Wiki source code of 09 Electronic cam

Version 6.1 by Stone Wu on 2022/09/26 11:24

Show last authors
1 = **Electronic CAM (ECAM) instruction** =
2
3 == {{id name="_Toc15695"/}}**{{id name="_Toc25745"/}}{{id name="_Toc16425"/}}DEGEAR/Electronic gear/32 bit hand wheel instruction** ==
4
5 **DEGEAR**
6
7 Electronic gear function refers to the function of multiplying the speed of the driving shaft by the set gear ratio and outputting to the driven shaft at this speed to control the mechanical operation.
8
9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)]
10
11 (% style="text-align:center" %)
12 [[image:09_html_da882b8c1ba50fe6.png||height="388" width="700" class="img-thumbnail"]]
13
14 **Content, range and data type**
15
16 (% class="table-bordered" %)
17 |**Parameter**|(% style="width:778px" %)**Content**|(% style="width:269px" %)**Range**|**Data type**|**Data type (label)**
18 |(s1)|(% style="width:778px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:269px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
19 |(s2)|(% style="width:778px" %)Specify the data buffer of the electronic gear command|(% style="width:269px" %) |Form type|LIST
20 |(s3)|(% style="width:778px" %)Response time, that is, how often the gear calculation is performed|(% style="width:269px" %)0~~500|Signed BIN 32 bit|ANY32
21 |(d)|(% style="width:778px" %)Specify pulse output axis|(% style="width:269px" %)Y0~~Y7|Bit|ANY_BOOL
22 |(d)|(% style="width:778px" %)Specify direction output shaft|(% style="width:269px" %)Y/M/S/D.b|Bit|ANY_BOOL
23
24 **Device used**
25
26 (% class="table-bordered" %)
27 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="10" %)**Device**|(((
28 **Offset**
29
30 **modification**
31 )))|(((
32 **Pulse**
33
34 **extension**
35 )))
36 |**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
37 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | |●|●| | | |
38 |Parameter 2| | | | |●|●| | | | | |
39 |Parameter 3| | | | |●|●| | |●|●| |
40 |Parameter 4|●| | | | | | | | | | |
41 |Parameter 5|●|●|●|●| | | | | | | |
42
43 **Features**
44
45 •When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s2), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
46
47 •When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
48
49 •When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
50
51 • Electronic gear data buffer (s2) table:
52
53 (% class="table-bordered" %)
54 |(% colspan="5" %)**Electronic gear instruction parameter description table**
55 |**Offset**|(% style="width:348px" %)**Content**|(% style="width:460px" %)**Instruction**|(% style="width:213px" %)**Range**|**Read and write permission**
56 |0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:460px" %)(((
57 Number of outputs =
58
59 Number of inputs in response time*numerator/denominator
60 )))|(% style="width:213px" %)0 to 32767|(% rowspan="2" %)Read/write
61 |1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:213px" %)1 to 32767
62 |2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:460px" %)Max frequency|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
63 |3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:460px" %)Max frequency|Read/write
64 |4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:460px" %)Hand crank input frequency|(% rowspan="2" style="width:213px" %)-|Read-only
65 |5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:460px" %)Hand crank input frequency|Read-only
66 |6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:460px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
67 |7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word)
68 |8|(% style="width:348px" %)Sign|(% style="width:460px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:213px" %)Reserved|Reserved
69 |9|(% style="width:348px" %)interval|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
70 |10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
71 |11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
72 |12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
73 |13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write
74 |14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:460px" %)(((
75 * 1: Switch to the newly set gear ratio immediately. And set the address back to 0.
76 * 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
77 )))|(% style="width:213px" %)0 to 2|Read/write
78 |15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:460px" %)(((
79 * 0: Use 16-bit gear ratio
80 * 1: Use 32-bit gear ratio
81
82 ✎**Note:     **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.
83 )))|(% style="width:213px" %)0 to 1|Read/write
84 |16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)(((
85 Number of outputs = Spindle input number within response time*numerator/denominator
86 )))|(% rowspan="2" style="width:213px" %)0 to 214748647|(% rowspan="2" %)Read/write
87 |17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
88 |18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)1 to 214748647|(% rowspan="2" %)Read/write
89 |19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
90 |20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
91 |21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
92 |22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
93 |23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
94
95 **✎Note:**
96
97 • When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
98
99 • The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, The computing interval is unchanged, that is, the 8-axis electronic gear instruction is executed at the same time, and the computing interval is also 100us.
100
101 • The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
102
103 • The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
104
105 **Error code**
106
107 (% class="table-bordered" %)
108 |**Error code**|**Content**
109 |4085H|The read address of (s1), (s2) and (s3) exceeds the device range
110 |4084H|The data exceeds the settable range
111 |4EC0H|Electronic gear ratio setting error
112 |4088H|High-speed pulse instructions use the same output shaft (d1)
113
114 **Example**
115
116 **(1) Realize the 1:1 follow function of Y0 output pulse to Y3 output pulse.**
117
118 1) Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode.
119
120 (% style="text-align:center" %)
121 [[image:09_html_c27f358df2fb693.png||class="img-thumbnail"]]
122
123 2) Ladder
124
125 (% style="text-align:center" %)
126 [[image:09_html_242f6504931e93b5.png||class="img-thumbnail"]]
127
128 Connect the Y3 output of the PLC to the X0 input.
129
130 Turn on M1, start M2, and Y3 for output. At this time, Y0 will follow Y3 1:1 (SD880 = SD1060).
131
132 **(2) Use of 32-bit gear ratio.**
133
134 (% style="text-align:center" %)
135 [[image:09_html_5ccccc63668ba219.png||class="img-thumbnail"]]
136
137 Set the 32-bit gear ratio: 18518517: 12345678, set the 15 address of the data buffer to 1, and enable the 32-bit gear ratio function.
138
139 M1 turns ON to turn on the electronic gear command, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 18518517:12345678.
140
141 **(3) Use of gear ratio switching function**
142
143 (% style="text-align:center" %)
144 [[image:09_html_bb25bf2898683582.png||class="img-thumbnail"]]
145
146 Set the gear ratio to 1:1.
147
148 M1 turns ON to turn on the electronic gear instruction, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 1:1. When M3 is turned on, change the gear ratio to 2:1 and enable the switch gear ratio function. After that, the increment of SD880 and the increment of LC0 are always 2:1.
149
150 == {{id name="_Toc4792"/}}**{{id name="_Toc8689"/}}DECAM/32-bit electronic cam instruction** ==
151
152 **DECAM**
153
154 The electronic cam function uses the preset cam curve to determine the slave axis movement amount according to the spindle movement (phase information) and the cam curve, and output. The cam curve refers to each phase (rotation angle (Degree) and CAM curve refers master axis rotation 1 cycle as the movement benchmark. The displacement of the slave axis can be set by the ECAMTBX instruction.
