAM data, please refer to the ECAM data. Hardware circuit Y1 outputs pulse to connect to X0, and it means that the spindle input terminal receives the output pulse of Y1.
688
689 (% style="text-align:center" %)
690 [[image:09_html_b46d1fff9093d80c.gif||class="img-thumbnail"]]
691
692 This example is to use the software PLC Editor2 to set the table.
693
694 **Instructions**
695
696 ① When executing the program, the special register is set first. The set parameters are as follows:
697
698 A. Double word is composed of SD881 and SD880, the current position of Y0 is cleared to 0,
699
700 B. Start the high-speed counter HSC0 and configure it as a single-phase input to receive the high-speed pulse input of X0 (in this case, the pulse of X0 comes from the output pulse of Y1).
701
702 ② SET M0 to start the ECAM, Y axis starts to perform variable speed movement. The main axis receives variable speed input pulse of Y axis, the slave axis outputs pulse according to the ECAM curve, and when the main axis position is 20000-30000 in each cycle, Y7 is ON state.
703
704 **✎Note: **Special registers must be set before the ECAM is started. Set the upper and lower limits of the synchronization position of the ECAM D2009 = 20000, D2011 = 30000; and set the number of the synchronization terminal Y D2008, and the synchronization output enable D2004-BIT0, an ECAM cycle is 50000 pulses and when the spindle position is 20000-30000 pulses (monitored by D2025 and D2026), the synchronization terminal is ON.
705
706 ③ RST M0, the cam stops running.
707
708 PLC program
709
710 (% style="text-align:center" %)
711 [[image:09_html_90fe8b1de142b4f3.png||height="942" width="600" class="img-thumbnail"]]
712
713 **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop**
714
715 Aperiodic ECAM refers to the timing when the camshaft starts to realize the corresponding position according to the table while the main shaft is continuously advancing after the cam start signal is input. Different from the periodic ECAM, The position relationship of the master/slave axis in this mode actually only runs for one cycle, that is, the table only moves once.
716
717 (% style="text-align:center" %)
718 [[image:09_html_86b1dc09cd872158.gif||class="img-thumbnail"]]
719
720 1) Aperiodic ECAM start
721
722 The aperiodic ECAM stop sequence is as below.
723
724 1. At time T1, address 5=2, and aperiodic ECAM is started.
725 1. After the calculation of the time T2, the PLC actively sets the address 1-bit0=ON (the initialization of aperiodic ECAM is completed). At this time, the slave axis will not follow the movement of the master axis.
726 1. At time T3, the ECAM start signal is turned ON (when the external start signal is used), the slave axis will follow the spindle movement for one cycle according to the position relationship in the table.
727 1. After the cycle is completed at the position of time T4, the PLC will actively clear the state of address 1-bit0=ON, and the user can also judge whether the cycle is completed according to the state of address 1-bit1 to .
728 1. During the time T5, the user can choose whether to set the address 1-bit0=ON again through the program , for the purpose of completing the judgment next time.
729 1. Time T6/T7 position is to repeat the action of T3 to T4 again. **✎Note: **The interval between the rising edges of the cam start signal must be more than 0.5ms.
730 1. Sync signal terminal output.
731
732 (% style="text-align:center" %)
733 [[image:image-20220926120124-4.jpeg]]
734
735 2) Aperiodic electronic cam stop
736
737 1. When starting the ECAM register address 5=0, the ECAM slave axis stops operating immediately, as shown in the figure below.
738
739 [[image:09_html_7d9a964fd1036d74.gif]]
740
741 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.
742
743 (% style="text-align:center" %)
744 [[image:image-20220926120303-5.jpeg]]
745
746 3) Example explanation
747
748 The following figure shows the ECAM running table (the spindle length is 0 to 100000 for a cycle), and its output is the number of pulses. When the external signal X2 is triggered by the rising edge, execute two consecutive tables (D1014=2), and wait for the X2 rising edge Trigger again, and execute two consecutive tables again, and so on.
749
750 (% style="text-align:center" %)
751 [[image:09_html_690e150bae16339c.gif||class="img-thumbnail"]]
752
753 This example uses the software PLC EDITOR to ECam0. Please refer to 9.2.2.5 for the detailed steps of creating an ECAM curve. The Y1 axis of the hardware circuit outputs pulse and connects to the X0 axis input terminal, indicating that input terminal position of master axis is to receive the pulse output of Y1 axis as input.
754
755 **{{id name="_Toc973"/}}Operation steps**
756
757 ① When the program is executed, set special registers first, and the set parameters are as follows:
758
759 A. The contents of SD880, SD881 and SD940, SD941 are cleared to 0
760
761 B. Set D1014=2 (repeat the form twice)
762
763 ② Set M0: Configure and start the cam. When M0 is the rising edge, set D1003-Bit5 to use an external start signal; when D1005=2, Y1 outputs pulses, and Y0 axis has not output yet at this time.
764
765 ③ The external signal X2 is triggered, and Y0 axis is output with the ECAM curve; the output stops after 2 cycles.
766
767 ④ RST M0: Close the ECAM mode; if runs RST M0 when the ECAM is running, Y0 axis will stop output immediately.
768
769 [PLC program]
770
771 (% style="text-align:center" %)
772 [[image:image-20220926114246-1.jpeg]]
773
774 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register**
775
776 (% class="table-bordered" %)
777 |**Offset address**|**Name**|(% style="width:944px" %)**Instruction**|(% style="width:126px" %)(((
778 **Initial value**
779 )))|(% style="width:154px" %)**Range**
780 |0|Form version number|(% style="width:944px" %) |(% style="width:126px" %)0|(% style="width:154px" %)
781 |(% rowspan="3" %)1|(% rowspan="3" %)Flag register|(% style="width:944px" %)(((
782 Bit0: Initialization complete flag
783
784 After the ECAM permission signal is activated, calculate the related data, and automatically set to ON after initialization. Users need to clear the state of this flag by themselves.
785 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
786 |(% style="width:944px" %)(((
787 Bit1: Cycle completion flag
788
789 ECAM completion flag. When the periodic ECAM is executed, this flag will be automatically set to ON; if you want to restart the periodic ECAM, clear the state of this flag first.
790 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
791 |(% style="width:944px" %)(((
792 Bit2: Pulse sending delayed flag
793
794 Bit3: ECAM error stop running flag
795
796 Bit4: Parameter error, ECAM stop running flag
797
798 Bit5: Table error, electronic cam stop running flag
799
800 Bit6: Periodic ECAM flag
801
802 Bit7: Aperiodic ECAM flag
803
804 Bit9: Current cycle completion stop flag
805
806 Bit10: synchronization zone flag
807
808 Bit11: Time axis flag
809
810 Bit12: New form load completion flag
811
812 Bit13: Periodic delay ECAM flag
813
814 Bit14: Delayed start function, delayed waiting flag bit
815 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
816 |2|Register error|(% style="width:944px" %)(((
817 Operation error condition (check Bit3 of address 1): Display Error code.
818
819 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
820
821 Table error condition (check Bit5 of address 1): display error
822
823 Incorrect table segment number.
824
825 **✎Note:** Bit3 of address 1 must be set with Bit4 and Bit5
826 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
827 |3|(((
828 Function register
829
830 (Confirm before using electronic cam)
831 )))|(% style="width:944px" %)(((
832 Bit0: Delayed start enable Bit1: Start at specified position Bit2: Spindle zoom
833
834 Bit3: zoom from axis
835
836 Bit5: Use external start signal
837
838 Bit6: Start from current position
839 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
840 |4|(((
841 Function register
842
843 (Can be changed while the ECAM is running)
844 )))|(% style="width:944px" %)(((
845 Bit0: Sync signal enable
846
847 Bit1: Stop the electronic cam after the current cycle is completed
848
849 Bit2: Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
850 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
851 |5|ECAM start register|(% style="width:944px" %)(((
852 0: Stop the electronic cam immediately
853
854 1: Periodic electronic cam (start)
855
856 2: Aperiodic electronic cam (start)
857
858 3: Stop after the cycle is completed, this register automatically becomes 3
859
860 4: Periodic delay electronic cam (start)
861
862 Other: reserved, not available
863 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
864 |6|Maximum output frequency setting of ECAM|(% rowspan="2" style="width:944px" %)(((
865 Maximum output frequency setting of electronic cam;
866
867 When the frequency is less than 0 or greater than 200K, it is 200K
868 )))|(% style="width:126px" %)200000|(% style="width:154px" %)0 to 200000
869 |7|The highest ECAM output frequency setting|(% style="width:126px" %) |(% style="width:154px" %)
870 |8|Sync signal Y terminal number|(% style="width:944px" %)(((
871 Output terminal number:
872
873 Set the Y number of the synchronization output terminal, the range is 0 to 1777 (octal), when the synchronization output function is enabled, when in the synchronization area, the corresponding Y terminal outputs the synchronization signal. This function needs to set the upper and lower limits of the synchronization position first .
874 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 1777
875 |9|(((
876 CAM synchronization position lower limit
877
878 (Low word)
879 )))|(% rowspan="4" style="width:944px" %)(((
880 The synchronization position upper/lower limit setting of the electronic cam,
881
882 When the synchronization position lower limit ≤ spindle position ≤ position upper limit
883
884 And the synchronization signal terminal Y output is ON when the synchronization signal is enabled (address 4, BIT0).
885
886 When the lower limit> the upper limit, the upper and lower limit values will be exchanged.
887 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
888 |10|(((
889 CAM synchronization position lower limit
890
891 (High word)
892 )))
893 |11|(((
894 CAM synchronization position upper limit
895
896 (Low word)
897 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
898 |12|(((
899 CAM synchronization position upper limit
900
901 (High word)
902 )))
903 |13|Electronic cam pulse remainder distribution setting (reserved)|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
904 |14|Aperiodic ECAM execution times|(% style="width:944px" %)(((
905 Periodic electronic cam: reserved;
906
907 Aperiodic electronic cam: control table execution times; when the value is H0001, the electronic cam will stop after executing once;
908
909 When the value is HFFFF, it will become a periodic electronic cam execution.
910 )))|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
911 |15|ECAM start delay pulse setting (low word)|(% rowspan="2" style="width:944px" %)(((
912 Periodic electronic cam: reserved
913
914 Aperiodic electronic cams and periodic delay electronic cams: the delayed start function can be enabled through (Address 3, Bit0-delayed start enable). When the aperiodic electronic cam is executed, a cam start signal is received. If the electronic cam table is not executed immediately, but the spindle rotates for a few pulses, the table is run. At this time, this register sets the number of delayed pulses.
