Changes for page 09 Electronic cam
Last modified by Devin Chen on 2025/01/09 11:57
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.admin - Content
-
... ... @@ -9,7 +9,7 @@ 9 9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)] 10 10 11 11 (% style="text-align:center" %) 12 -[[image:09_html_da882b8c1ba50fe6.png||height="388" width="700" class="img-thumbnail"]]12 +[[image:09_html_da882b8c1ba50fe6.png||class="img-thumbnail" height="388" width="700"]] 13 13 14 14 **Content, range and data type** 15 15 ... ... @@ -52,44 +52,48 @@ 52 52 53 53 (% class="table-bordered" %) 54 54 |(% colspan="5" %)**Electronic gear instruction parameter description table** 55 -|**Offset**|(% style="width:348px" %)**Content**|(% style="width:4 60px" %)**Instruction**|(% style="width:213px" %)**Range**|**Read and write permission**56 -|0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:4 60px" %)(((55 +|**Offset**|(% style="width:348px" %)**Content**|(% style="width:724px" %)**Instruction**|(% style="width:209px" %)**Range**|**Read and write permission** 56 +|0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:724px" %)((( 57 57 Number of outputs = 58 58 59 59 Number of inputs in response time*numerator/denominator 60 -)))|(% style="width:2 13px" %)0 to 32767|(% rowspan="2" %)Read/write61 -|1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:2 13px" %)1 to 3276762 -|2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:4 60px" %)Max frequency|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write63 -|3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:4 60px" %)Max frequency|Read/write64 -|4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:4 60px" %)Hand crank input frequency|(% rowspan="2" style="width:213px" %)-|Read-only65 -|5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:4 60px" %)Hand crank input frequency|Read-only66 -|6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:4 60px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only60 +)))|(% style="width:209px" %)0 to 32767|(% rowspan="2" %)Read/write 61 +|1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:209px" %)1 to 32767 62 +|2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:724px" %)Max frequency|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write 63 +|3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:724px" %)Max frequency|Read/write 64 +|4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:724px" %)Hand crank input frequency|(% rowspan="2" style="width:209px" %)-|Read-only 65 +|5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:724px" %)Hand crank input frequency|Read-only 66 +|6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:724px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 67 67 |7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word) 68 -|8|(% style="width:348px" %)Sign|(% style="width:4 60px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:213px" %)Reserved|Reserved69 -|9|(% style="width:348px" %)interval|(% style="width:4 60px" %)Confirmation value|(% style="width:213px" %)-|Read-only70 -|10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:4 60px" %)Confirmation value|(% style="width:213px" %)-|Read-only71 -|11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:4 60px" %)Confirmation value|(% style="width:213px" %)-|Read-only72 -|12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:4 60px" %)Confirmation value|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write68 +|8|(% style="width:348px" %)Sign|(% style="width:724px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:209px" %)Reserved|Reserved 69 +|9|(% style="width:348px" %)interval|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 70 +|10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 71 +|11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only 72 +|12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write 73 73 |13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write 74 -|14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:460px" %)((( 75 -* 1: Switch to the newly set gear ratio immediately. And set the address back to 0. 