155
156 -[DECAM (s1) (s2) (s3) (d1) (d2)]
157
158 (% style="text-align:center" %)
159 [[image:09_html_a82d001d381b23bb.png||height="476" width="700" class="img-thumbnail"]]
160
161 **Content, range and data type**
162
163 (% class="table-bordered" %)
164 |**Parameter**|(% style="width:790px" %)**Content**|(% style="width:268px" %)**Range**|**Data type**|**Data type (label)**
165 |(s1)|(% style="width:790px" %)Specify to receive the input pulse of the master axis|(% style="width:268px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
166 |(s2)|(% style="width:790px" %)Specify the data buffer of the electronic cam instruction|(% style="width:268px" %) |Form type|LIST
167 |(s3)|(% style="width:790px" %)The external start signal of the electronic cam needs to be enabled in the data buffer area to be effective.|(% style="width:268px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
168 |(d1)|(% style="width:790px" %)Specify pulse output axis|(% style="width:268px" %)Y0~~Y7|Bit|ANY_BOOL
169 |(d2)|(% style="width:790px" %)Specify direction output shaft|(% style="width:268px" %)Y/M/S/D.b|Bit|ANY_BOOL
170
171 **Device used**
172
173 (% class="table-bordered" %)
174 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|(((
175 **Offset**
176
177 **modification**
178 )))|(((
179 **Pulse**
180
181 **extension**
182 )))
183 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|(% style="width:36px" %)**K**|(% style="width:44px" %)**H**|**[D]**|**XXP**
184 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|(% style="width:36px" %)●|(% style="width:44px" %)●| |
185 |Parameter 2| | | | | |●|●| | |(% style="width:36px" %) |(% style="width:44px" %) | |
186 |Parameter 3|●| |●|●|●| | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
187 |Parameter 4| |●| | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
188 |Parameter 5| | | | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
189
190 **Features**
191
192 When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1), calculates the number of pulses that the slave axis needs to output for this calculation according to the set cam curve, and performs the pulse (d1) and direction (d2) Output. When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
193
194 • When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
195
196 • When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
197
198 • When the master axis (s1) uses the constant K/H, the number of input pulses is the time axis. If it is K1, the number of input pulses will increase by 1 every 100 us.
199
200 • Electronic cam data buffer (s2) table:
201
202 (% class="table-bordered" %)
203 |(% style="width:135px" %)**Offset address**|(% style="width:199px" %)**Name**|**Instruction**|**Initial value**|**Range**
204 |(% style="width:135px" %)0|(% style="width:199px" %)Form version number| |5200|
205 |(% rowspan="3" style="width:135px" %)1|(% rowspan="3" style="width:199px" %)Flag register|(((
206 Bit0-Initialization complete flag
207
208 After the electronic cam permission signal is activated, calculate the related
209
210 Data, automatically set to ON after initialization, users need to clear this flag state by themselves
211 )))|0|—
212 |(((
213 Bit1-Cycle complete flag
214
215 Electronic cam completion flag. When the periodic electronic cam is executed
216
217 After completion, this flag will be automatically set to ON; if you want to restart the periodic electronic cam, the user needs to clear this flag state first.
218 )))|0|—
219 |(((
220 Bit2-Pulse transmission delayed flag bit
221
222 Bit3-Error electronic cam stop running flag bit
223
224 Bit4-Parameter error error, electronic cam stop running flag bit
225
226 Bit5-Table error, electronic cam stop running flag
227
228 Bit6-Periodic electronic cam flag
229
230 Bit7-Aperiodic electronic cam flag
231
232 Bit9-Stop flag for current cycle completion
233
234 Bit10-synchronization zone flag
235
236 Bit11-Time axis flag
237
238 Bit12-New form loading complete flag
239
240 Bit13-Periodic delay electronic cam flag
241
242 Bit14-Delayed start function, delayed waiting flag bit
243 )))|0|
244 \\\\\\—
245 |(% style="width:135px" %)2|(% style="width:199px" %)Error register|(((
246 Operation error condition (check Bit3 of address 1): Display Error code.
247
248 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
249
250 Table error condition (check Bit5 of address 1): display Incorrect table segment number.
251 )))|0|
252 \\—
253 |(% style="width:135px" %)3|(% style="width:199px" %)(((
254 Function register
255
256 (Confirm before using electronic cam)
257 )))|(((
258 Bit0-Delayed start enable Bit1-Start at specified position
259
260 Bit2-Spindle zoom Bit3-zoom from axis
261
262 Bit5-Use external start signal Bit6-Start from current position
263
264 *Bit1 and Bit6 cannot both be 1.
265 )))|0|—
266 |(% style="width:135px" %)4|(% style="width:199px" %)(((
267 Function register
268
269 (can be changed while the electronic cam is running)
270 )))|(((
271 Bit0-Sync signal enable
272
273 Bit1-Stop the electronic cam after the current cycle is completed
274
275 Bit2-Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
276 )))|0|
277
278
279 **✎Note:**
280
281 When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
282
283 The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, the time will increase accordingly. If the 8-axis electronic gear command is executed at the same time, the calculation cycle will become 800us.
284
285 The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
286
287 The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
288
289 **Error code**
290
291 (% class="table-bordered" %)
292 |**Error code**|**Content**
293 |4E80H|E-cam table loading error
294 |4E81H|The currently numbered form has a cam in use
295 |4E82H|E-cam table address error
296 |4E83H|The electronic cam table exceeds the device range
297
298 **Example**
299
300 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
301
302 == {{id name="_Toc17791"/}}**{{id name="_Toc17882"/}}{{id name="OLE_LINK605"/}}ECAMCUT/Electronic cam table switching instruction** ==
303
304 **ECAMCUT**
305
306 This instruction needs to be used in conjunction with the electronic cam instruction (DECAM) to specify the newly defined table address to realize the function of switching the electronic cam table periodically during the operation of the electronic cam.
307
308 -[ECAMCUT (s1) (s2)]
309
310 **Content, range and data type**
311
312 (% class="table-bordered" %)
313 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
314 |(s1)|Specify the table number, currently only supports one table|1 to 2 (LX5VT: 1 to 16)|Signed BIN 16 bit|ANY16
315 |(s2)|Specify the first address of the data buffer area of the electronic cam table|-|Form type|LIST
316
317 **Device used**
318
319 (% class="table-bordered" %)
320 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
321 **Offset modification**
322 )))|(((
323 **Pulse extension**
324 )))
325 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
326 |(% rowspan="2" %)ECAMCUT|Parameter 1|●|●|●|●| |
327 |Parameter 2|●|●| | | |
328
329 **Features**
330
331 Table format definition:
332
333 (% class="table-bordered" %)
334 |**Offset**|**Instruction**
335 |0|Number of table segments
336 |1|Table version
337 |2 to 3|Spindle section 0 (double word)
338 |4 to 5|Section 0 slave axis (double word)
339 |6 to 7|Spindle section 1
340 |8 to 9|Section 1 slave axis
341 |(% colspan="2" %)......