915 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
916 |16|ECAM start delay pulse setting (high word)
917 |17|(((
918 Spindle specified position start
919
920 (Low word)
921 )))|(% rowspan="2" style="width:944px" %)(((
922 Periodic electronic cam: reserved
923
924 Aperiodic electronic cam:
925
926 It can be enabled by (address 3, Bit1-specified location start enable),
927
928 To enable the function of the specified location. The starting position is set by this address. The setting value must be within the table period.
929 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)(((
930 32-bit unsigned integer
931
932 number
933 )))
934 |18|(((
935 Spindle specified position start
936
937 (high word)
938 )))
939 |19|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
940 Output shaft: current position of slave shaft (after conversion)
941
942 The position of the slave axis during the current cam execution, after scaling
943 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
944 |20|Current position of slave axis (high word)
945 |21|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
946 Output shaft: current position of slave shaft (before conversion)
947
948 The position of the slave axis during the current cam execution, before scaling
949 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
950 |22|Current position of slave axis (high word)
951 |23|Denominator of slave axis magnification|(% rowspan="2" style="width:944px" %)Zoom from axis|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
952 |24|Slave magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
953 |25|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
954 Input axis: the current position of the spindle (after conversion)
955
956 The position of the main axis during the current cam execution, after scaling
957 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
958 |26|Spindle current position (high word)
959 |27|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
960 Input axis: the current position of the spindle (before conversion)
961
962 The position of the main axis during the current cam execution, before scaling
963 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
964 |28|Spindle current position (high word)
965 |29|Denominator of spindle magnification|(% rowspan="2" style="width:944px" %)Spindle zoom|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
966 |30|Spindle magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
967 |31|Specify the table to be run in the next cycle|(% style="width:944px" %)(((
968 Switch to use in the table function after the cycle is completed. 0: Use the default table
969
970 1: Use the data in Table 1 (ECAMCUT specifies the address)
971
972 2: Use the data in Table 2 (ECAMCUT specifies the address)
973 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
974 |32|Table running in current cycle|(% style="width:944px" %)(((
975 Switch to use in the table function after the cycle is completed. Indicates the current week
976
977 Periodically run form.
978 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
979 |33|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
980 |34|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
981 |35|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
982 |36|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
983 |37|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
984 |38|Number of segments in the table|(% style="width:944px" %)Total data segment of cam table data|(% style="width:126px" %)0|(% style="width:154px" %)0 to 512
985 |39|Start offset of the table|(% style="width:944px" %)Specify the offset address of the cam table, fixed to 40|(% style="width:126px" %)40|(% style="width:154px" %)40
986 |40|(((
987 Spindle segment 0
988
989 (low word)
990 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
991 |41|(((
992 Spindle segment 0
993
994 (high word)
995 )))
996 |42|(((
997 Section 0 slave axis
998
999 (low word)
1000 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1001 |43|(((
1002 Section 0 slave axis
1003
1004 (high word)
1005 )))
1006 |44|(((
1007 Spindle section 1
1008
1009 (low word)
1010 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1011 |45|(((
1012 Spindle section 1
1013
1014 (high word)
1015 )))
1016 |46|(((
1017 Section 1 slave axis
1018
1019 (low word)
1020 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1021 |47|(((
1022 Section 1 slave axis
1023
1024 (high word)
1025 )))
1026 |40+ N*4|(((
1027 Nth spindle
1028
1029 (low word)
1030 )))|(% rowspan="2" style="width:944px" %)Nth segment spindle position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1031 |40+ N*4+1|(((
1032 Nth spindle
1033
1034 (high word)
1035 )))
1036 |40+ N*4+2|Nth segment slave axis(low word)|(% rowspan="2" style="width:944px" %)Nth segment slave axis position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1037 |40+ N*4+3|Nth segment slave axis(high word)
1038
1039 **{{id name="5.1凸轮寄存器相关说明"/}}Description of cam register**
1040
1041 **(1) Address 2 - Error register:**
1042
1043 Operation error (check Bit3 of address 1) error code description:
1044
1045 (% class="table-bordered" %)
1046 |**Error code**|**Content**
1047 |-1|Form number is out of range
1048 |-2|The table is not initialized properly
1049 |-3|The number of table segments is too short
1050 |1|Spindle input error, pulse change is too large, 100us exceeds 200
1051 |3|Too many slave axes calculated
1052 |5|The spindle has too many unprocessed pulses in the current cycle
1053 |8|Calculate the number of pulses that the slave axis currently needs to output is too much
1054 |9|The cam master is 2 cycles ahead of the slave
1055 |Parameter error (check Bit4 of address 1)|Display the offset address of the error parameter register.
1056 |Form error (check Bit5 of address 1)|The wrong table segment number is displayed.
1057
1058 **(2) Address 3—function register before ECAM is enabled**
1059
1060 Start the corresponding function register of the cam. When the corresponding setting is 1, the corresponding function of the cam is enabled.
1061
1062 BIT6: start from current position
1063
1064 You can set the starting point of the master and slave when the cam starts.
1065
1066 When this function is enabled, the initial position of the spindle is obtained from [Address 27, 28 — current position of the spindle (before conversion)];
1067
1068 The initial position of the slave axis is obtained from [Address 19, 20 — current position of the slave axis (after conversion)].
1069
1070 **(3) Address 4—function register in ECAM operation**
1071
1072 Bit0-Sync signal enable
1073
1074 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position ≤ the spindle position ≤ the upper limit of the synchronous position, the synchronous terminal outputs.
1075
1076 Bit1-Stop when the current cycle is completed
1077
1078 When address 4-BIT1 = 1, the cam will stop immediately after the execution of the current table is completed. After stopping, address 5 will automatically change to 3, reset to 1, and the periodic electronic cam can be started again. The same applies to non-periodic electronic cams.
1079
1080 **(4) Address 5—electronic cam start register**
1081
1082 Periodic electronic cam start: when address 5=1, start periodic electronic cam: when address 5=0, stop electronic cam.
1083
1084 Periodic delay electronic cam start: when address 5=2, start the first period delay pulse set by address 15, 16 and execute according to periodic electronic cam; address 5=0, stop electronic cam.
1085
1086 When switching between periodic electronic cam and non-periodic electronic cam, the data switching between address 5=1→address 5=0→address 5=2 requires an interval of more than 100us.
1087
1088 **(5) Address 8—synchronization signal Y terminal number**
1089
1090 This register is used to set the terminal number of the synchronization signal output.
1091
1092 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position≦the spindle position≦the upper limit of the synchronous position, the synchronous terminal outputs.
1093
1094 **(6) Address 9-12—synchronization position upper and lower limit**
1095
1096 (% class="table-bordered" %)
1097 |**Address**|**Features**|**Range**
1098 |Address 9|CAM synchronization position lower limit (LOW WORD)|(% rowspan="2" %)0 to 2147483647
1099 |Address 10|CAM synchronization position lower limit (HIGH WORD)
1100 |Address 11|CAM synchronization LOW WORD)|(% rowspan="2" %)0 to 2147483647
1101 |Address 12|CAM synchronization position upper limit (HIGH WORD)
1102
1103 The synchronization position upper/lower limit of the electronic cam is set. When the synchronization position lower limit ≤ spindle position ≤ position upper limit and the synchronization signal is enabled (address 4, BIT0), the synchronization signal terminal Y is output.
1104
1105 (% style="text-align:center" %)
1106 [[image:09_html_696eef9be2fe781b.gif||class="img-thumbnail"]]
1107
1108 **(7) Address 14—Aperiodic electronic cam execution times setting**
1109
1110 (% class="table-bordered" %)
1111 |**Address**|**Features**|**Range**
1112 |Address 14|(((
1113 Periodic electronic cam-reserved
1114
1115 Non-periodic electronic cam-control the number of times the electronic cam is executed
1116 )))|1 to 65535
1117
1118 When the non-periodic electronic cam mode is selected, the address 14 controls the execution times of the electronic cam. The current address is set to the number of times the cam repeats the table. When the value is HFFFF, it will become periodic cam execution. When the value is 0, the current address will automatically become 1 if it exceeds the range.
1119
1120 **Number of repetitions=0**
1121
1122 (% style="text-align:center" %)
1123 [[image:09_html_cd76208bae686662.gif||class="img-thumbnail"]]
1124
1125 **Number of repetitions=1**
1126
1127 (% style="text-align:center" %)
1128 [[image:09_html_32911c7488cda346.gif||class="img-thumbnail"]]
1129
1130 **(8) Address 15-16—Electronic cam start delay pulse setting**
1131
1132 (% class="table-bordered" %)
1133 |(% style="width:129px" %)**Address**|(% style="width:809px" %)**Features**|**Range**
1134 |(% style="width:129px" %)Address 15|(% rowspan="2" style="width:809px" %)Aperiodic electronic cams or periodic delay electronic cams. The electronic cam table will be executed immediately after the spindle rotates the set number of pulses|(% rowspan="2" %)32-bit unsigned integer
1135 |(% style="width:129px" %)Address 16
1136
1137 When executing aperiodic electronic cams or periodic delayed electronic cams, if address 3 (Bit0-delayed start enable) is set, the delayed start function is enabled. The slave axis receives a cam start signal. If the electronic cam table is not executed immediately, the table is run after delaying the spindle rotation for several pulses. At this time, the number of delayed pulses must be set for address 16.
1138
1139 As shown in the figure below: When the system receives a cam start signal, the electronic cam table will be executed immediately after the spindle rotates the set number of pulses.