76 -* 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle) 77 -)))|(% style="width:213px" %)0 to 2|Read/write 78 -|15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:460px" %)((( 79 -* 0: Use 16-bit gear ratio 80 -* 1: Use 32-bit gear ratio 74 +|14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:724px" %)((( 75 +1: Switch to the newly set gear ratio immediately. And set the address back to 0. 81 81 77 +2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle) 78 +)))|(% style="width:209px" %)0 to 2|Read/write 79 +|15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:724px" %)((( 80 +0: Use 16-bit gear ratio 81 + 82 +1: Use 32-bit gear ratio 83 + 82 82 ✎**Note: **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used. 83 -)))|(% style="width:213px" %)0 to 1|Read/write 84 -|16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)((( 85 -Number of outputs = Spindle input number within response time*numerator/denominator 86 -)))|(% rowspan="2" style="width:213px" %)0 to 214748647|(% rowspan="2" %)Read/write 85 +)))|(% style="width:209px" %)0 to 1|Read/write 86 +|16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)((( 87 +Number of inputs = 88 + 89 +Spindle input number within response time*numerator/denominator 90 +)))|(% rowspan="2" style="width:209px" %)0 to 214748647|(% rowspan="2" %)Read/write 87 87 |17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 88 -|18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:2 13px" %)1 to 214748647|(% rowspan="2" %)Read/write92 +|18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)1 to 214748647|(% rowspan="2" %)Read/write 89 89 |19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 90 -|20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:4 60px" %)Confirmation value|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only94 +|20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 91 91 |21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word) 92 -|22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:2 13px" %)-|(% rowspan="2" %)Read-only96 +|22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only 93 93 |23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word) 94 94 95 95 **✎Note:** ... ... @@ -156,7 +156,7 @@ 156 156 -[DECAM (s1) (s2) (s3) (d1) (d2)] 157 157 158 158 (% style="text-align:center" %) 159 -[[image:09_html_a82d001d381b23bb.png||height="476" width="700" class="img-thumbnail"]]163 +[[image:09_html_a82d001d381b23bb.png||class="img-thumbnail" height="476" width="700"]] 160 160 161 161 **Content, range and data type** 162 162 ... ... @@ -566,15 +566,17 @@ 566 566 **(1) Parameters** 567 567 568 568 (% class="table-bordered" %) 569 -|**Parameter**|(% style="width:527px" %)**Content**|(% style="width:226px" %)**Range**|(% style="width:143px" %)**Data type**|**Data type (label)** 570 -|(s1)|(% style="width:527px" %)Specify to receive the input pulse of the master axis|(% style="width:226px" %)((( 571 --2147483648 to +2147483647 572 -)))|(% style="width:143px" %)Signed BIN 32 bit|ANY32 573 -|(s2)|(% style="width:527px" %)Specify the data buffer area of the ECAM instruction|(% style="width:226px" %) |(% style="width:143px" %)Form|LIST 574 -|(s3)|(% style="width:527px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:226px" %)X/M/S/D.b|(% style="width:143px" %)Signed BIN 32 bit|ANY32 575 -|(d1)|(% style="width:527px" %)Specify pulse output axis|(% style="width:226px" %)Y0 to Y7|(% style="width:143px" %)Bit|ANY_BOOL 576 -|(d2)|(% style="width:527px" %)Specify direction output axis|(% style="width:226px" %)Y/M/S/D.b|(% style="width:143px" %)Bit|ANY_BOOL 573 +|**Parameter**|(% style="width:812px" %)**Content**|(% style="width:185px" %)**Range**|**Data type**|**Data type (label)** 574 +|(s1)|(% style="width:812px" %)Specify to receive the input pulse of the master axis|(% style="width:185px" %)((( 575 +-2147483648 to 577 577 577 ++2147483647 578 +)))|Signed BIN 32 bit|ANY32 579 +|(s2)|(% style="width:812px" %)Specify the data buffer area of the ECAM instruction|(% style="width:185px" %) |Form|LIST 580 +|(s3)|(% style="width:812px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:185px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32 581 +|(d1)|(% style="width:812px" %)Specify pulse output axis|(% style="width:185px" %)Y0 to Y7|Bit|ANY_BOOL 582 +|(d2)|(% style="width:812px" %)Specify direction output axis|(% style="width:185px" %)Y/M/S/D.b|Bit|ANY_BOOL 583 + 578 578 **{{id name="_Toc9293"/}}Device used:** 579 579 580 580 (% class="table-bordered" %) ... ... @@ -666,7 +666,7 @@ 666 666 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle. 667 667 668 668 (% style="text-align:center" %) 669 -[[image: image-20220926115030-2.jpeg||class="img-thumbnail"]]675 +[[image:09_html_230c69b0429b0c.gif||class="img-thumbnail" height="259" width="800"]] 670 670 671 671 {{id name="_Toc18782"/}}2) Periodic ECAM stop 672 672 ... ... @@ -676,7 +676,8 @@ 676 676 677 677 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again. 