342
343 **Instruction function description**
344
345 (1) In the (s1) parameter, only K1 or K2 can be used to specify the location of the table. The format of the table must be as above.
346
347 K1 means Form 1
348
349 K2 means Form 2
350
351 Form 0 is the original form of the cam (optional)
352
353 (2) When the instruction is running, check the table data in the start address specified by (s2) and verify the correctness of the data. After the operation is successful, the table with the specified table number should point to the starting address of (s2). In the process of command pointing, if the corresponding numbered table is in the current cam operation, an operation error will be reported.
354
355 Before using the table, you need to run this command to configure the address where the table is located. After the table address is specified, it will not be saved after power off.
356
357 (3) Related registers and flags
358
359 •Electronic cam buffer offset 1 (flag bit register)
360
361 bit12 ~-~-- table switching completed flag
362
363 •Electronic cam buffer offset 4 (function register)
364
365 After bit2-cycle is completed, switch to the specified table operation
366
367 •Electronic cam buffer offset 31
368
369 Number of the table to be run in the next cycle (0 ~~ 2)
370
371 •Electronic cam buffer offset 32
372
373 The table number of current cycle operation (0 ~~ 2)
374
375 **✎Note:**
376
377 Table 0 is the self-contained table of the electronic cam, that is, the continuous address starting at offset 38 of the electronic cam data buffer. Therefore, the electronic cam can specify up to 3 tables at the same time, which can be switched freely during operation.
378
379 If the curve generated by the electronic cam table generation command ECAMTBX is used, the data buffer of the ECAMTBX generated table should be offset by 38 addresses and then specified.
380
381 (% style="text-align:center" %)
382 [[image:09_html_214525e2311bb039.png||class="img-thumbnail"]]
383
384 **Error code**
385
386 (% class="table-bordered" %)
387 |**Error code**|**Content**
388 |4E80H|E-cam table loading error
389 |4E81H|The currently numbered form has a cam in use
390 |4084H|Data exceeding 1 to 2 is specified in (s1)
391 |4085H|The (s2) table exceeds the device range
392
393 **Example**
394
395 Realize the mutual switching between electronic cam form 1 and form 2
396
397 (% style="text-align:center" %)
398 [[image:09_html_e4c32bd6a926ac39.png||class="img-thumbnail"]]
399
400 (% style="text-align:center" %)
401 [[image:09_html_808130957dbf9656.png||class="img-thumbnail"]]
402
403 **✎Note:**
404
405 1. According to the above Circuit program, first set M2, configure table 1 data, and use ECAMCUT to designate table 1 as electronic cam operation table 1.
406 1. Set M200 to configure the cam running command DECAM.
407 1. Set M201 to enable electronic cam operation. And automatically prepare table 2 data, and assign table 2 data as electronic cam operation table 2.
408 1. Set the second position of D2004 to 1 to turn on the electronic cam switching table function. At this time, table 1 is run in the current cycle, and table 2 is run in the next cycle.
409 1. Use manual addition (M110) to change the master axis (LC0), and the slave axis pulse number SD880 will also change, and the ratio is the ratio of Table 1 (1:2).
410 1. When LC0 = 100, the program automatically switches to Table 2 to run, LC0 increment: SD880 increment = 2000:120500. And currently running table 2 and next cycle running table 1. When LC0 = 2100, switch back to Table 1 to run.
411
412 == {{id name="_Toc24615"/}}**ECAMTBX/Electronic cam table generation instruction** ==
413
414 **ECAMTBX**
415
416 This instruction is used to generate the table data of the electronic cam.
417
418 -[ECAMTBX (S0) (S1) (D0) (D1)]
419
420 **Content, range and data type**
421
422 (% class="table-bordered" %)
423 |**Parameter**|(% style="width:700px" %)**Content**|(% style="width:138px" %)**Range**|(% style="width:255px" %)**Data type**|**Data type (label)**
424 |(S0)|(% style="width:700px" %)Specify the first address of the electronic cam table parameter|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
425 |(S1)|(% style="width:700px" %)Specify the curve type of the electronic cam|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
426 |(D0)|(% style="width:700px" %)Specify the first address of the data buffer area of the E-cam table|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
427 |(D1)|(% style="width:700px" %)Table generation results|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
428
429 **Device used**
430
431 (% class="table-bordered" %)
432 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
433 **Offset modification**
434 )))|(((
435 **Pulse extension**
436 )))
437 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
438 |(% rowspan="4" %)ECAMTBX|Parameter 1|●|●| | | |
439 |Parameter 2|●|●|●|●| |
440 |Parameter 3|●|●| | | |
441 |Parameter 4|●|●| | | |
442
443 **Features**
444
445 S0~-~-parameter address, allowable Devices: D, R.
446
447 {{id name="OLE_LINK386"/}}Description: Indicate the parameters to be set to generate the curve.
448
449 S1~-~-curve type, allowable Devicess: D, R, H, K.
450
451 Description: Indicates the type of curve to be generated.
452
453 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
454
455 K2: Customize the designated key point to generate a table
456
457 K100: Generate flying shear curve
458
459 K101: Generate chase curve
460
461 D0~-~-The first address of cam parameters, allowable devices: D, R
462
463 Description: The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
464
465 D1-table generation result, allowable Devices: D, R
466
467 D1 <0 generates a table error;
468
469 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
470
471 **Error code**
472
473 ECAMTBX instruction generates curve Error code:
474
475 (% class="table-bordered" %)
476 |**Error code**|**Content**
477 |-1|Condition parameter error
478 |-2|The spindle pulse number is too few, not enough for synchronization area
479 |-3|Unknown cam curve type
480 |-4|Resolution range error
481 |-5|Too many pulses of the slave axis calculated
482 |-6|The calculated number of pulses from the slave axis is too small
483 |-7|The calculated number of spindle pulses exceeds the set length
484 |-8|The pulse number of the slave axis is set to 0
485 |-10|S type acceleration and deceleration curve calculation error
486 |-11|Unknown curve type
487 |-12|Curve left wrong
488 |-13|The number of slave axes exceeds the range
489
490 Key point generating curve Error code:
491
492 (% class="table-bordered" %)
493 |**Error code**|**Content**
494 |-21|The number of key points is out of range
495 |-22|Total resolution exceeds range
496 |-23|Incorrect relationship between spindle size
497 |-24|The resolution setting of each segment is incorrect
498 |-25|When calculating, the number of control points is insufficient
499 |-26|Unknown acceleration curve type
500 |-27|Spindle pulse number is negative
501
502 S-type acceleration and deceleration generated curve Error code:
503
504 (% class="table-bordered" %)
505 |**Error code**|**Content**
506 |-31|The number of pulses exceeds the range
507 |-32|Maximum frequency out of range
508 |-33|Acceleration and deceleration time out of range
509 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
510
511 **✎Note:**
512
513 After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
514
515 **Example**
516
517 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
518
519 = {{id name="_Toc30498"/}}**Instruction manual of Electronic CAM (ECAM )** =
520
521 == {{id name="_Toc4483"/}}**{{id name="_Toc15753"/}}{{id name="_Toc16335"/}}{{id name="一、电子凸轮原理"/}}{{id name="_Toc18423"/}}{{id name="_Toc19697"/}}{{id name="_电子凸轮说明手册"/}}{{id name="电子凸轮功能使用指南V2.0版"/}}Principle of ECAM** ==
522
523 The traditional mechanical cam is composed of cam, follower and frame. A mechanical cam is an irregular part, generally an input part with a constant speed, which can transmit motion to a follower through direct contact, so that the action moves according to a set law. The follower is a passive part driven by a mechanical cam, and is generally an output part that produces unequal speed, discontinuous, and irregular motion.