1140
1141 **Delayed start pulse=10**
1142
1143 (% style="text-align:center" %)
1144 [[image:09_html_6e842f28225b1875.gif||class="img-thumbnail"]]
1145
1146 **Delayed start pulse=50**
1147
1148 (% style="text-align:center" %)
1149 [[image:09_html_d581ddc508fba3fa.gif||class="img-thumbnail"]]
1150
1151 **(9) Address 17-18—start at the specified position of the spindle**
1152
1153 (% class="table-bordered" %)
1154 |(% style="width:110px" %)**Address**|(% style="width:827px" %)**Features**|**Range**
1155 |(% style="width:110px" %)Address 17|(% rowspan="2" style="width:827px" %)The non-periodic electronic cam can be started at the specified position by address 3 (Bit1-specified position start enable). The starting location is set by this address|(% rowspan="2" %)32-bit unsigned integer
1156 |(% style="width:110px" %)Address 18
1157
1158 (% style="text-align:center" %)
1159 [[image:09_html_ac82ab14a3800b51.gif||class="img-thumbnail"]]
1160
1161 **{{id name="6、电子凸轮电子表格数据建立"/}}9.2.2.6 E-cam spreadsheet data creation**
1162
1163 **{{id name="6.1_单笔表格数据变更设定"/}}(1) Single table data change setting**
1164
1165 Each electronic cam table can create 512 points of data, which are set using offset address 40-address [40+n*4+4] respectively. Every 4 points of data is a group of ECAM data, which is composed of master axis position and slave axis position.
1166
1167 Use DMOV instruction to manipulate table data:
1168
1169 (% style="text-align:center" %)
1170 [[image:09_html_66dcb0a2e81acec5.jpg||class="img-thumbnail"]]
1171
1172 (((
1173 Set the total data segment of the spreadsheet data to 3
1174
1175 The spindle position of segment 0 is 0
1176
1177 The position of the 0th segment slave axis is 0
1178
1179 The spindle position of the first segment is 100
1180
1181 The first segment slave axis position is 100
1182
1183 The second stage spindle position is 200
1184
1185 The second segment slave axis position is 0
1186
1187 Configure electronic cam
1188
1189
1190 )))
1191
1192 **{{id name="6.2_使用PLC_Editor生成表格数据"/}}(2) Use PLC Editor to generate table data**
1193
1194 Define the relationship between master axis and slave axis, which is called electronic cam table data. In the data input, the electronic cam table has two ways to express:
1195
1196 Method 1: The functional relationship between the adopter
1197
1198 Method 2: Use the point-to-point relationship of X and Y to obtain the electronic cam table in two ways:
1199
1200 Approach 1: According to the standard function relationship of the master and slave axis
1201
1202 Approach 2: According to the corresponding relationship between points measured in actual work.
1203
1204 The cam table can define multiple CAM curves. After the relationship is determined, the position of the slave axis can be obtained according to the position of the master axis.
1205
1206 For example, the cam table for sinusoidal signals:
1207
1208 (% style="text-align:center" %)
1209 [[image:09_html_642ffea375343f61.png||class="img-thumbnail"]]
1210
1211 The electronic cam table is called electronic cam table in PLC Editor. Select [electronic cam table] in [Project Properties]-[Protection Function], right click to add and delete the table.
1212
1213 (% style="text-align:center" %)
1214 [[image:09_html_8d0f9043566eacf4.png||class="img-thumbnail"]]
1215
1216 The chart is mainly divided into 4 parts, namely the relative position of the master/slave axis, the relative speed of the master/slave axis, the relative acceleration of the master/slave axis, and the bottom data setting. The first three parts are used to display the CAM data set by the user. The horizontal axis is the main axis, and the vertical axis is the position of the slave axis, the speed ratio of the slave axis to the master axis, and the acceleration ratio of the slave axis to the master axis. The data setting area is introduced as follows:
1217
1218 1. Displacement resolution: Provide users to set the total number of data points occupied by the table, and the setting range is from 10 to 512, one point occupies 4 WORD Devicess.
1219 1. Data setting: Describe the displacement change of the master/slave axis by function.
1220 1. Import: describe the displacement change of the master/slave axis through a point-to-point method.
1221 1. Export: Export and archive the change relationship of the master/slave axis in a point-to-point manner.
1222
1223 {{id name="6.2.1_以函数方式描述主从轴的位置变化"/}}1) Functionally describe the position changes of the master and slave axes
1224
1225 Select [Data Setting] in the data setting area and the "Data Setting Window" will appear, which allows the user to describe the curve of the entire cam in a function, rather than a point-to-point description. At present, Wecon PLC provides 3 cam curve modes for users to choose, namely: Const Speed (constant speed), Const Acc (uniform acceleration), BSpline (cycloid).
1226
1227 (% style="text-align:center" %)
1228 [[image:09_html_1c2bc8b46503f556.png||class="img-thumbnail"]]
1229
1230 [Data Setting] The window is composed of sections, each section provides the user to set a section of cam curve, and then the entire section composes the cam curve. Each section is composed of master axis, slave axis, CAM curve and resolution, as explained below:
1231
1232 Main shaft: the displacement of the main shaft, the displacement of the main shaft must be greater than a value of 0, and increase;
1233
1234 Slave axis: the displacement of the slave axis, which is positive or negative;
1235
1236 CAM curve: the function used in the current section;
1237
1238 Resolution: The number of points used in the current section. The entire table can be set in the range 10-512. 1 point occupies 4 WORDs. If not set, the remaining points will be divided equally. The resolution is set according to the requirements of the device. The higher the resolution, the smoother the device runs, but the larger the device.
1239
1240 {{id name="6.2.2_以点对点方式描述主从轴的位置变化"/}}2) Describe the position changes of the master and slave axes in a point-to-point manner
1241
1242 Directly add data to the electronic cam table in a point-to-point mode. A cam table can input up to 512 points of data.
1243
1244 [Export]Export the current table data in a point-to-point manner and store it in the specified file.
1245
1246 [Import] Import the current table data in a point-to-point manner.
1247
1248 **{{id name="6.3_使用ECAM_TBX生成表格"/}}(3) Use ECAM TBX to generate tables**
1249
1250 (% class="table-bordered" %)
1251 |**Name**|**Features**|**Bits (bits)**|**Whether pulse type**|**Instruction format**|**Step count**
1252 |ECAMTBX|Generate spreadsheet data|16|No|ECAMTBXS0 S1 D0 D1|9
1253
1254 S0~-~-parameter address, allowable device: D, R.
1255
1256 For the setting parameters when generating the curve, please refer to the description in [Appendix]-[Parameter List]
1257
1258 S1~-~-curve type, allowable Devicess: D, R, H, K.
1259
1260 Indicates the type of curve to be generated.
1261
1262 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
1263
1264 K2: Customize the specified key point to generate a table
1265
1266 K100: Generate rotary saw curve
1267
1268 K101: Generate chase curve
1269
1270 D0~-~-the first address of cam parameters,
1271
1272 Allowed devices: D, R
1273
1274 The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
1275
1276 D1~-~-form generation result
1277
1278 Allowed devices: D, R
1279
1280 D1 <0 generates a table error;
1281
1282 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
1283
1284 ECAMTBX instruction generating curve error code:
1285
1286 (% class="table-bordered" %)
1287 |**Error code**|**Content**
1288 |-1|Condition parameter error
1289 |-2|The spindle pulse number is too few, not enough for synchronization area
1290 |-3|Unknown cam curve type
1291 |-4|Resolution range error
1292 |-5|Too many pulses of the slave axis calculated
1293 |-6|The calculated number of pulses from the slave axis is too small
1294 |-7|The calculated number of spindle pulses exceeds the set length
1295 |-8|The pulse number of the slave axis is set to 0
1296 |-10|S type acceleration and deceleration curve calculation error
1297 |-11|Unknown curve type
1298 |-12|Curve left wrong
1299 |-13|The number of slave axes that exceeds the range
1300
1301 Key point generating curve Error code:
1302
1303 (% class="table-bordered" %)
1304 |**Error code**|**Content**
1305 |-21|The number of key points is out of range
1306 |-22|Total resolution exceeds range
1307 |-23|Incorrect relationship between spindle size
1308 |-24|The resolution setting of each segment is incorrect
1309 |-25|When calculating, the number of control points is insufficient
1310 |-26|Unknown acceleration curve type
1311 |-27|Spindle pulse number is negative
1312
1313 S-type acceleration and deceleration generated curve Error code:
1314
1315 (% class="table-bordered" %)
1316 |**Error code**|**Content**
1317 |-31|The number of pulses exceeds the range
1318 |-32|Maximum frequency out of range
1319 |-33|Acceleration and deceleration time out of range
1320 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
1321
1322 **✎Note: **After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
1323
1324 == {{id name="_Toc21163"/}}**The application of ECAM** ==
1325
1326 **{{id name="1、飞剪应用"/}}A.Rotary saw application**
1327
1328 In the feeding and cutting application, the traditional method is to use the stop-and-go method. The feeding shaft first walks to a fixed length, and then the cutting shaft moves again, and then the process of "feeding stop" and "cutting stop" is repeated. Disadvantages of the medium method. In the process of feeding shaft stop and stop, the required acceleration and deceleration can not improve the production efficiency. Therefore, the new method is to use the non-stop feeding method. Generally, there are two feeding and cutting methods: rotary saw and flying saw. The difference between the two is that rotary saw moves in the same direction, while flying saw moves back and forth, and the set CAM table curves are also different.
1329
1330 (% style="text-align:center" %)
1331 [[image:09_html_8c06476629016e1b.png||class="img-thumbnail"]]
1332
1333 **{{id name="1.1飞剪动作说明"/}}(1) Description of rotary saw action**
1334
1335 1) Rotary saws control the cutting axis to rotate in the same direction, and cut when the tool touches the material. During this period, the feeding axis will continue to feed at a constant speed without stopping. The action and output stroke of rotary saw control are shown in the figure below:
1336
1337 ①. Accelerate and move to the synchronization area from the beginning of the axis;
1338
1339 ②. In the synchronization zone and the spindle at the same speed and output the cutting signal (CLR0);
1340
1341 ③. After leaving the synchronization zone, the slave axis will decelerate and move back to the origin to complete a cycle of cutting. After knowing the stroke, the speed relationship can be drawn.
1342
1343 2) In the cutting process, the most important thing is speed synchronization. For example, when the cutting knife contacts the material, it must be synchronized with the material speed. If the cutting knife speed is greater than the synchronous speed during contact, a force that pulls the material forward will cause the material to be uneven. If the speed is lower than the material speed, it will appear. Blocking phenomenon.
1344
1345 3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.
1346
1347 (% style="text-align:center" %)
1348 [[image:09_html_88dc65c9b19c9920.gif||height="498" width="500" class="img-thumbnail"]]
1349
1350 4) The relationship between cutting length and cutter circumference:
1351
1352 (% class="table-bordered" %)
1353 |(((
1354 Cutting length <cutter circumference:
1355
1356 In the synchronization zone, the cutter linear speed is synchronized with the feeding speed. After the synchronization zone, in order to catch up with the next cutting, the cutting axis is accelerated, as shown in the figure.