678 678 679 -[[image:image-20220926115519-3.jpeg]] 685 +(% style="text-align:center" %) 686 +[[image:09_html_cfb2abe40245003c.gif||class="img-thumbnail" height="373" width="900"]] 680 680 681 681 {{id name="_Toc31992"/}}3) Example description 682 682 ... ... @@ -704,7 +704,7 @@ 704 704 PLC program 705 705 706 706 (% style="text-align:center" %) 707 -[[image:09_html_90fe8b1de142b4f3.png||height="942" width="600" class="img-thumbnail"]]714 +[[image:09_html_90fe8b1de142b4f3.png||class="img-thumbnail" height="942" width="600"]] 708 708 709 709 **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop** 710 710 ... ... @@ -726,7 +726,7 @@ 726 726 1. Sync signal terminal output. 727 727 728 728 (% style="text-align:center" %) 729 -[[image:09_html_8efdb40d8fd3ece6.gif||height="357" width="900" class="img-thumbnail"]]736 +[[image:09_html_8efdb40d8fd3ece6.gif||class="img-thumbnail" height="357" width="900"]] 730 730 731 731 2) Aperiodic electronic cam stop 732 732 ... ... @@ -737,7 +737,7 @@ 737 737 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below. 738 738 739 739 (% style="text-align:center" %) 740 -[[image:09_html_93e0a854c1e8db80.gif||height="333" width="800" class="img-thumbnail"]]747 +[[image:09_html_93e0a854c1e8db80.gif||class="img-thumbnail" height="333" width="800"]] 741 741 742 742 3) Example explanation 743 743 ... ... @@ -765,7 +765,7 @@ 765 765 [PLC program] 766 766 767 767 (% style="text-align:center" %) 768 -[[image: image-20220926114246-1.jpeg]]775 +[[image:09_html_d46ee9de94f51e8b.jpg||class="img-thumbnail" height="983" width="500"]] 769 769 770 770 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register** 771 771 ... ... @@ -1341,7 +1341,7 @@ 1341 1341 3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally. 1342 1342 1343 1343 (% style="text-align:center" %) 1344 -[[image:09_html_88dc65c9b19c9920.gif||height="498" width="500" class="img-thumbnail"]]1351 +[[image:09_html_88dc65c9b19c9920.gif||class="img-thumbnail" height="498" width="500"]] 1345 1345 1346 1346 4) The relationship between cutting length and cutter circumference: 1347 1347 ... ... @@ -1469,10 +1469,10 @@ 1469 1469 Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time. 1470 1470 1471 1471 (% style="text-align:center" %) 1472 -[[image:09_html_ac77ff756d4dd1b2.gif||height="335" width="800" class="img-thumbnail"]]1479 +[[image:09_html_ac77ff756d4dd1b2.gif||class="img-thumbnail" height="335" width="800"]] 1473 1473 1474 1474 (% style="text-align:center" %) 1475 -[[image:09_html_7947002c875493ad.gif||height="337" width="400" class="img-thumbnail"]]1482 +[[image:09_html_7947002c875493ad.gif||class="img-thumbnail" height="337" width="400"]] 1476 1476 1477 1477 **{{id name="_Toc28644"/}}✎Note:** 1478 1478 ... ... @@ -1510,22 +1510,22 @@ 1510 1510 The parameter settings are as follows: 1511 1511 1512 1512 (% style="text-align:center" %) 1513 -[[image:09_html_9c3f0a8bc2f79674.gif||height="310" width="500" class="img-thumbnail"]]1520 +[[image:09_html_9c3f0a8bc2f79674.gif||class="img-thumbnail" height="310" width="500"]] 1514 1514 1515 1515 **Short material:**{{id name="OLE_LINK389"/}} 1516 1516 1517 1517 (% style="text-align:center" %) 1518 -[[image:09_html_a335f05c7945dd4b.gif||height="320" width="800" class="img-thumbnail"]]1525 +[[image:09_html_a335f05c7945dd4b.gif||class="img-thumbnail" height="320" width="800"]] 1519 1519 1520 1520 **Normal materials:** 1521 1521 1522 1522 (% style="text-align:center" %) 1523 -[[image:09_html_ecd43824be58368a.gif||height="326" width="800" class="img-thumbnail"]]1530 +[[image:09_html_ecd43824be58368a.gif||class="img-thumbnail" height="326" width="800"]] 1524 1524 1525 1525 **Long material:** 1526 1526 1527 1527 (% style="text-align:center" %) 1528 -[[image:09_html_5cf341fa104d76d3.gif||height="318" width="800" class="img-thumbnail"]]1535 +[[image:09_html_5cf341fa104d76d3.gif||class="img-thumbnail" height="318" width="800"]] 1529 1529 1530 1530 ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification 1531 1531 ... ... @@ -1532,7 +1532,7 @@ 1532 1532 In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows: 1533 1533 1534 1534 (% style="text-align:center" %) 1535 -[[image:09_html_95b3fe4d6308ff9a.gif||height="329" width="500" class="img-thumbnail"]]1542 +[[image:09_html_95b3fe4d6308ff9a.gif||class="img-thumbnail" height="329" width="500"]] 1536 1536 1537 1537 The situation of short material and normal material is the same as described in 2.1. 