Changes for page 09 Electronic cam

Last modified by Devin Chen on 2025/01/09 11:57

From version 6.2
edited by Stone Wu
on 2022/09/26 11:54
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 12:57
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -PLC Editor2.WebHome
1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -9,7 +9,7 @@
9 9  -[DEGEAR (s1) (s2) (s3) (d1) (d2)]
10 10  
11 11  (% style="text-align:center" %)
12 -[[image:09_html_da882b8c1ba50fe6.png||height="388" width="700" class="img-thumbnail"]]
12 +[[image:09_html_da882b8c1ba50fe6.png||class="img-thumbnail" height="388" width="700"]]
13 13  
14 14  **Content, range and data type**
15 15  
... ... @@ -52,44 +52,48 @@
52 52  
53 53  (% class="table-bordered" %)
54 54  |(% colspan="5" %)**Electronic gear instruction parameter description table**
55 -|**Offset**|(% style="width:348px" %)**Content**|(% style="width:460px" %)**Instruction**|(% style="width:213px" %)**Range**|**Read and write permission**
56 -|0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:460px" %)(((
55 +|**Offset**|(% style="width:348px" %)**Content**|(% style="width:724px" %)**Instruction**|(% style="width:209px" %)**Range**|**Read and write permission**
56 +|0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:724px" %)(((
57 57  Number of outputs =
58 58  
59 59  Number of inputs in response time*numerator/denominator
60 -)))|(% style="width:213px" %)0 to 32767|(% rowspan="2" %)Read/write
61 -|1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:213px" %)1 to 32767
62 -|2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:460px" %)Max frequency|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
63 -|3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:460px" %)Max frequency|Read/write
64 -|4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:460px" %)Hand crank input frequency|(% rowspan="2" style="width:213px" %)-|Read-only
65 -|5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:460px" %)Hand crank input frequency|Read-only
66 -|6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:460px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
60 +)))|(% style="width:209px" %)0 to 32767|(% rowspan="2" %)Read/write
61 +|1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:209px" %)1 to 32767
62 +|2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:724px" %)Max frequency|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write
63 +|3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:724px" %)Max frequency|Read/write
64 +|4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:724px" %)Hand crank input frequency|(% rowspan="2" style="width:209px" %)-|Read-only
65 +|5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:724px" %)Hand crank input frequency|Read-only
66 +|6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:724px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
67 67  |7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word)
68 -|8|(% style="width:348px" %)Sign|(% style="width:460px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:213px" %)Reserved|Reserved
69 -|9|(% style="width:348px" %)interval|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
70 -|10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
71 -|11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
72 -|12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
68 +|8|(% style="width:348px" %)Sign|(% style="width:724px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:209px" %)Reserved|Reserved
69 +|9|(% style="width:348px" %)interval|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
70 +|10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
71 +|11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
72 +|12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write
73 73  |13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write
74 -|14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:460px" %)(((
75 -* 1: Switch to the newly set gear ratio immediately. And set the address back to 0.
76 -* 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
77 -)))|(% style="width:213px" %)0 to 2|Read/write
78 -|15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:460px" %)(((
79 -* 0: Use 16-bit gear ratio
80 -* 1: Use 32-bit gear ratio
74 +|14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:724px" %)(((
75 +1: Switch to the newly set gear ratio immediately. And set the address back to 0.
81 81  
77 +2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
78 +)))|(% style="width:209px" %)0 to 2|Read/write
79 +|15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:724px" %)(((
80 +0: Use 16-bit gear ratio
81 +
82 +1: Use 32-bit gear ratio
83 +
82 82  ✎**Note:     **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.