1357 )))|[[image:09_html_80a90f759be3a8d9.gif||class="img-thumbnail"]]
1358 |(((
1359 Cutting length = cutter circumference:
1360
1361 Average speed of cutting axis
1362 )))|[[image:09_html_75f2a002afdb5c2.gif||class="img-thumbnail"]]
1363 |1 times cutter circumference <cutting length <2 times cutter circumference:After the cutting action in the synchronization zone is completed, the cutting axis decelerates, then speed up to synchronize the next cutting, as shown in the figure.|[[image:09_html_d8e09cd43d7a2aba.gif||class="img-thumbnail"]]
1364 |Cutting length> 2 times the circumference of the cutter:When the cutting length is greater than 2 times the knife circumference (this is also the most common situation), in a cycle, after the cutting of the knife edge in the synchronization zone is completed, it decelerates to a stop, waits for a certain length to pass, and then starts the next cutting .|[[image:09_html_8c9af77a8c8fff2.gif]]
1365
1366 {{id name="1.3飞剪配置"/}}{{id name="1.2_飞剪生成"/}}**(2) Rotary saw generation**
1367
1368 The PLC built-in rotary saw curve automatically generates instructions. For the parameters needed to generate the curve, please refer to the "Rotary saw Parameter Table". The CAM curve in depth 6 has 5 forms. The combination of these 5 forms can generate the required rotary saw curve. ,As shown below.
1369
1370 (% class="table-bordered" %)
1371 |(% colspan="5" %)**Rotary saw curve parameter setting**
1372 |(% style="width:105px" %)**Parameter**|(% style="width:88px" %)**Offset address**|(% style="width:165px" %)**Name**|**Format**|**Instruction**
1373 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:88px" %)Address 0|(% rowspan="2" style="width:165px" %)Spindle length|(% rowspan="2" %)32 Bits Integer|(% rowspan="2" %)The cutting length of the feeding axis moving, the unit is Pulse.
1374 |(% style="width:88px" %)Address 1
1375 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:88px" %)Address 2|(% rowspan="2" style="width:165px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1376 The circumference of the cutting axis (including the tool length), the unit is Pulse.
1377
1378 Range [-2000000000, 2000000000]
1379 )))
1380 |(% style="width:88px" %)Address 3
1381 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:88px" %)Address 4|(% rowspan="2" style="width:165px" %)Slave axis sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1382 The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S-type rotary saw is selected, the value satisfies 40 *synchronization ratio<=synchronization length<slave axis
1383
1384 Length-2. ), synchronization area range: 0<synchronization area length<|slave axis length|
1385 )))
1386 |(% style="width:88px" %)Address 5
1387 |(% rowspan="2" style="width:105px" %)Parameter 4|(% style="width:88px" %)Address 6|(% rowspan="2" style="width:165px" %)(((
1388 Slave axis synchronization
1389
1390 magnification
1391 )))|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1392 Calculation method 1: In the synchronization zone, the speed of the master axis and the slave axis are equal, and the calculation method of synchronization magnification:
1393
1394 [[image:09_html_d11c191bffc9429b.jpg||class="img-thumbnail"]]
1395
1396 among them
1397
1398 V1(V2)=Master (slave) axis speed
1399
1400 F1(F2)=Master (slave) axis speed (Hz)
1401
1402 D1(D2)=Master (slave) shaft diameter
1403
1404 R1 (R2) = master (slave) axis pulse number per revolution
1405
1406 Calculation method two:
1407
1408 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/
1409
1410 Number of pulses required by 1mm spindle
1411 )))
1412 |(% style="width:88px" %)Address 7
1413 |(% rowspan="2" style="width:105px" %)Parameter 5|(% style="width:88px" %)Address 8|(% rowspan="2" style="width:165px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1414 Maximum magnification=
1415
1416 Maximum speed of slave axis/maximum speed of main axis
1417 )))
1418 |(% style="width:88px" %)Address 9
1419 |(% style="width:105px" %)Parameter 6|(% style="width:88px" %)Address 10|(% style="width:165px" %)Acceleration curve|Integer|(((
1420 0: constant acceleration curve, the speed curve is T type
1421
1422 1: Constant jerk curve, speed curve is S type
1423
1424 2: reserved
1425
1426 3: reserved
1427
1428 4: New S type rotary saw curve (the synchronization zone is in the middle),Please refer to the appendix for details. The current curve only supports CAM curve 0
1429 )))
1430 |(% style="width:105px" %)Parameter 7|(% style="width:88px" %)Address 11|(% style="width:165px" %)CAM curve|Integer|(((
1431 Start, stop, and various curve selections of different synchronization zone positions:
1432
1433 0: LeftCAM synchronization area is located on the front curve;
1434
1435 1: MidCAMall;
1436
1437 2: MidCAMBegin initial curve;
1438
1439 3: MidCAMEnd end curve;
1440
1441 4: RightCAM sync area is located at the back curve;
1442
1443 BIT[15]=1: continue the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
1444 )))
1445 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:88px" %)Address 12|(% style="width:165px" %)Resolution|Integer|(((
1446 Range [31,511], of which 20 synchronization areas;
1447
1448 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
1449 )))
1450 |(% style="width:88px" %)Address 13|(% style="width:165px" %)Reserved|Retained|Reserved
1451 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:88px" %)Address 14|(% rowspan="2" style="width:165px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1452 |(% style="width:88px" %)Address 15
1453 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:88px" %)Address 16|(% rowspan="2" style="width:165px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1454 |(% style="width:88px" %)Address 17
1455 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:88px" %)Address 18|(% rowspan="2" style="width:165px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than the speed corresponding to this value. Thereby adjusting the slope of the deceleration section.
1456 |(% style="width:88px" %)Address 19
1457
1458 (% style="text-align:center" %)
1459 [[image:09_html_85b39cb6a2a254f4.png||class="img-thumbnail"]]
1460
1461 **(3) Rotary saw configuration**
1462
1463 {{id name="1.3.1概述"/}}1) Overview
1464
1465 Synchronization zone: At this time, the feeding axis and the cutter axis rotate at a fixed speed ratio (the linear velocity of the cutter head is equal to the linear velocity of the cutting surface), and the cutting of the material occurs in the synchronous zone.
1466
1467 Adjustment area: due to different cutting lengths, corresponding displacement adjustments are required. According to the cutting length adjustment zone, it can be divided into the following three situations.
1468
1469 Short material cutting: the cutter shaft first has a uniform speed in the adjustment area, and then decelerates to the synchronous speed.
1470
1471 Normal material cutting: In this case, the cutter axis accelerates first in the adjustment zone. Then decelerate to synchronous speed.
1472
1473 Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.
1474
1475 (% style="text-align:center" %)
1476 [[image:09_html_ac77ff756d4dd1b2.gif||height="335" width="800" class="img-thumbnail"]]
1477
1478 (% style="text-align:center" %)
1479 [[image:09_html_7947002c875493ad.gif||height="337" width="400" class="img-thumbnail"]]
1480
1481 **{{id name="_Toc28644"/}}✎Note:**
1482
1483 When setting the maximum limit magnification, synchronization magnification, and minimum limit operation magnification, the material length boundary is also determined. Several limit values are as follows:
1484
1485 ①The speed of the shortest material (Lm1) satisfies: the actual maximum operating magnification = the maximum limit magnification, and the adjustment area is a constant speed + deceleration process.
1486
1487 (% style="text-align:center" %)
1488 [[image:09_html_e6ef7719c15b9c56.gif||class="img-thumbnail"]]
1489
1490 ②The shortest normal material (Lm2): the actual maximum operating magnification = the maximum limit magnification, the adjustment area is the acceleration + deceleration process.
1491
1492 (% style="text-align:center" %)
1493 [[image:09_html_b59eeb079fa045f8.gif||class="img-thumbnail"]]
1494
1495 ③The shortest length of material (Lm3): the actual maximum operating magnification = the minimum limit operating magnification, the adjustment area is acceleration + deceleration + dwell process.
1496
1497 (% style="text-align:center" %)
1498 [[image:09_html_2546314cd37aed9d.gif||class="img-thumbnail"]]
1499
1500 Therefore, the length of the material determines the type of operation of the slave axis:
1501
1502 ① When Lm1 ≤ L <Lm2, this is a short material, and its 0 ≤ actual maximum operating magnification ≤ maximum limit magnification
1503
1504 ② When Lm2 ≤ L <Lm3, this is a normal material, and its minimum limit operation magnification ≤ actual maximum operation magnification ≤ maximum limit magnification
1505
1506 ③ When L ≥ Lm3, this is a long material, and the actual maximum operating magnification = minimum limit magnification. There is a residence zone, the longer the material, the longer the residence time.
1507
1508 {{id name="1.3.2示例"/}}2) Example
1509
1510 The process result will be different according to the difference of the maximum limit magnification, synchronization magnification and minimum limit operation magnification.
1511
1512 ① Synchronous magnification <minimum limit operation magnification <maximum limit magnification
1513
1514 The parameter settings are as follows:
1515
1516 (% style="text-align:center" %)
1517 [[image:09_html_9c3f0a8bc2f79674.gif||height="310" width="500" class="img-thumbnail"]]
1518
1519 **Short material:**{{id name="OLE_LINK389"/}}
1520
1521 (% style="text-align:center" %)
1522 [[image:09_html_a335f05c7945dd4b.gif||height="320" width="800" class="img-thumbnail"]]
1523
1524 **Normal materials:**
1525
1526 (% style="text-align:center" %)
1527 [[image:09_html_ecd43824be58368a.gif||height="326" width="800" class="img-thumbnail"]]
1528
1529 **Long material:**
1530
1531 (% style="text-align:center" %)
1532 [[image:09_html_5cf341fa104d76d3.gif||height="318" width="800" class="img-thumbnail"]]
1533
1534 ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification
1535
1536 In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:
1537
1538 (% style="text-align:center" %)
1539 [[image:09_html_95b3fe4d6308ff9a.gif||height="329" width="500" class="img-thumbnail"]]
1540
1541 The situation of short material and normal material is the same as described in 2.1.
1542
1543 Long material: (no deceleration process in the adjustment zone)
1544
1545 (% style="text-align:center" %)
1546 [[image:09_html_74f9770e2a994f81.gif||class="img-thumbnail"]]
1547
1548 ③ Synchronous magnification = minimum limit operation magnification = maximum limit magnification
1549
1550 In this case, there are no normal materials, only short materials and long materials. The parameter settings are as follows:
1551
1552 (% style="text-align:center" %)
1553 [[image:09_html_ae0be67bb13d9c18.gif||class="img-thumbnail"]]
1554
1555 **Short material        Long material**
1556
1557 (% style="text-align:center" %)
1558 [[image:09_html_7033bb8aa22df588.gif||class="img-thumbnail"]]
1559
1560 **{{id name="1.4_案例"/}}(4) Case**
1561
1562 1) Control requirements:
1563
1564 ①. Use rotary saw curve to automatically generate cam table.