1538 1538 ... ... @@ -1611,7 +1611,7 @@ 1611 1611 Curve generation instruction 1612 1612 1613 1613 (% style="text-align:center" %) 1614 -[[image:09_html_d35bbecf23e4f86c.png||height="592" width="500" class="img-thumbnail"]]1621 +[[image:09_html_d35bbecf23e4f86c.png||class="img-thumbnail" height="592" width="500"]] 1615 1615 1616 1616 The curve corresponding to the Circuit program: 1617 1617 ... ... @@ -1618,7 +1618,7 @@ 1618 1618 Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve. 1619 1619 1620 1620 (% style="text-align:center" %) 1621 -[[image:09_html_c2f99535690a2e69.gif||height="483" width="600" class="img-thumbnail"]]1628 +[[image:09_html_c2f99535690a2e69.gif||class="img-thumbnail" height="483" width="600"]] 1622 1622 1623 1623 **{{id name="2、追剪应用"/}}Flying saw application** 1624 1624 ... ... @@ -1797,7 +1797,7 @@ 1797 1797 Use ECAMTBX to generate curves: 1798 1798 1799 1799 (% style="text-align:center" %) 1800 -[[image:09_html_67c3ab90b2ffbbd3.png||height="449" width="500" class="img-thumbnail"]]1807 +[[image:09_html_67c3ab90b2ffbbd3.png||class="img-thumbnail" height="449" width="500"]] 1801 1801 1802 1802 ((( 1803 1803 Spindle length ... ... @@ -1824,7 +1824,7 @@ 1824 1824 Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}} 1825 1825 1826 1826 (% style="text-align:center" %) 1827 -[[image:09_html_88ff5c1c9ceb8325.gif||height="455" width="600" class="img-thumbnail"]]1834 +[[image:09_html_88ff5c1c9ceb8325.gif||class="img-thumbnail" height="455" width="600"]] 1828 1828 1829 1829 **S type acceleration and deceleration curve establishment** 1830 1830 ... ... @@ -1884,7 +1884,7 @@ 1884 1884 Parameter 8: Resolution 200 1885 1885 1886 1886 (% style="text-align:center" %) 1887 -[[image:09_html_aa28fc53f7b57a5e.png||height="392" width="500" class="img-thumbnail"]]1894 +[[image:09_html_aa28fc53f7b57a5e.png||class="img-thumbnail" height="392" width="500"]] 1888 1888 1889 1889 ((( 1890 1890 Pulse maximum speed ... ... @@ -1985,7 +1985,7 @@ 1985 1985 Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table. 1986 1986 1987 1987 (% style="text-align:center" %) 1988 -[[image:09_html_b99e5227a35871ab.png||height="295" width="400" class="img-thumbnail"]]1995 +[[image:09_html_b99e5227a35871ab.png||class="img-thumbnail" height="295" width="400"]] 1989 1989 1990 1990 Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address. 1991 1991 ... ... @@ -2023,13 +2023,13 @@ 2023 2023 5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data: 2024 2024 2025 2025 (% style="text-align:center" %) 2026 -[[image:09_html_b7baa900608277e3.png|| width="500"class="img-thumbnail"]]2033 +[[image:09_html_b7baa900608277e3.png||class="img-thumbnail" width="500"]] 2027 2027 2028 2028 2029 2029 (% style="text-align:center" %) 2030 2030 [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]] 2031 2031 2032 - =={{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address**==2039 +{{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address** 2033 2033 2034 2034 (% class="table-bordered" %) 2035 2035 |**Devices**|**Content** ... ... @@ -2053,7 +2053,7 @@ 2053 2053 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY) 2054 2054 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY) 2055 2055 2056 - =={{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix**==2063 +{{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix** 2057 2057 2058 2058 **Rotary saw parameter table** 2059 2059
- image-20220926114246-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.2 KB - Content
- image-20220926115030-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -110.6 KB - Content
- image-20220926115519-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -149.2 KB - Content