83 -)))|(% style="width:213px" %)0 to 1|Read/write
84 -|16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)(((
85 -Number of outputs = Spindle input number within response time*numerator/denominator
86 -)))|(% rowspan="2" style="width:213px" %)0 to 214748647|(% rowspan="2" %)Read/write
85 +)))|(% style="width:209px" %)0 to 1|Read/write
86 +|16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)(((
87 +Number of inputs =
88 +
89 +Spindle input number within response time*numerator/denominator
90 +)))|(% rowspan="2" style="width:209px" %)0 to 214748647|(% rowspan="2" %)Read/write
87 87  |17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
88 -|18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)1 to 214748647|(% rowspan="2" %)Read/write
92 +|18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)1 to 214748647|(% rowspan="2" %)Read/write
89 89  |19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
90 -|20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
94 +|20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
91 91  |21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
92 -|22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
96 +|22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
93 93  |23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
94 94  
95 95  **✎Note:**
... ... @@ -156,7 +156,7 @@
156 156  -[DECAM (s1) (s2) (s3) (d1) (d2)]
157 157  
158 158  (% style="text-align:center" %)
159 -[[image:09_html_a82d001d381b23bb.png||height="476" width="700" class="img-thumbnail"]]
163 +[[image:09_html_a82d001d381b23bb.png||class="img-thumbnail" height="476" width="700"]]
160 160  
161 161  **Content, range and data type**
162 162  
... ... @@ -566,15 +566,17 @@
566 566  **(1) Parameters**
567 567  
568 568  (% class="table-bordered" %)
569 -|**Parameter**|(% style="width:527px" %)**Content**|(% style="width:226px" %)**Range**|(% style="width:143px" %)**Data type**|**Data type (label)**
570 -|(s1)|(% style="width:527px" %)Specify to receive the input pulse of the master axis|(% style="width:226px" %)(((
571 --2147483648 to +2147483647
572 -)))|(% style="width:143px" %)Signed BIN 32 bit|ANY32
573 -|(s2)|(% style="width:527px" %)Specify the data buffer area of the ECAM instruction|(% style="width:226px" %) |(% style="width:143px" %)Form|LIST
574 -|(s3)|(% style="width:527px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:226px" %)X/M/S/D.b|(% style="width:143px" %)Signed BIN 32 bit|ANY32
575 -|(d1)|(% style="width:527px" %)Specify pulse output axis|(% style="width:226px" %)Y0 to Y7|(% style="width:143px" %)Bit|ANY_BOOL
576 -|(d2)|(% style="width:527px" %)Specify direction output axis|(% style="width:226px" %)Y/M/S/D.b|(% style="width:143px" %)Bit|ANY_BOOL
573 +|**Parameter**|(% style="width:812px" %)**Content**|(% style="width:185px" %)**Range**|**Data type**|**Data type (label)**
574 +|(s1)|(% style="width:812px" %)Specify to receive the input pulse of the master axis|(% style="width:185px" %)(((
575 +-2147483648 to
577 577  
577 ++2147483647
578 +)))|Signed BIN 32 bit|ANY32
579 +|(s2)|(% style="width:812px" %)Specify the data buffer area of the ECAM instruction|(% style="width:185px" %) |Form|LIST
580 +|(s3)|(% style="width:812px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:185px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
581 +|(d1)|(% style="width:812px" %)Specify pulse output axis|(% style="width:185px" %)Y0 to Y7|Bit|ANY_BOOL
582 +|(d2)|(% style="width:812px" %)Specify direction output axis|(% style="width:185px" %)Y/M/S/D.b|Bit|ANY_BOOL
583 +
578 578  **{{id name="_Toc9293"/}}Device used:**
579 579  
580 580  (% class="table-bordered" %)
... ... @@ -666,7 +666,7 @@
666 666  ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.
667 667  
668 668  (% style="text-align:center" %)
669 -[[image:image-20220926115030-2.jpeg||class="img-thumbnail"]]
675 +[[image:09_html_230c69b0429b0c.gif||class="img-thumbnail" height="259" width="800"]]
670 670  
671 671  {{id name="_Toc18782"/}}2) Periodic ECAM stop
672 672  
... ... @@ -676,7 +676,8 @@
676 676  
677 677  ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again.
678 678  
679 -[[image:image-20220926115519-3.jpeg]]
685 +(% style="text-align:center" %)
686 +[[image:09_html_cfb2abe40245003c.gif||class="img-thumbnail" height="373" width="900"]]
680 680  
681 681  {{id name="_Toc31992"/}}3) Example description
682 682  
... ... @@ -704,7 +704,7 @@
704 704  PLC program
705 705  
706 706  (% style="text-align:center" %)
707 -[[image:09_html_90fe8b1de142b4f3.png||height="942" width="600" class="img-thumbnail"]]
714 +[[image:09_html_90fe8b1de142b4f3.png||class="img-thumbnail" height="942" width="600"]]
708 708  
709 709  **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop**
710 710  
... ... @@ -726,7 +726,7 @@
726 726  1. Sync signal terminal output.