1565
1566 ②. For the equipment matched with the cutting axis and the feeding axis, the servo parameter is 1,000 pulse/rev.
1567
1568 ③. Related parameters:
1569
1570 Cutting material length is 1000 mm, cutting shaft circumference is 60πmm, feeding shaft circumference is 100πmm, and feeding shaft speed is 1,000 Hz
1571
1572 2) Parameters required to establish rotary saw curve
1573
1574 Parameter 1: You eed to input the length of the spindle cutting material because the cutting material length is 1000mm, it is converted to pulse
1575
1576 1000*1000/100Pi=3183 (pulse)
1577
1578 Parameter 2: The circumference of the slave shaft, that is, the number of pulses required for one revolution of the slave shaft 1000 pulse
1579
1580 Parameter 3: The synchronization length of the slave axis is set to approximately 1/3 of the circumference of the slave axis as 1000/3=333 pulse.
1581
1582 Parameter 4: During synchronization, the speed ratio of master and slave
1583
1584 (% style="text-align:center" %)
1585 [[image:09_html_5d7398a6b51d0822.png||class="img-thumbnail"]]
1586
1587 Parameter 5: The maximum magnification limit is: set to 10 times the synchronization magnification as 50/3 (floating point number).
1588
1589 Parameter 6: Low WORD is set to 0 - uniform acceleration
1590
1591 High WORD set to 0 - LEFTCAM
1592
1593 Parameter 7: Set the curve generation result to 0
1594
1595 Using curve generation instructions, ECAMTBX generates curves.
1596
1597 Circuit program corresponding to the case:
1598
1599 Spindle length
1600
1601 Slave length
1602
1603 Slave synchronization length
1604
1605 Slave axis synchronization magnification
1606
1607 Slave axis maximum magnification limit
1608
1609 Acceleration curve
1610
1611 CAM curve solution resolution
1612
1613 Set as rotary saw curve
1614
1615 Curve generation instruction
1616
1617 (% style="text-align:center" %)
1618 [[image:09_html_d35bbecf23e4f86c.png||height="592" width="500" class="img-thumbnail"]]
1619
1620 The curve corresponding to the Circuit program:
1621
1622 Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.
1623
1624 (% style="text-align:center" %)
1625 [[image:09_html_c2f99535690a2e69.gif||height="483" width="600" class="img-thumbnail"]]
1626
1627 **{{id name="2、追剪应用"/}}Flying saw application**
1628
1629 The flying saw system means that the feeding shaft will not stop while the system is cutting, so the camshaft must keep the same speed with the feeding shaft when cutting, and the same speed time must be enough for the cutter to complete the cutting and detach to safety s position. The flying saw camshaft will drive the cutter and the entire group of cutting mechanisms to move, so that it can maintain the same speed with the main shaft during cutting.
1630
1631 **{{id name="2.1_追剪动作说明"/}}(1) Description of flying saw action**
1632
1633 Suppose the wiring is as shown in the figure below, where 1, 2, 3, 4 are the waiting point (starting point), synchronization point, synchronization departure point, and waiting point (starting point), and its actions will follow the movement of the spindle. At the beginning, the camshaft stops at position 1, and then accelerates forward to position 2 to achieve speed synchronization, and continues to position 3, then decelerates and returns to position 4 in the opposite direction (assuming position 1 and position 4 are the same), and then repeat this action .
1634
1635 (% style="text-align:center" %)
1636 [[image:09_html_883677875ea25ecd.gif||class="img-thumbnail"]]
1637
1638 Flying saw control is used in pipe cutting machines, beverage filling and other equipment that needs to move with the processed product; its action is to add axis (slave axis)-start to accelerate and follow the processed product, and after moving to the synchronization zone, it will contact the processed product Start processing at a constant speed. After leaving the synchronization zone, the speed will decrease and stop, and then return to the starting position. All the stroke feeding axes (spindles) have been feeding at a constant speed. As shown below.{{id name="OLE_LINK475"/}}
1639
1640 (% style="text-align:center" %)
1641 [[image:09_html_f748f42472a5e8bc.gif||class="img-thumbnail"]]
1642
1643 The stroke of the flying saw is divided into two parts: the following part and the returning part. The two moving distances must be the same. From the speed stroke point of view, that is, positive area = negative area.
1644
1645 During flying saw, you need to pay attention that the feeding will not stop during processing, so the processing axis must keep the same speed with the feeding axis, and the synchronization time must be enough for the equipment to complete processing and move to a safe position.
1646
1647 The stroke length of the synchronization area is also the processing time, which can be considered when planning the synchronization area. In addition, the planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is large in a cutting cycle, the acceleration and deceleration time will be smaller, indicating that the equipment needs to be accelerated and decelerated in a short time. For motors, machines, and cutters The impact is very large, and it is easy to cause the servo over-current alarm, and the equipment cannot operate normally.
1648
1649 **{{id name="2.2_追剪参数表"/}}(2) Flying saw parameter table**
1650
1651 (((
1652 (% class="table-bordered" %)
1653 |(% colspan="5" %)**Parameter setting of flying saw curve**
1654 |(% style="width:118px" %)**Parameter**|(% style="width:118px" %)**Offset address**|(% style="width:134px" %)**Name**|(% style="width:115px" %)**Format**|(% style="width:464px" %)**Instruction**
1655 |(% rowspan="2" style="width:118px" %)Parameter 1|(% style="width:118px" %)Address 0|(% rowspan="2" style="width:134px" %)Spindle length|(% rowspan="2" style="width:115px" %)32-bit integer|(% rowspan="2" style="width:464px" %)The cutting length of the feeding axis moving, the unit is Pulse.
1656 |(% style="width:118px" %)Address 1
1657 |(% rowspan="2" style="width:118px" %)Parameter 2|(% style="width:118px" %)Address 2|(% rowspan="2" style="width:134px" %)Slave length|(% rowspan="2" style="width:115px" %)32-bit integer|(% rowspan="2" style="width:464px" %)The circumference of the cutting axis (including the tool length), the unit is Pulse. Range [-2000000000, 2000000000]
1658 |(% style="width:118px" %)Address 3
1659 |(% rowspan="2" style="width:118px" %)Parameter 3|(% style="width:118px" %)Address 4|(% rowspan="2" style="width:134px" %)Slave synchronization length|(% rowspan="2" style="width:115px" %)32-bit integer|(% rowspan="2" style="width:464px" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
1660 |(% style="width:118px" %)Address 5
1661 |(% rowspan="2" style="width:118px" %)Parameter 4|(% style="width:118px" %)Address 6|(% rowspan="2" style="width:134px" %)Slave axis synchronization magnification|(% rowspan="2" style="width:115px" %)Floating|(% rowspan="2" style="width:464px" %)(((
1662 Calculation method one:
1663
1664 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the synchronization magnification calculation method:[[image:09_html_d11c191bffc9429b.jpg||class="img-thumbnail"]]
1665
1666 V1(V2)=Master (slave) axis speed
1667
1668 F1(F2)=Master (slave) axis speed (Hz)
1669
1670 D1(D2)=Master (slave) shaft diameter
1671
1672 R1 (R2) = master (slave) axis pulse number per revolution
1673
1674 Calculation method two:
1675
1676 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm
1677
1678 Number of pulses required by the spindle
1679 )))
1680 |(% style="width:118px" %)Address 7
1681 |(% rowspan="2" style="width:118px" %)Parameter 5|(% style="width:118px" %)Address 8|(% rowspan="2" style="width:134px" %)Slave axis maximum magnification limit|(% rowspan="2" style="width:115px" %)Floating|(% rowspan="2" style="width:464px" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
1682 |(% style="width:118px" %)Address 9
1683 |(% rowspan="2" style="width:118px" %)Parameter 6|(% style="width:118px" %)Address 10|(% style="width:134px" %)Acceleration curve|(% style="width:115px" %)Integer|(% style="width:464px" %)(((
1684 0: constant acceleration curve, the speed curve is T type
1685
1686 1: Constant jerk curve, the speed curve is S type
1687 )))
1688 |(% style="width:118px" %)Address 11|(% style="width:134px" %)CAM curve|(% style="width:115px" %)Integer|(% style="width:464px" %)Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the default tracking RightCam, and the return LeftCam curve type. May not be set)
1689 |(% rowspan="2" style="width:118px" %)Parameter 7|(% style="width:118px" %)Address 12|(% style="width:134px" %)Resolution|(% style="width:115px" %)Integer|(% style="width:464px" %)Range [62,511]
1690 |(% style="width:118px" %)Address 13|(% style="width:134px" %)Reserved|(% style="width:115px" %)Retained|(% style="width:464px" %)Reserved
1691 |(% rowspan="2" style="width:118px" %)Parameter 8|(% style="width:118px" %)Address 14|(% rowspan="2" style="width:134px" %)synchronization zone start position|(% rowspan="2" style="width:115px" %)32-bit integer|(% rowspan="2" style="width:464px" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1692 |(% style="width:118px" %)Address 15
1693 |(% rowspan="2" style="width:118px" %)Parameter 9|(% style="width:118px" %)Address 16|(% rowspan="2" style="width:134px" %)End of synchronization zone|(% rowspan="2" style="width:115px" %)32-bit integer|(% rowspan="2" style="width:464px" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1694 |(% style="width:118px" %)Address 17
1695 |(% rowspan="2" style="width:118px" %)Parameter 10|(% style="width:118px" %)Address 18|(% rowspan="2" style="width:134px" %)Reserved|(% rowspan="2" style="width:115px" %)Reserved|(% rowspan="2" style="width:464px" %)Reserved
1696 |(% style="width:118px" %)Address 19
1697 |(% rowspan="2" style="width:118px" %)Parameter 11|(% style="width:118px" %)Address 20|(% rowspan="2" style="width:134px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" style="width:115px" %)Floating|(% rowspan="2" style="width:464px" %)(((
1698 The maximum magnification of the actual operation of slave axis:
1699
1700 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
1701 )))
1702 |(% style="width:118px" %)Address 21
1703 )))
1704
1705 **{{id name="2.3_案例"/}}(3) Case**
1706
1707 1) Control parameters
1708
1709 ①. The servo parameter is 1000 pulse/rev.