524
525 ECAM is a software system that uses the constructed concave wheel curve to simulate mechanical cam to achieve the same relative motion between the camshaft and the main shaft of the mechanical cam system.
526
527 Compared with mechanical cams, ECAM makes the design of mechanical and electrical parts more and more simple. ECAM allows the equipment to be flexibly used in different templates and plate styles, and also allows the operation process and cycle of the equipment to be modified, either during the design phase of the equipment or after the equipment is formed. It reduces the complexity of the equipment, makes the equipment run more smoothly and doubles the production efficiency.
528
529 == {{id name="_Toc10338"/}}**{{id name="_Toc21791"/}}{{id name="_Toc18361"/}}{{id name="_Toc4935"/}}Description of ECAM function** ==
530
531 **A.Establish ECAM data**
532
533 {{id name="二、电子凸轮功能描述"/}}{{id name="1、建立电子凸轮数据"/}}LX5V provides 3 ways to establish ECAM data:
534
535 ① Write table data to the table data area by DMOV instruction.
536
537 ② Generate ECAM data automatically by ECAMTBX instruction.
538
539 ③ Draw ECAM data with PLC Editor software.
540
541 **{{id name="2、主轴脉冲选择"/}}B.Spindle pulse selection**
542
543 The selectable spindles of LX5V series PLC are HSC, LC type and virtual time axis K.
544
545 Among them, external high-speed input uses high-speed counter, which supports single-phase single-count input\single-phase double-count input and biphase double-count input. As for the assignment of counters, refer to the instructions for high-speed counters in the PLC help.
546
547 When using HSC register (high-speed counter), the pulse of spindle is obtained internally. Modifying the value of the counter does not affect the cam to judge the actual pulse input quantity.
548
549 When using the normal counter LC, the pulse of spindle is obtained from devices. Modifying the value of the register will affect the judgment of the pulse of spindle .
550
551 When using the K type register, it means to use the internal virtual time axis, and the minimum unit is 100us, K1=100us, K10=1ms.
552
553 **{{id name="3、启用电子凸轮配置"/}}C.Enable ECAM configuration**
554
555 Use the DECAM instruction to configure the ECAM function of PLC.
556
557 (% class="table-bordered" %)
558 |**Name**|**Function**|**Bits**|**Whether pulse type**|**Instruction format**|**Step number**
559 |DECAM|ECAM configuration|32|No|DECAM s1 s2 s3 d1 d2|10
560
561 Ladder :
562
563 (% style="text-align:center" %)
564 [[image:09_html_763f6b25c0dc7c9b.png||class="img-thumbnail"]]
565
566 **(1) Parameters**
567
568 (% class="table-bordered" %)
569 |**Parameter**|(% style="width:812px" %)**Content**|(% style="width:185px" %)**Range**|**Data type**|**Data type (label)**
570 |(s1)|(% style="width:812px" %)Specify to receive the input pulse of the master axis|(% style="width:185px" %)(((
571 -2147483648 to
572
573 +2147483647
574 )))|Signed BIN 32 bit|ANY32
575 |(s2)|(% style="width:812px" %)Specify the data buffer area of the ECAM instruction|(% style="width:185px" %) |Form|LIST
576 |(s3)|(% style="width:812px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:185px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
577 |(d1)|(% style="width:812px" %)Specify pulse output axis|(% style="width:185px" %)Y0 to Y7|Bit|ANY_BOOL
578 |(d2)|(% style="width:812px" %)Specify direction output axis|(% style="width:185px" %)Y/M/S/D.b|Bit|ANY_BOOL
579
580 **{{id name="_Toc9293"/}}Device used:**
581
582 (% class="table-bordered" %)
583 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="11" %)**Device**|(((
584 **Offset**
585
586 **modification**
587 )))|(((
588 **Pulse**
589
590 **extension**
591 )))
592 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
593 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|●|●| |
594 |Parameter 2| | | | | | | | | | | | |
595 |Parameter 3|●| |●|●|●|●|●| | | | | |
596 |Parameter 4| |●| | | | | | | | | | |
597 |Parameter 5| |●|●| |●| | | | | | | |
598
599 **(2) Function description**
600
601 When the contact M0 is turned on, the PLC activates ECAM function, but the ECAM function is not yet running at this time, it just initializes the parameters of the cam. It includes that D1000 to D1005, D1031, D1032 will be cleared and check whether the cam table is correct. After initialization, these registers still need to be set for control.
602
603 This instruction configures the relevant registers and required data for cam operation, and enables the function of ECAM, but the cam does not actually run. To actually enable the ECAM function, the relevant device in the cache address of the instruction (such as D1000 in the instruction) is also needed to control the start and stop of the cam.
604
605 If the instruction is disconnected, the cam stops working.
606
607 Refer to the description of "9.2.2.5 ECAM function register" for the definition of cam parameter devices.
608
609 **(3) Instruction error description**
610
611 When the instruction is running, PLC will check the relevant cam parameters in the cache address and prompt the corresponding error. You can find the error according to the prompt [PLC Error code information]:
612
613 (% class="table-bordered" %)
614 |**Error code**|**Content**
615 |4084H|The parameter set in the instruction exceeds the limit
616 |4085H|The device used in the instruction exceeds the maximum device number
617 |4088H|Multiple application instructions use the same output axis for pulse output
618 |4E80H|ECAM table loading error
619 |4E81H|The currently numbered form has a cam in use
620 |4E82H|ECAM table address error
621 |4E83H|The electronic cam table exceeds the device range
622
623 When an error occurs, the ECAM function is not enabled at this time.
624
625 **(4) Devices involved in instruction execution**
626
627 (% class="table-bordered" %)
628 |**Devices**|**Content**
629 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
630 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
631 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
632 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
633 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
634 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
635 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
636 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
637
638 (% class="table-bordered" %)
639 |**Devices**|**Content**|**Devices**|**Content**
640 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
641 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
642 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
643 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
644 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
645 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
646 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
647 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
648
649 **{{id name="4、电子凸轮启动/停止"/}}D.ECAM start/stop**
650
651 **{{id name="4.1周期式电子凸轮启动/停止"/}}(1) Periodic ECAM start/stop**
652
653 Periodic ECAM means that while the main axis is continuously advancing, the cam axis will realize the corresponding position according to the "ECAM curve table (table)", but the table only defines one period of data, so the positional relationship of master/slave axis in this mode is the continuous repetitive extension of the table.