727 727  
728 728  (% style="text-align:center" %)
729 -[[image:09_html_8efdb40d8fd3ece6.gif||height="357" width="900" class="img-thumbnail"]]
736 +[[image:09_html_8efdb40d8fd3ece6.gif||class="img-thumbnail" height="357" width="900"]]
730 730  
731 731  2) Aperiodic electronic cam stop
732 732  
... ... @@ -737,7 +737,7 @@
737 737   2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.
738 738  
739 739  (% style="text-align:center" %)
740 -[[image:09_html_93e0a854c1e8db80.gif||height="333" width="800" class="img-thumbnail"]]
747 +[[image:09_html_93e0a854c1e8db80.gif||class="img-thumbnail" height="333" width="800"]]
741 741  
742 742  3) Example explanation
743 743  
... ... @@ -765,7 +765,7 @@
765 765  [PLC program]
766 766  
767 767  (% style="text-align:center" %)
768 -[[image:image-20220926114246-1.jpeg]]
775 +[[image:09_html_d46ee9de94f51e8b.jpg||class="img-thumbnail" height="983" width="500"]]
769 769  
770 770  **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register**
771 771  
... ... @@ -1341,7 +1341,7 @@
1341 1341  3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.
1342 1342  
1343 1343  (% style="text-align:center" %)
1344 -[[image:09_html_88dc65c9b19c9920.gif||height="498" width="500" class="img-thumbnail"]]
1351 +[[image:09_html_88dc65c9b19c9920.gif||class="img-thumbnail" height="498" width="500"]]
1345 1345  
1346 1346  4) The relationship between cutting length and cutter circumference:
1347 1347  
... ... @@ -1469,10 +1469,10 @@
1469 1469  Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.
1470 1470  
1471 1471  (% style="text-align:center" %)
1472 -[[image:09_html_ac77ff756d4dd1b2.gif||height="335" width="800" class="img-thumbnail"]]
1479 +[[image:09_html_ac77ff756d4dd1b2.gif||class="img-thumbnail" height="335" width="800"]]
1473 1473  
1474 1474  (% style="text-align:center" %)
1475 -[[image:09_html_7947002c875493ad.gif||height="337" width="400" class="img-thumbnail"]]
1482 +[[image:09_html_7947002c875493ad.gif||class="img-thumbnail" height="337" width="400"]]
1476 1476  
1477 1477  **{{id name="_Toc28644"/}}✎Note:**
1478 1478  
... ... @@ -1510,22 +1510,22 @@
1510 1510  The parameter settings are as follows:
1511 1511  
1512 1512  (% style="text-align:center" %)
1513 -[[image:09_html_9c3f0a8bc2f79674.gif||height="310" width="500" class="img-thumbnail"]]
1520 +[[image:09_html_9c3f0a8bc2f79674.gif||class="img-thumbnail" height="310" width="500"]]
1514 1514  
1515 1515  **Short material:**{{id name="OLE_LINK389"/}}
1516 1516  
1517 1517  (% style="text-align:center" %)
1518 -[[image:09_html_a335f05c7945dd4b.gif||height="320" width="800" class="img-thumbnail"]]
1525 +[[image:09_html_a335f05c7945dd4b.gif||class="img-thumbnail" height="320" width="800"]]
1519 1519  
1520 1520  **Normal materials:**
1521 1521  
1522 1522  (% style="text-align:center" %)
1523 -[[image:09_html_ecd43824be58368a.gif||height="326" width="800" class="img-thumbnail"]]
1530 +[[image:09_html_ecd43824be58368a.gif||class="img-thumbnail" height="326" width="800"]]
1524 1524  
1525 1525  **Long material:**
1526 1526  
1527 1527  (% style="text-align:center" %)
1528 -[[image:09_html_5cf341fa104d76d3.gif||height="318" width="800" class="img-thumbnail"]]
1535 +[[image:09_html_5cf341fa104d76d3.gif||class="img-thumbnail" height="318" width="800"]]
1529 1529  
1530 1530  ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification
1531 1531  
... ... @@ -1532,7 +1532,7 @@
1532 1532  In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:
1533 1533  
1534 1534  (% style="text-align:center" %)
1535 -[[image:09_html_95b3fe4d6308ff9a.gif||height="329" width="500" class="img-thumbnail"]]
1542 +[[image:09_html_95b3fe4d6308ff9a.gif||class="img-thumbnail" height="329" width="500"]]
1536 1536  
1537 1537  The situation of short material and normal material is the same as described in 2.1.