1710
1711 ②. Related parameters
1712
1713 The processing length of the feeding shaft is 660 mm, and the circumference of the feeding shaft is 60πmm
1714
1715 The machining length of the machining shaft is 40 mm
1716
1717 {{id name="_Toc11189"/}}One rotation of the machining axis is 20 mm
1718
1719 The feed shaft speed is 1000 Hz
1720
1721 {{id name="2.3.1_利用飞剪曲线来建立追剪曲线"/}}2) Establish flying saw curve by rotary saw curve
1722
1723 The parameters needed to establish rotary saw curve
1724
1725 Spindle length (processing length): Assuming that the spindle servo parameter is 1000 pulse/rev and the mechanism parameter is 60π mm/rev, then 1pulse is 0.188mm. If the actual processing length is 660mm→convert to 660/0.188=3501 pulse.
1726
1727 Slave axis length(machining axis length):
1728
1729 First consider that the slave axis servo parameter is 1000 pulse/rev and the mechanism parameter is 20mm/rev, then 1pulse=0.01mm can be obtained.
1730
1731 The actual measured slave shaft machining length is 40 mm → converted to 2000 Pulse.
1732
1733 The location of the synchronization zone;
1734
1735 The lower limit of the synchronization zone is when the actual START0 signal is triggered, the slave axis goes from 0 to the position 200 where it catches up with the spindle speed;
1736
1737 The upper limit of the synchronization zone is the position 500 where the processing time ends and the processing equipment also leaves.
1738
1739 The speed ratio of master and slave axis in synchronization zone: the speed ratio of the master axis and slave axis in the synchronization zone.
1740
1741 The speed ratio of master and slave axis when returning:
1742
1743 After the total length of the stroke subtracts the stroke of the following movement, the return stroke length can be obtained, and then use the following stroke distance = return stroke distance to know the speed ratio when returning = 3.
1744
1745 3) Establish flying saw curve automatically by rotary saw curve
1746
1747 ① Establish a positive area curve
1748
1749 Parameter 1: It needs to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle = 3501/2 =1750 pulse;
1750
1751 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1752
1753 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3 = 667 pulse;
1754
1755 Parameter 4:
1756
1757 (% style="text-align:center" %)
1758 [[image:09_html_68100086fd1c297a.gif||class="img-thumbnail"]]
1759
1760 Parameter 5: the highest synchronization magnification 10 (floating point number);
1761
1762 Parameter 6: Low word setting 0: uniform acceleration;
1763
1764 High word setting 0: LeftCam.
1765
1766 ② Establish a negative area curve
1767
1768 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle =3501/2 =1750 pulse;
1769
1770 Parameter 2: Reverse running size is -2000;
1771
1772 Parameter 3: Same;
1773
1774 Parameter 4: Same;
1775
1776 Parameter 5: Same;
1777
1778 Parameter 6: Low word setting 0: uniform acceleration;
1779
1780 High word setting H8000: LeftCam continues the existing table data.
1781
1782 4) Generate tables with the function of flying saw
1783
1784 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse;
1785
1786 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1787
1788 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3=667 pulse;
1789
1790 Parameter 4:
1791
1792 (% style="text-align:center" %)
1793 [[image:09_html_bd90dcc010d13207.gif||class="img-thumbnail"]]
1794
1795 Parameter 5: the highest synchronization magnification 10 (floating point number)
1796
1797 Parameter 6: Low word setting 1: Uniform acceleration;
1798
1799 High word setting 0: invalid.
1800
1801 Use ECAMTBX to generate curves:
1802
1803 (% style="text-align:center" %)
1804 [[image:09_html_67c3ab90b2ffbbd3.png||height="449" width="500" class="img-thumbnail"]]
1805
1806 (((
1807 Spindle length
1808
1809 Slave length
1810
1811 Slave synchronization length
1812
1813 Slave axis synchronization magnification
1814
1815 Slave axis maximum magnification limit
1816
1817 Acceleration curve
1818
1819 CAM curve solution resolution
1820
1821 Set as rotary saw curve
1822
1823 Curve generation instruction
1824
1825
1826 )))
1827
1828 Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}}
1829
1830 (% style="text-align:center" %)
1831 [[image:09_html_88ff5c1c9ceb8325.gif||height="455" width="600" class="img-thumbnail"]]
1832
1833 **S type acceleration and deceleration curve establishment**
1834
1835 **{{id name="3.1_S型加减速曲线表格参数"/}}(1) S type acceleration and deceleration curve table parameters**
1836
1837 (% class="table-bordered" %)
1838 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
1839 |(% style="width:105px" %)**Parameter**|(% style="width:98px" %)**Offset address**|(% style="width:238px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
1840 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:98px" %)Address 0|(% rowspan="2" style="width:238px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
1841 |(% style="width:98px" %)Address 1
1842 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:98px" %)Address 2|(% rowspan="2" style="width:238px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
1843 |(% style="width:98px" %)Address 3
1844 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:98px" %)Address 4|(% rowspan="2" style="width:238px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)
1845 |(% style="width:98px" %)Address 5
1846 |(% style="width:105px" %)Parameter 4|(% style="width:98px" %)Address 6|(% style="width:238px" %)Accelerated Time|16-bit integer|Pulse acceleration time|ms|2 to 32767
1847 |(% style="width:105px" %)Parameter 5|(% style="width:98px" %)Address 7|(% style="width:238px" %)deceleration time|16-bit integer|Pulse deceleration time|ms|2 to 32767
1848 |(% style="width:105px" %)Parameter 6|(% style="width:98px" %)Address 8|(% style="width:238px" %)Resolution|16-bit integer|Pulse resolution|Length|50 to 511
1849 |(% style="width:105px" %)Parameter 7|(% style="width:98px" %)Address 9|(% style="width:238px" %)Reserved|Retained|Reserved| |
1850 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:98px" %)Address 10|(% rowspan="2" style="width:238px" %)Number of spindle pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of spindle pulses in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
1851 \\Internally generated
1852 |(% style="width:98px" %)Address 11
1853 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:98px" %)Address 12|(% rowspan="2" style="width:238px" %)Number of slave axis pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses from the last segment of the slave axis (high and low bits)|(% rowspan="2" %)Pulse
1854 |(% style="width:98px" %)Address 13
1855 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:98px" %)Address 14|(% rowspan="2" style="width:238px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the pulse at a constant speed|(% rowspan="2" %)Pulse
1856 |(% style="width:98px" %)Address 15
1857 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:98px" %)Address 16|(% rowspan="2" style="width:238px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Maximum speed of curve results during operation|(% rowspan="2" %)Hz
1858 |(% style="width:98px" %)Address 17
1859 |(% style="width:105px" %)Parameter 12|(% style="width:98px" %)Address 18|(% style="width:238px" %)Reserved| | | |
1860 |(% style="width:105px" %)Parameter 13|(% style="width:98px" %)Address 19|(% style="width:238px" %)Curve generation result| | | |
1861
1862 **✎Note:**
1863
1864 Generate S type acceleration and deceleration curve (table) with the given acceleration time, deceleration time, and the highest speed. When calculating, the spindle uses the pulse input frequency of 1K (1ms) as the calculation basis.
1865
1866 **{{id name="3.2_案例"/}}(2) Case**
1867
1868 1) Related control parameters
1869
1870 Calculation case:
1871
1872 Total number of pulses (length): 10000 pulses
1873
1874 Acceleration time: 100ms
1875
1876 Deceleration time: 100ms Resolution: 200
1877
1878 2) 2. Curve parameters:
1879
1880 Parameter 1: The total number of output pulses 10000
1881
1882 Parameter 2: Maximum speed 50000
1883
1884 Parameter 6: acceleration time 100
1885
1886 Parameter 7: acceleration time 100
1887
1888 Parameter 8: Resolution 200
1889
1890 (% style="text-align:center" %)
1891 [[image:09_html_aa28fc53f7b57a5e.png||height="392" width="500" class="img-thumbnail"]]
1892
1893 (((
1894 Pulse maximum speed
1895
1896 Total pulse number
1897
1898 Acceleration time
1899
1900 Deceleration time
1901
1902 Resolution
1903
1904 Set S type acceleration and deceleration curve
1905
1906 Curve generation instruction
1907
1908
1909 )))
1910
1911 (% style="text-align:center" %)
1912 [[image:09_html_ce402394c75f0459.gif||class="img-thumbnail"]]
1913
1914 **C.Customize specified key points to generate a table**
1915
1916 **{{id name="4.1_指定关键点生成表格参数"/}}(1) Specified key points generate table parameters**
1917
1918 (% class="table-bordered" %)
1919 |(% colspan="6" %)**Specified key points generate table parameters**
1920 |(% colspan="2" %)**Address**|(% style="width:333px" %)**Name**|(% style="width:197px" %)**Length**|**Instruction**|**Range**
1921 |(% colspan="2" %)S0|(% style="width:333px" %)Curve result|(% style="width:197px" %)Single word|(((
1922 ~>0: The curve is generated successfully
1923
1924 <0: Failed to generate curve
1925 )))|
1926 |(% colspan="2" %)S0+1|(% style="width:333px" %)Error parameter position|(% style="width:197px" %)Single word| |
1927 |(% colspan="2" %)S0+2|(% style="width:333px" %)Total resolution|(% style="width:197px" %)Single word| |10 to 511
1928 |(% colspan="2" %)S0+3|(% style="width:333px" %)Number of key points (n)|(% style="width:197px" %)Single word| |1 to 10
1929 |(% colspan="2" %)S0+4|(% rowspan="2" style="width:333px" %)The initial position of slave axis|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Set the initial offset position of slave axis|(% rowspan="2" %)Reserved
1930 |(% colspan="2" %)S0+5
1931 |(% colspan="2" %)S0+6|(% style="width:333px" %)Spindle segment 0|(% style="width:197px" %)Single word|(% rowspan="2" %)The master/slave axis segment 0 is always 0|(% rowspan="2" %)Reserved
1932 |(% colspan="2" %)S0+7|(% style="width:333px" %)Slave axis segment 0|(% style="width:197px" %)Single word
1933 |(% rowspan="6" %)(((
1934 Key
1935
1936 point 1
1937 )))|S0+8|(% rowspan="2" style="width:333px" %)Spindle segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 1|(% rowspan="2" %)32-bit integer
1938 |S0+9
1939 |S0+10|(% rowspan="2" style="width:333px" %)Slave axis segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 1|(% rowspan="2" %)32-bit integer
1940 |S0+11
1941 |S0+12|(% style="width:333px" %)Curve type of segment 1|(% style="width:197px" %)Single word|*1|
1942 |S0+13|(% style="width:333px" %)Resolution of segment 1|(% style="width:197px" %)Single word|*2|
1943 |(% rowspan="6" %)(((
1944 Key
1945
1946 point 2
1947 )))|S0+14|(% rowspan="2" style="width:333px" %)Spindle segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 2|(% rowspan="2" %)32-bit integer
1948 |S0+15
1949 |S0+16|(% rowspan="2" style="width:333px" %)Slave axis segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 2|(% rowspan="2" %)32-bit integer
1950 |S0+17
1951 |S0+18|(% style="width:333px" %)Curve type of segment 2|(% style="width:197px" %)Single word|*1|
1952 |S0+19|(% style="width:333px" %)Resolution of segment 2|(% style="width:197px" %)Single word|*2|
1953 | |**......**|(% style="width:333px" %)**......**|(% style="width:197px" %)**.....**|**......**|**......**
1954 |(% rowspan="6" %)(((
1955 Key point
1956
1957 N
1958 )))|S0+n*6+2|(% rowspan="2" style="width:333px" %)Spindle segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment N|(% rowspan="2" %)32-bit integer
1959 |S0+n*6+3
1960 |S0+n*6+4|(% rowspan="2" style="width:333px" %)Slave axis segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment N|(% rowspan="2" %)32-bit integer
1961 |S0+n*6+5
1962 |S0+n*6+6|(% style="width:333px" %)Curve type of segment N|(% style="width:197px" %)Single word|*1|
1963 |S0+n*6+7|(% style="width:333px" %)Resolution of segment N|(% style="width:197px" %)Single word|*2|