654
655 (% style="text-align:center" %)
656 [[image:09_html_b2aea2b9660ae563.gif||class="img-thumbnail"]]
657
658 {{id name="_Toc9"/}}1) {{id name="(1)周期式电子凸轮启动"/}}Periodic ECAM start
659
660 Periodic ECAM start sequence is as below.
661
662 ✎At time T1, address 5=1, start periodic electronic cam.
663
664 ✎After the time T2 has elapsed, the PLC takes the initiative to set address 1-bit0 (ECAM initialization complete flag).
665
666 ✎During time T3, ECAM initialization is completed and the periodic action is started. The slave axis follows the movement of the spindle according to the position relationship in the table, and the synchronization signal terminal is output according to the synchronization point range.
667
668 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.
669
670 (% style="text-align:center" %)
671 [[image:09_html_230c69b0429b0c.gif||height="259" width="800" class="img-thumbnail"]]
672
673 {{id name="_Toc18782"/}}2) Periodic ECAM stop
674
675 The periodic ECAM stop sequence is as below.
676
677 ✎When ECAM starts register (address 5) = 0, the ECAM stops operating immediately.
678
679 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again.
680
681 (% style="text-align:center" %)
682 [[image:09_html_cfb2abe40245003c.gif||height="373" width="900" class="img-thumbnail"]]
683
684 {{id name="_Toc31992"/}}3) Example description
685
686 The following figure shows the ECAM data, where the spindle length is 50000, the output unit is the number of pulses, and the synchronization range is 20000 to 30000. When running into the synchronization zone, the synchronization terminal output can be used as a control signal. To create ECAM data, please refer to the ECAM data. Hardware circuit Y1 outputs pulse to connect to X0, and it means that the spindle input terminal receives the output pulse of Y1.
687
688 (% style="text-align:center" %)
689 [[image:09_html_b46d1fff9093d80c.gif||class="img-thumbnail"]]
690
691 This example is to use the software PLC Editor2 to set the table.
692
693 **Instructions**
694
695 ① When executing the program, the special register is set first. The set parameters are as follows:
696
697 A. Double word is composed of SD881 and SD880, the current position of Y0 is cleared to 0,
698
699 B. Start the high-speed counter HSC0 and configure it as a single-phase input to receive the high-speed pulse input of X0 (in this case, the pulse of X0 comes from the output pulse of Y1).
700
701 ② SET M0 to start the ECAM, Y axis starts to perform variable speed movement. The main axis receives variable speed input pulse of Y axis, the slave axis outputs pulse according to the ECAM curve, and when the main axis position is 20000-30000 in each cycle, Y7 is ON state.
702
703 **✎Note: **Special registers must be set before the ECAM is started. Set the upper and lower limits of the synchronization position of the ECAM D2009 = 20000, D2011 = 30000; and set the number of the synchronization terminal Y D2008, and the synchronization output enable D2004-BIT0, an ECAM cycle is 50000 pulses and when the spindle position is 20000-30000 pulses (monitored by D2025 and D2026), the synchronization terminal is ON.
704
705 ③ RST M0, the cam stops running.
706
707 PLC program
708
709 (% style="text-align:center" %)
710 [[image:09_html_90fe8b1de142b4f3.png||height="942" width="600" class="img-thumbnail"]]
711
712 **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop**
713
714 Aperiodic ECAM refers to the timing when the camshaft starts to realize the corresponding position according to the table while the main shaft is continuously advancing after the cam start signal is input. Different from the periodic ECAM, The position relationship of the master/slave axis in this mode actually only runs for one cycle, that is, the table only moves once.
715
716 (% style="text-align:center" %)
717 [[image:09_html_86b1dc09cd872158.gif||class="img-thumbnail"]]
718
719 1) Aperiodic ECAM start
720
721 The aperiodic ECAM stop sequence is as below.
722
723 1. At time T1, address 5=2, and aperiodic ECAM is started.
724 1. After the calculation of the time T2, the PLC actively sets the address 1-bit0=ON (the initialization of aperiodic ECAM is completed). At this time, the slave axis will not follow the movement of the master axis.
725 1. At time T3, the ECAM start signal is turned ON (when the external start signal is used), the slave axis will follow the spindle movement for one cycle according to the position relationship in the table.
726 1. After the cycle is completed at the position of time T4, the PLC will actively clear the state of address 1-bit0=ON, and the user can also judge whether the cycle is completed according to the state of address 1-bit1 to .
727 1. During the time T5, the user can choose whether to set the address 1-bit0=ON again through the program , for the purpose of completing the judgment next time.
728 1. Time T6/T7 position is to repeat the action of T3 to T4 again. **✎Note: **The interval between the rising edges of the cam start signal must be more than 0.5ms.
729 1. Sync signal terminal output.
730
731 (% style="text-align:center" %)
732 [[image:09_html_8efdb40d8fd3ece6.gif||height="357" width="900" class="img-thumbnail"]]
733
734 2) Aperiodic electronic cam stop
735
736 1. When starting the ECAM register address 5=0, the ECAM slave axis stops operating immediately, as shown in the figure below.
737
738 [[image:09_html_7d9a964fd1036d74.gif]]
739
740 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.
741
742 (% style="text-align:center" %)
743 [[image:09_html_93e0a854c1e8db80.gif||height="333" width="800" class="img-thumbnail"]]
744
745 3) Example explanation
746
747 The following figure shows the ECAM running table (the spindle length is 0 to 100000 for a cycle), and its output is the number of pulses. When the external signal X2 is triggered by the rising edge, execute two consecutive tables (D1014=2), and wait for the X2 rising edge Trigger again, and execute two consecutive tables again, and so on.
748
749 (% style="text-align:center" %)
750 [[image:09_html_690e150bae16339c.gif||class="img-thumbnail"]]
751
752 This example uses the software PLC EDITOR to ECam0. Please refer to 9.2.2.5 for the detailed steps of creating an ECAM curve. The Y1 axis of the hardware circuit outputs pulse and connects to the X0 axis input terminal, indicating that input terminal position of master axis is to receive the pulse output of Y1 axis as input.