1538 1538  
... ... @@ -1611,7 +1611,7 @@
1611 1611  Curve generation instruction
1612 1612  
1613 1613  (% style="text-align:center" %)
1614 -[[image:09_html_d35bbecf23e4f86c.png||height="592" width="500" class="img-thumbnail"]]
1621 +[[image:09_html_d35bbecf23e4f86c.png||class="img-thumbnail" height="592" width="500"]]
1615 1615  
1616 1616   The curve corresponding to the Circuit program:
1617 1617  
... ... @@ -1618,7 +1618,7 @@
1618 1618  Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.
1619 1619  
1620 1620  (% style="text-align:center" %)
1621 -[[image:09_html_c2f99535690a2e69.gif||height="483" width="600" class="img-thumbnail"]]
1628 +[[image:09_html_c2f99535690a2e69.gif||class="img-thumbnail" height="483" width="600"]]
1622 1622  
1623 1623  **{{id name="2、追剪应用"/}}Flying saw application**
1624 1624  
... ... @@ -1797,7 +1797,7 @@
1797 1797  Use ECAMTBX to generate curves:
1798 1798  
1799 1799  (% style="text-align:center" %)
1800 -[[image:09_html_67c3ab90b2ffbbd3.png||height="449" width="500" class="img-thumbnail"]]
1807 +[[image:09_html_67c3ab90b2ffbbd3.png||class="img-thumbnail" height="449" width="500"]]
1801 1801  
1802 1802  (((
1803 1803  Spindle length
... ... @@ -1824,7 +1824,7 @@
1824 1824  Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}}
1825 1825  
1826 1826  (% style="text-align:center" %)
1827 -[[image:09_html_88ff5c1c9ceb8325.gif||height="455" width="600" class="img-thumbnail"]]
1834 +[[image:09_html_88ff5c1c9ceb8325.gif||class="img-thumbnail" height="455" width="600"]]
1828 1828  
1829 1829  **S type acceleration and deceleration curve establishment**
1830 1830  
... ... @@ -1884,7 +1884,7 @@
1884 1884  Parameter 8: Resolution 200
1885 1885  
1886 1886  (% style="text-align:center" %)
1887 -[[image:09_html_aa28fc53f7b57a5e.png||height="392" width="500" class="img-thumbnail"]]
1894 +[[image:09_html_aa28fc53f7b57a5e.png||class="img-thumbnail" height="392" width="500"]]
1888 1888  
1889 1889  (((
1890 1890  Pulse maximum speed
... ... @@ -1985,7 +1985,7 @@
1985 1985  Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.
1986 1986  
1987 1987  (% style="text-align:center" %)
1988 -[[image:09_html_b99e5227a35871ab.png||height="295" width="400" class="img-thumbnail"]]
1995 +[[image:09_html_b99e5227a35871ab.png||class="img-thumbnail" height="295" width="400"]]
1989 1989  
1990 1990  Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
1991 1991  
... ... @@ -2023,13 +2023,13 @@
2023 2023  5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
2024 2024  
2025 2025  (% style="text-align:center" %)
2026 -[[image:09_html_b7baa900608277e3.png||width="500" class="img-thumbnail"]]
2033 +[[image:09_html_b7baa900608277e3.png||class="img-thumbnail" width="500"]]
2027 2027  
2028 2028  
2029 2029  (% style="text-align:center" %)
2030 2030  [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]]
2031 2031  
2032 -== {{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address** ==
2039 +{{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address**
2033 2033  
2034 2034  (% class="table-bordered" %)
2035 2035  |**Devices**|**Content**
... ... @@ -2053,7 +2053,7 @@
2053 2053  |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
2054 2054  |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
2055 2055  
2056 -== {{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix** ==
2063 +{{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix**
2057 2057  
2058 2058  **Rotary saw parameter table**
2059 2059  
image-20220926114246-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -64.2 KB
Content
image-20220926115030-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -110.6 KB
Content
image-20220926115519-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -149.2 KB
Content