1964
1965 Curve type: Different values represent different curve types.
1966
1967 0 = uniform acceleration, 1 = S acceleration and deceleration (uniform acceleration), 2 = cycloid, 3 = uniform speed.
1968
1969 The resolution range is 0-511, the total resolution of all segments does not exceed the total resolution set by [S0]. if the resolution of all segments is set to 0, the total resolution set by [S0] split equally. When the curve type is cycloid, the corresponding resolution range is 3-511.W
1970
1971 Refer to the setting method of PLC Editor to generate a table based on the given key points and the given function relationship. The parameter setting is the same as the setting method of the upper computer. The editing interface of the upper computer is shown below. When the table is generated in K2 mode, The generated result is similar to the table result set by the relevant parameters of the upper computer. This mode expands the function of the table generated by the lower computer through the key points. In the key point curve, the spindle must have an increasing relationship, that is, the spindle pulse number of the next point must be greater than the spindle pulse number of the previous point, otherwise an error will be reported.
1972
1973 **{{id name="4.2_案例"/}}(2) Case**
1974
1975 1) Specified key points parameters
1976
1977 When the spindle has 0-600 pulses, the slave axis stops at position 0;
1978
1979 When the spindle has 600-1500 pulses, the slave axis moves to the position 2000;
1980
1981 When the spindle is 1500-1700 pulses, the slave axis stops at position 2000;
1982
1983 When the spindle has 1700-1900 pulses, the slave axis will return to position 600;
1984
1985 When the spindle has 1900-2000 pulses, the slave axis returns to position 0.
1986
1987 2) Specified key points for tabulation
1988
1989 Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.
1990
1991 (% style="text-align:center" %)
1992 [[image:09_html_b99e5227a35871ab.png||height="295" width="400" class="img-thumbnail"]]
1993
1994 Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
1995
1996 3) Specified key point parameters table
1997
1998 (((
1999 (% class="table-bordered" %)
2000 |**Address**|**Instruction**|**Set value**|**Address**|**Instruction**|**Set value**
2001 |S0|Curve generation result| |S0+19|Resolution of segment 2|0
2002 |S0+1|Error parameter location| |S0+20|(% rowspan="2" %)Spindle position of segment 3|(% rowspan="2" %)1700
2003 |S0+2|Total resolution|100|S0+21
2004 |S0+3|Number of key point|1-10|S0+22|(% rowspan="2" %)Slave axis position of segment 3|(% rowspan="2" %)2000
2005 |S0+4|(% rowspan="2" %)Initial position of slave axis|(% rowspan="2" %)——|S0+23
2006 |S0+5|S0+24|Curve type of segment 3|0
2007 |S0+6|Spindle position of segment 0|Reserved|S0+25|Resolution of segment 3|0
2008 |S0+7|Slave axis position of segment 0|Reserved|S0+26|(% rowspan="2" %)Spindle position of segment 4|(% rowspan="2" %)1900
2009 |S0+8|(% rowspan="2" %)Spindle position of segment 1|(% rowspan="2" %)600|S0+27
2010 |S0+9|S0+28|(% rowspan="2" %)Slave axis position of segment 4|(% rowspan="2" %)600
2011 |S0+10|(% rowspan="2" %)Slave axis position of segment 1|(% rowspan="2" %)0|S0+29
2012 |S0+11|S0+30|Curve type of segment 4|0
2013 |S0+12|Curve type of segment 1|0|S0+31|Resolution of segment 4|0
2014 |S0+13|Resolution of segment 1|0|S0+32|(% rowspan="2" %)Spindle position of segment 5|(% rowspan="2" %)2000
2015 |S0+14|(% rowspan="2" %)Spindle position of segment 2|(% rowspan="2" %)1500|S0+33
2016 |S0+15|S0+34|(% rowspan="2" %)Slave axis position of segment 5|(% rowspan="2" %)0
2017 |S0+16|(% rowspan="2" %)Slave axis position of segment 2|(% rowspan="2" %)1200|S0+35
2018 |S0+17|S0+36|Curve type of segment 5|0
2019 |S0+18|Curve type of segment 2|0|S0+37|Resolution of segment 5|0
2020 )))
2021
2022 4) The table generated by specified key points is shown as below.
2023
2024 (% style="text-align:center" %)
2025 [[image:09_html_7f4633272893860d.gif||class="img-thumbnail"]]
2026
2027 5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
2028
2029 (% style="text-align:center" %)
2030 [[image:09_html_b7baa900608277e3.png||width="500" class="img-thumbnail"]]
2031
2032
2033 (% style="text-align:center" %)
2034 [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]]
2035
2036 == {{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address** ==
2037
2038 (% class="table-bordered" %)
2039 |**Devices**|**Content**
2040 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
2041 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
2042 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
2043 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
2044 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
2045 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
2046 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
2047 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
2048
2049 (% class="table-bordered" %)
2050 |**Devices**|**Content**|**Devices**|**Content**
2051 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
2052 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
2053 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
2054 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
2055 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
2056 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
2057 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
2058 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
2059
2060 == {{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix** ==
2061
2062 **Rotary saw parameter table**
2063
2064 (% class="table-bordered" %)
2065 |(% colspan="5" %)**Rotary saw curve parameter setting**
2066 |(% style="width:117px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:162px" %)**Name**|**Format**|**Instruction**
2067 |(% rowspan="2" style="width:117px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:162px" %)Spindle length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The moving cut length of the feeding axis moving. Unit: pulse.
2068 |(% style="width:94px" %)Address 1
2069 |(% rowspan="2" style="width:117px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:162px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: pulse. Range [-2,000,000,000, 2,000,000,000]
2070 |(% style="width:94px" %)Address 3
2071 |(% rowspan="2" style="width:117px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:162px" %)Slave sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S type rotary saw is selected, the value satisfies 40 *sync ratio<=sync length< slave axis length-2. ). Sync area range: 0<sync area length<~|slave axis length~|
2072 |(% style="width:94px" %)Address 5
2073 |(% rowspan="2" style="width:117px" %)Parameter 4|(% style="width:94px" %)
2074 Address 6|(% rowspan="2" style="width:162px" %)Slave axis sync magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2075 Calculation method one:
2076
2077 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the sync magnification calculation method:
2078
2079 V1(V2)=Master (slave) axis speed
2080
2081 F1(F2)=Master (slave) axis speed (Hz)
2082
2083 D1(D2)=Master (slave) axis diameter
2084
2085 R1 (R2) = master (slave) axis pulse number per revolution
2086
2087 Calculation method two:
2088
2089 Slave axis sync magnification=the number of pulses required by 1mm slave axis/the number of pulses required by 1mm spindle
2090 )))
2091 |(% style="width:94px" %)Address 7
2092 |(% rowspan="2" style="width:117px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:162px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of spindle
2093 |(% style="width:94px" %)Address 9
2094 |(% style="width:117px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:162px" %)Acceleration curve|Integer|(((
2095 0: Constant acceleration curve, the speed curve is T type
2096
2097 1: Constant jerk curve, the speed curve is S type
2098
2099 2: reserved
2100
2101 3: reserved
2102
2103 4: New S rotary saw curve (synchronization zone is in the middle), see appendix for details. Current curve only supports CAM curve as 0.
2104 )))
2105 |(% style="width:117px" %)Parameter 7|(% style="width:94px" %)Address 11|(% style="width:162px" %)CAM curve|Integer|(((
2106 Start, stop, and various curve selections of different synchronization zone positions:
2107
2108 0: LeftCAM synchronization area is on the front curve;
2109
2110 1: MidCAMall;
2111
2112 2: MidCAMBegin start curve;
2113
2114 3: MidCAMEnd end curve;
2115
2116 4: RightCAM synchronization area is on the back curve;
2117
2118 BIT[15]=1: Continuing the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
2119 )))
2120 |(% style="width:117px" %)Parameter 8|(% style="width:94px" %)Address 12|(% style="width:162px" %)Resolution|Integer|(((
2121 Range [31,511], of which 20 synchronization areas;
2122
2123 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
2124 )))
2125 |(% style="width:117px" %) |(% style="width:94px" %)Address 13|(% style="width:162px" %)Reserved|Retained|Reserved
2126 |(% rowspan="2" style="width:117px" %)Parameter 9|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:162px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated start position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2127 |(% style="width:94px" %)Address 15
2128 |(% rowspan="2" style="width:117px" %)Parameter 10|(% style="width:94px" %)Address 16|(% rowspan="2" style="width:162px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2129 |(% style="width:94px" %)Address 17
2130 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 18|(% rowspan="2" style="width:162px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than this value magnification corresponds to the speed so as to adjust the slope of the deceleration section.