753
754 **{{id name="_Toc973"/}}Operation steps**
755
756 ① When the program is executed, set special registers first, and the set parameters are as follows:
757
758 A. The contents of SD880, SD881 and SD940, SD941 are cleared to 0
759
760 B. Set D1014=2 (repeat the form twice)
761
762 ② Set M0: Configure and start the cam. When M0 is the rising edge, set D1003-Bit5 to use an external start signal; when D1005=2, Y1 outputs pulses, and Y0 axis has not output yet at this time.
763
764 ③ The external signal X2 is triggered, and Y0 axis is output with the ECAM curve; the output stops after 2 cycles.
765
766 ④ RST M0: Close the ECAM mode; if runs RST M0 when the ECAM is running, Y0 axis will stop output immediately.
767
768 [PLC program]
769
770 (% style="text-align:center" %)
771 [[image:09_html_d46ee9de94f51e8b.jpg||height="983" width="500" class="img-thumbnail"]]
772
773 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register**
774
775 (% class="table-bordered" %)
776 |**Offset address**|**Name**|(% style="width:944px" %)**Instruction**|(% style="width:126px" %)(((
777 **Initial value**
778 )))|(% style="width:154px" %)**Range**
779 |0|Form version number|(% style="width:944px" %) |(% style="width:126px" %)0|(% style="width:154px" %)
780 |(% rowspan="3" %)1|(% rowspan="3" %)Flag register|(% style="width:944px" %)(((
781 Bit0: Initialization complete flag
782
783 After the ECAM permission signal is activated, calculate the related data, and automatically set to ON after initialization. Users need to clear the state of this flag by themselves.
784 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
785 |(% style="width:944px" %)(((
786 Bit1: Cycle completion flag
787
788 ECAM completion flag. When the periodic ECAM is executed, this flag will be automatically set to ON; if you want to restart the periodic ECAM, clear the state of this flag first.
789 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
790 |(% style="width:944px" %)(((
791 Bit2: Pulse sending delayed flag
792
793 Bit3: ECAM error stop running flag
794
795 Bit4: Parameter error, ECAM stop running flag
796
797 Bit5: Table error, electronic cam stop running flag
798
799 Bit6: Periodic ECAM flag
800
801 Bit7: Aperiodic ECAM flag
802
803 Bit9: Current cycle completion stop flag
804
805 Bit10: synchronization zone flag
806
807 Bit11: Time axis flag
808
809 Bit12: New form load completion flag
810
811 Bit13: Periodic delay ECAM flag
812
813 Bit14: Delayed start function, delayed waiting flag bit
814 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
815 |2|Register error|(% style="width:944px" %)(((
816 Operation error condition (check Bit3 of address 1): Display Error code.
817
818 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
819
820 Table error condition (check Bit5 of address 1): display error
821
822 Incorrect table segment number.
823
824 **✎Note:** Bit3 of address 1 must be set with Bit4 and Bit5
825 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
826 |3|(((
827 Function register
828
829 (Confirm before using electronic cam)
830 )))|(% style="width:944px" %)(((
831 Bit0: Delayed start enable Bit1: Start at specified position Bit2: Spindle zoom
832
833 Bit3: zoom from axis
834
835 Bit5: Use external start signal
836
837 Bit6: Start from current position
838 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
839 |4|(((
840 Function register
841
842 (Can be changed while the ECAM is running)
843 )))|(% style="width:944px" %)(((
844 Bit0: Sync signal enable
845
846 Bit1: Stop the electronic cam after the current cycle is completed
847
848 Bit2: Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
849 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
850 |5|ECAM start register|(% style="width:944px" %)(((
851 0: Stop the electronic cam immediately
852
853 1: Periodic electronic cam (start)
854
855 2: Aperiodic electronic cam (start)
856
857 3: Stop after the cycle is completed, this register automatically becomes 3
858
859 4: Periodic delay electronic cam (start)
860
861 Other: reserved, not available
862 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
863 |6|Maximum output frequency setting of ECAM|(% rowspan="2" style="width:944px" %)(((
864 Maximum output frequency setting of electronic cam;
865
866 When the frequency is less than 0 or greater than 200K, it is 200K
867 )))|(% style="width:126px" %)200000|(% style="width:154px" %)0 to 200000
868 |7|The highest ECAM output frequency setting|(% style="width:126px" %) |(% style="width:154px" %)
869 |8|Sync signal Y terminal number|(% style="width:944px" %)(((
870 Output terminal number:
871
872 Set the Y number of the synchronization output terminal, the range is 0 to 1777 (octal), when the synchronization output function is enabled, when in the synchronization area, the corresponding Y terminal outputs the synchronization signal. This function needs to set the upper and lower limits of the synchronization position first .
873 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 1777
874 |9|(((
875 CAM synchronization position lower limit
876
877 (Low word)
878 )))|(% rowspan="4" style="width:944px" %)(((
879 The synchronization position upper/lower limit setting of the electronic cam,
880
881 When the synchronization position lower limit ≤ spindle position ≤ position upper limit
882
883 And the synchronization signal terminal Y output is ON when the synchronization signal is enabled (address 4, BIT0).
884
885 When the lower limit> the upper limit, the upper and lower limit values will be exchanged.
886 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
887 |10|(((
888 CAM synchronization position lower limit
889
890 (High word)
891 )))
892 |11|(((
893 CAM synchronization position upper limit
894
895 (Low word)
896 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
897 |12|(((
898 CAM synchronization position upper limit
899
900 (High word)
901 )))
902 |13|Electronic cam pulse remainder distribution setting (reserved)|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
903 |14|Aperiodic ECAM execution times|(% style="width:944px" %)(((
904 Periodic electronic cam: reserved;
905
906 Aperiodic electronic cam: control table execution times; when the value is H0001, the electronic cam will stop after executing once;
907
908 When the value is HFFFF, it will become a periodic electronic cam execution.
909 )))|(% style="width:126px" %)11|(% style="width:154px" %)1 to 65535
910 |15|ECAM start delay pulse setting (low word)|(% rowspan="2" style="width:944px" %)(((
911 Periodic electronic cam: reserved
912
913 Aperiodic electronic cams and periodic delay electronic cams: the delayed start function can be enabled through (Address 3, Bit0-delayed start enable). When the aperiodic electronic cam is executed, a cam start signal is received. If the electronic cam table is not executed immediately, but the spindle rotates for a few pulses, the table is run. At this time, this register sets the number of delayed pulses.
914 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
915 |16|ECAM start delay pulse setting (high word)
916 |17|(((
917 Spindle specified position start
918
919 (Low word)
920 )))|(% rowspan="2" style="width:944px" %)(((
921 Periodic electronic cam: reserved
922
923 Aperiodic electronic cam:
924
925 It can be enabled by (address 3, Bit1-specified location start enable),
926
927 To enable the function of the specified location. The starting position is set by this address. The setting value must be within the table period.