2131 |(% style="width:94px" %)Address 19
2132 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 20|(% rowspan="2" style="width:162px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2133 The maximum magnification of the actual operation of slave axis:
2134
2135 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2136 )))
2137 |(% style="width:94px" %)Address 21
2138
2139 **{{id name="2、追剪参数表"/}}9.2.5.2 Flying saw parameter table**
2140
2141 (% class="table-bordered" %)
2142 |(% colspan="6" %)**Parameter setting of flying saw curve**
2143 |(% style="width:113px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:199px" %)**Name**|(% colspan="2" %)**Format**|**Instruction**
2144 |(% rowspan="2" style="width:113px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:199px" %)Spindle length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The cutting length of the feeding axis moving. Unit: Pulse.
2145 |(% style="width:94px" %)Address 1
2146 |(% rowspan="2" style="width:113px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:199px" %)Slave length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: Pulse. Range [-2,000,000,000, 2,000,000,000]
2147 |(% style="width:94px" %)Address 3
2148 |(% rowspan="2" style="width:113px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:199px" %)Slave synchronization length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
2149 |(% style="width:94px" %)Address 5
2150 |(% rowspan="2" style="width:113px" %)Parameter 4|(% style="width:94px" %)Address 6|(% rowspan="2" style="width:199px" %)Slave axis synchronization magnification|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)(((
2151 Calculation method one:
2152
2153 In the synchronization zone, the speed of master axis and the slave axis are equal, and the synchronization magnification calculation method is as below.
2154
2155 [[image:09_html_abe2ece300f76c28.jpg]]
2156
2157 among them
2158
2159 V1(V2)=Master (slave) axis speed
2160
2161 F1(F2)=Master (slave) axis speed (Hz)
2162
2163 D1(D2)=Master (slave) axis diameter
2164
2165 R1 (R2) = master (slave) axis pulse number per revolution
2166
2167 Calculation method two:
2168
2169 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm The number of pulses required by the spindle
2170 )))
2171 |(% style="width:94px" %)Address 7
2172 |(% rowspan="2" style="width:113px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:199px" %)Slave axis maximum magnification limit|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
2173 |(% style="width:94px" %)Address 9
2174 |(% rowspan="2" style="width:113px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:199px" %)Acceleration curve|(% colspan="2" %)Integer|(((
2175 0: constant acceleration curve, the speed curve is T type
2176
2177 1: Constant jerk curve, the speed curve is S type
2178 )))
2179 |(% style="width:94px" %)Address 11|(% style="width:199px" %)CAM curve|(% colspan="2" %)Integer|Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the tracking RightCam and the return LeftCam curve type are defaulted and can not be set)
2180 |(% style="width:113px" %)Parameter 7|(% style="width:94px" %)Address 12|(% style="width:199px" %)Resolution|(% colspan="2" %)Integer|Range [62,511]
2181 |(% style="width:113px" %) |(% style="width:94px" %)Address 13|(% style="width:199px" %)Reserved|(% colspan="2" %)Reserved|Reserved
2182 |(% rowspan="2" style="width:113px" %)Parameter 8|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:199px" %)Synchronization zone start position|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2183 |(% style="width:94px" %)Address 15
2184 |(% rowspan="2" style="width:113px" %)Parameter 9|(% style="width:94px" %)Address 16|(% colspan="2" rowspan="2" style="width:199px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2185 |(% style="width:94px" %)Address 17
2186 |(% rowspan="2" style="width:113px" %)Parameter 11|(% style="width:94px" %)Address 20|(% colspan="2" rowspan="2" style="width:199px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2187 The maximum magnification of the actual operation of slave axis:
2188
2189 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2190 )))
2191 |(% style="width:94px" %)Address 21
2192
2193 **{{id name="OLE_LINK387"/}}S type acceleration and deceleration curve parameter table**
2194
2195 (% class="table-bordered" %)
2196 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
2197 |(% style="width:110px" %)**Parameter**|(% style="width:104px" %)**Offset address**|(% style="width:252px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
2198 |(% rowspan="2" style="width:110px" %)Parameter 1|(% style="width:104px" %)Address 0|(% rowspan="2" style="width:252px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
2199 |(% style="width:104px" %)Address 1
2200 |(% rowspan="2" style="width:110px" %)Parameter 2|(% style="width:104px" %)Address 2|(% rowspan="2" style="width:252px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
2201 |(% style="width:104px" %)Address 3
2202 |(% rowspan="2" style="width:110px" %)Parameter 3|(% style="width:104px" %)Address 4|(% rowspan="2" style="width:252px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)2 to 32767
2203 |(% style="width:104px" %)Address 5
2204 |(% style="width:110px" %)Parameter 4|(% style="width:104px" %)Address 6|(% style="width:252px" %)Accelerated time|16-bit integer|Pulse acceleration time|ms|2 to 32767
2205 |(% style="width:110px" %)Parameter 5|(% style="width:104px" %)Address 7|(% style="width:252px" %)Deceleration time|16-bit integer|Pulse deceleration time|ms|50 to 511
2206 |(% style="width:110px" %)Parameter 6|(% style="width:104px" %)Address 8|(% style="width:252px" %)Resolution|16-bit integer|Pulse resolution|Length|51 to 512
2207 |(% style="width:110px" %)Parameter 7|(% style="width:104px" %)Address 9|(% style="width:252px" %)Reserved|Reserved|Reserved| |
2208 |(% rowspan="2" style="width:110px" %)Parameter 8|(% style="width:104px" %)Address 10|(% rowspan="2" style="width:252px" %)Number of pulses of spindle in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of spindle in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
2209 \\Internally generated
2210 |(% style="width:104px" %)Address 11
2211 |(% rowspan="2" style="width:110px" %)Parameter 9|(% style="width:104px" %)Address 12|(% rowspan="2" style="width:252px" %)Number of pulses of slave axis in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of slave axis in the last segment(high and low)|(% rowspan="2" %)Pulse
2212 |(% style="width:104px" %)Address 13
2213 |(% rowspan="2" style="width:110px" %)Parameter 10|(% style="width:104px" %)Address 14|(% rowspan="2" style="width:252px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The time span when outputting pulses at a constant speed|(% rowspan="2" %)Pulse
2214 |(% style="width:104px" %)Address 15
2215 |(% rowspan="2" style="width:110px" %)Parameter 11|(% style="width:104px" %)Address 16|(% rowspan="2" style="width:252px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The maximum speed of curve during operation|(% rowspan="2" %)Hz
2216 |(% style="width:104px" %)Address 17
2217 |(% style="width:110px" %)Parameter 12|(% style="width:104px" %)Address 18|(% style="width:252px" %)Reserved| | | |
2218 |(% style="width:110px" %)Parameter 13|(% style="width:104px" %)Address 19|(% style="width:252px" %)Curve generation result| | | |
2219
2220 **{{id name="4、指定关键点生成表格"/}}4 Specified key points generate a table**
2221
2222 (% class="table-bordered" %)
2223 |(% colspan="6" %)**Specified key points generate table parameters**
2224 |(% colspan="2" %)**Address**|**Name**|**Length**|**Instruction**|**Range**
2225 |(% colspan="2" %)S0|Curve generation result|Single word|(((
2226 ~>0: The curve is generated successfully
2227
2228 <0: Failed to generate the curve
2229 )))|
2230 |(% colspan="2" %)S0+1|Error parameter location|Single word| |
2231 |(% colspan="2" %)S0+2|Total resolution|Single word| |10 to 511
2232 |(% colspan="2" %)S0+3|Number of key points (n)|Single word| |1 to 10
2233 |(% colspan="2" %)S0+4|(% rowspan="2" %)Start position of slave axis|(% rowspan="2" %)Double word|(% rowspan="2" %)Set the start offset position of slave axis|(% rowspan="2" %)Reserved
2234 |(% colspan="2" %)S0+5
2235 |(% colspan="2" %)S0+6|Spindle segment 0|Single word|(% rowspan="2" %)The master/slave axis of segment 0 is always 0|(% rowspan="2" %)Reserved
2236 |(% colspan="2" %)S0+7|Slave axis segment 0|Single word
2237 |(% rowspan="6" %)(((
2238
2239
2240 Key
2241
2242 point 1
2243 )))|S0+8|(% rowspan="2" %)Spindle segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 1|(% rowspan="2" %)32-bit integer
2244 |S0+9
2245 |S0+10|(% rowspan="2" %)Slave axis segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 1|(% rowspan="2" %)32-bit integer
2246 |S0+11
2247 |S0+12|Curve type of segment 1|Single word|*1|
2248 |S0+13|Resolution of segment 1|Single word|*2|
2249 |(% rowspan="6" %)(((
2250
2251
2252 Key
2253
2254 Point 2
2255 )))|S0+14|(% rowspan="2" %)Spindle segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 2|(% rowspan="2" %)32-bit integer
2256 |S0+15
2257 |S0+16|(% rowspan="2" %)Slave axis segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 2|(% rowspan="2" %)32-bit integer
2258 |S0+17
2259 |S0+18|Curve type of segment 2|Single word|*1|
2260 |S0+19|Resolution of segment 2|Single word|*2|
2261 | |......|......|....|......|......
2262 |(% rowspan="6" %)(((
2263
2264
2265 Key
2266
2267 point N
2268 )))|S0+n*6+2|(% rowspan="2" %)Spindle segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment N|(% rowspan="2" %)32-bit integer
2269 |S0+n*6+3
2270 |S0+n*6+4|(% rowspan="2" %)Slave axis segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment N|(% rowspan="2" %)32-bit integer
2271 |S0+n*6+5
2272 |S0+n*6+6|Curve type of segment N|Single word|*1|
2273 |S0+n*6+7|Resolution of segment N|Single word|*2|