928 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)(((
929 32-bit unsigned integer
930
931 number
932 )))
933 |18|(((
934 Spindle specified position start
935
936 (high word)
937 )))
938 |19|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
939 Output shaft: current position of slave shaft (after conversion)
940
941 The position of the slave axis during the current cam execution, after scaling
942 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
943 |20|Current position of slave axis (high word)
944 |21|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
945 Output shaft: current position of slave shaft (before conversion)
946
947 The position of the slave axis during the current cam execution, before scaling
948 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
949 |22|Current position of slave axis (high word)
950 |23|Denominator of slave axis magnification|(% rowspan="2" style="width:944px" %)Zoom from axis|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
951 |24|Slave magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
952 |25|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
953 Input axis: the current position of the spindle (after conversion)
954
955 The position of the main axis during the current cam execution, after scaling
956 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
957 |26|Spindle current position (high word)
958 |27|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
959 Input axis: the current position of the spindle (before conversion)
960
961 The position of the main axis during the current cam execution, before scaling
962 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
963 |28|Spindle current position (high word)
964 |29|Denominator of spindle magnification|(% rowspan="2" style="width:944px" %)Spindle zoom|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
965 |30|Spindle magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
966 |31|Specify the table to be run in the next cycle|(% style="width:944px" %)(((
967 Switch to use in the table function after the cycle is completed. 0: Use the default table
968
969 1: Use the data in Table 1 (ECAMCUT specifies the address)
970
971 2: Use the data in Table 2 (ECAMCUT specifies the address)
972 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
973 |32|Table running in current cycle|(% style="width:944px" %)(((
974 Switch to use in the table function after the cycle is completed. Indicates the current week
975
976 Periodically run form.
977 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
978 |33|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
979 |34|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
980 |35|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
981 |36|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
982 |37|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
983 |38|Number of segments in the table|(% style="width:944px" %)Total data segment of cam table data|(% style="width:126px" %)0|(% style="width:154px" %)0 to 512
984 |39|Start offset of the table|(% style="width:944px" %)Specify the offset address of the cam table, fixed to 40|(% style="width:126px" %)40|(% style="width:154px" %)40
985 |40|(((
986 Spindle segment 0
987
988 (low word)
989 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
990 |41|(((
991 Spindle segment 0
992
993 (high word)
994 )))
995 |42|(((
996 Section 0 slave axis
997
998 (low word)
999 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1000 |43|(((
1001 Section 0 slave axis
1002
1003 (high word)
1004 )))
1005 |44|(((
1006 Spindle section 1
1007
1008 (low word)
1009 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1010 |45|(((
1011 Spindle section 1
1012
1013 (high word)
1014 )))
1015 |46|(((
1016 Section 1 slave axis
1017
1018 (low word)
1019 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1020 |47|(((
1021 Section 1 slave axis
1022
1023 (high word)
1024 )))
1025 |40+ N*4|(((
1026 Nth spindle
1027
1028 (low word)
1029 )))|(% rowspan="2" style="width:944px" %)Nth segment spindle position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1030 |40+ N*4+1|(((
1031 Nth spindle
1032
1033 (high word)
1034 )))
1035 |40+ N*4+2|Nth segment slave axis(low word)|(% rowspan="2" style="width:944px" %)Nth segment slave axis position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1036 |40+ N*4+3|Nth segment slave axis(high word)
1037
1038 **{{id name="5.1凸轮寄存器相关说明"/}}Description of cam register**
1039
1040 **(1) Address 2 - Error register:**
1041
1042 Operation error (check Bit3 of address 1) error code description:
1043
1044 (% class="table-bordered" %)
1045 |**Error code**|**Content**
1046 |-1|Form number is out of range
1047 |-2|The table is not initialized properly
1048 |-3|The number of table segments is too short
1049 |1|Spindle input error, pulse change is too large, 100us exceeds 200
1050 |3|Too many slave axes calculated
1051 |5|The spindle has too many unprocessed pulses in the current cycle
1052 |8|Calculate the number of pulses that the slave axis currently needs to output is too much
1053 |9|The cam master is 2 cycles ahead of the slave
1054 |Parameter error (check Bit4 of address 1)|Display the offset address of the error parameter register.
1055 |Form error (check Bit5 of address 1)|The wrong table segment number is displayed.
1056
1057 **(2) Address 3—function register before ECAM is enabled**
1058
1059 Start the corresponding function register of the cam. When the corresponding setting is 1, the corresponding function of the cam is enabled.
1060
1061 BIT6: start from current position
1062
1063 You can set the starting point of the master and slave when the cam starts.
1064
1065 When this function is enabled, the initial position of the spindle is obtained from [Address 27, 28 — current position of the spindle (before conversion)];
1066
1067 The initial position of the slave axis is obtained from [Address 19, 20 — current position of the slave axis (after conversion)].
1068
1069 **(3) Address 4—function register in ECAM operation**
1070
1071 Bit0-Sync signal enable
1072
1073 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position ≤ the spindle position ≤ the upper limit of the synchronous position, the synchronous terminal outputs.
1074
1075 Bit1-Stop when the current cycle is completed
1076
1077 When address 4-BIT1 = 1, the cam will stop immediately after the execution of the current table is completed. After stopping, address 5 will automatically change to 3, reset to 1, and the periodic electronic cam can be started again. The same applies to non-periodic electronic cams.
1078
1079 **(4) Address 5—electronic cam start register**
1080
1081 Periodic electronic cam start: when address 5=1, start periodic electronic cam: when address 5=0, stop electronic cam.
1082
1083 Periodic delay electronic cam start: when address 5=2, start the first period delay pulse set by address 15, 16 and execute according to periodic electronic cam; address 5=0, stop electronic cam.
1084
1085 When switching between periodic electronic cam and non-periodic electronic cam, the data switching between address 5=1→address 5=0→address 5=2 requires an interval of more than 100us.
1086
1087 **(5) Address 8—synchronization signal Y terminal number**
1088
1089 This register is used to set the terminal number of the synchronization signal output.
1090
1091 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position≦the spindle position≦the upper limit of the synchronous position, the synchronous terminal outputs.
1092
1093 **(6) Address 9-12—synchronization position upper and lower limit**
1094
1095 (% class="table-bordered" %)
1096 |**Address**|**Features**|**Range**
1097 |Address 9|CAM synchronization position lower limit (LOW WORD)|(% rowspan="2" %)0 to 2147483647
1098 |Address 10|CAM synchronization position lower limit (HIGH WORD)
1099 |Address 11|CAM synchronization LOW WORD)|(% rowspan="2" %)0 to 2147483647
1100 |Address 12|CAM synchronization position upper limit (HIGH WORD)
1101
1102 The synchronization position upper/lower limit of the electronic cam is set. When the synchronization position lower limit ≤ spindle position ≤ position upper limit and the synchronization signal is enabled (address 4, BIT0), the synchronization signal terminal Y is output.
1103
1104 (% style="text-align:center" %)
1105 [[image:09_html_696eef9be2fe781b.gif||class="img-thumbnail"]]
1106
1107 **(7) Address 14—Aperiodic electronic cam execution times setting**
1108
1109 (% class="table-bordered" %)
1110 |**Address**|**Features**|**Range**
1111 |Address 14|(((
1112 Periodic electronic cam-reserved
1113
1114 Non-periodic electronic cam-control the number of times the electronic cam is executed
1115 )))|1 to 65535
1116
1117 When the non-periodic electronic cam mode is selected, the address 14 controls the execution times of the electronic cam. The current address is set to the number of times the cam repeats the table. When the value is HFFFF, it will become periodic cam execution. When the value is 0, the current address will automatically become 1 if it exceeds the range.
1118
1119 **Number of repetitions=0**
1120
1121 (% style="text-align:center" %)
1122 [[image:09_html_cd76208bae686662.gif||class="img-thumbnail"]]
1123
1124 **Number of repetitions=1**
1125
1126 (% style="text-align:center" %)
1127 [[image:09_html_32911c7488cda346.gif||class="img-thumbnail"]]
1128
1129 **(8) Address 15-16—Electronic cam start delay pulse setting**
1130
1131 (% class="table-bordered" %)
1132 |(% style="width:129px" %)**Address**|(% style="width:809px" %)**Features**|**Range**
1133 |(% style="width:129px" %)Address 15|(% rowspan="2" style="width:809px" %)Aperiodic electronic cams or periodic delay electronic cams. The electronic cam table will be executed immediately after the spindle rotates the set number of pulses|(% rowspan="2" %)32-bit unsigned integer
1134 |(% style="width:129px" %)Address 16
1135
1136 When executing aperiodic electronic cams or periodic delayed electronic cams, if address 3 (Bit0-delayed start enable) is set, the delayed start function is enabled. The slave axis receives a cam start signal. If the electronic cam table is not executed immediately, the table is run after delaying the spindle rotation for several pulses. At this time, the number of delayed pulses must be set for address 16.
1137
1138 As shown in the figure below: When the system receives a cam start signal, the electronic cam table will be executed immediately after the spindle rotates the set number of pulses.
1139
1140 **Delayed start pulse=10**
1141
1142 (% style="text-align:center" %)
1143 [[image:09_html_6e842f28225b1875.gif||class="img-thumbnail"]]
1144
1145 **Delayed start pulse=50**
1146
1147 (% style="text-align:center" %)
1148 [[image:09_html_d581ddc508fba3fa.gif||class="img-thumbnail"]]
1149
1150 **(9) Address 17-18—start at the specified position of the spindle**
1151
1152 (% class="table-bordered" %)
1153 |(% style="width:110px" %)**Address**|(% style="width:827px" %)**Features**|**Range**
1154 |(% style="width:110px" %)Address 17|(% rowspan="2" style="width:827px" %)The non-periodic electronic cam can be started at the specified position by address 3 (Bit1-specified position start enable). The starting location is set by this address|(% rowspan="2" %)32-bit unsigned integer
1155 |(% style="width:110px" %)Address 18
1156
1157 (% style="text-align:center" %)
1158 [[image:09_html_ac82ab14a3800b51.gif||class="img-thumbnail"]]
1159
1160 **{{id name="6、电子凸轮电子表格数据建立"/}}9.2.2.6 E-cam spreadsheet data creation**
1161
1162 **{{id name="6.1_单笔表格数据变更设定"/}}(1) Single table data change setting**
1163
1164 Each electronic cam table can create 512 points of data, which are set using offset address 40-address [40+n*4+4] respectively. Every 4 points of data is a group of ECAM data, which is composed of master axis position and slave axis position.
1165
1166 Use DMOV instruction to manipulate table data:
1167
1168 (% style="text-align:center" %)
1169 [[image:09_html_66dcb0a2e81acec5.jpg||class="img-thumbnail"]]
1170
1171 (((
1172 Set the total data segment of the spreadsheet data to 3
1173
1174 The spindle position of segment 0 is 0
1175
1176 The position of the 0th segment slave axis is 0
1177
1178 The spindle position of the first segment is 100
1179
1180 The first segment slave axis position is 100
1181
1182 The second stage spindle position is 200
1183
1184 The second segment slave axis position is 0
1185
1186 Configure electronic cam
1187
1188
1189 )))
1190
1191 **{{id name="6.2_使用PLC_Editor生成表格数据"/}}(2) Use PLC Editor to generate table data**
1192
1193 Define the relationship between master axis and slave axis, which is called electronic cam table data. In the data input, the electronic cam table has two ways to express:
1194
1195 Method 1: The functional relationship between the adopter
1196
1197 Method 2: Use the point-to-point relationship of X and Y to obtain the electronic cam table in two ways:
1198
1199 Approach 1: According to the standard function relationship of the master and slave axis
1200
1201 Approach 2: According to the corresponding relationship between points measured in actual work.
1202
1203 The cam table can define multiple CAM curves. After the relationship is determined, the position of the slave axis can be obtained according to the position of the master axis.
1204
1205 For example, the cam table for sinusoidal signals:
1206
1207 (% style="text-align:center" %)
1208 [[image:09_html_642ffea375343f61.png||class="img-thumbnail"]]
1209
1210 The electronic cam table is called electronic cam table in PLC Editor. Select [electronic cam table] in [Project Properties]-[Protection Function], right click to add and delete the table.
1211
1212 (% style="text-align:center" %)
1213 [[image:09_html_8d0f9043566eacf4.png||class="img-thumbnail"]]
1214
1215 The chart is mainly divided into 4 parts, namely the relative position of the master/slave axis, the relative speed of the master/slave axis, the relative acceleration of the master/slave axis, and the bottom data setting. The first three parts are used to display the CAM data set by the user. The horizontal axis is the main axis, and the vertical axis is the position of the slave axis, the speed ratio of the slave axis to the master axis, and the acceleration ratio of the slave axis to the master axis. The data setting area is introduced as follows:
1216
1217 1. Displacement resolution: Provide users to set the total number of data points occupied by the table, and the setting range is from 10 to 512, one point occupies 4 WORD Devicess.
1218 1. Data setting: Describe the displacement change of the master/slave axis by function.
1219 1. Import: describe the displacement change of the master/slave axis through a point-to-point method.
1220 1. Export: Export and archive the change relationship of the master/slave axis in a point-to-point manner.
1221
1222 {{id name="6.2.1_以函数方式描述主从轴的位置变化"/}}1) Functionally describe the position changes of the master and slave axes
1223
1224 Select [Data Setting] in the data setting area and the "Data Setting Window" will appear, which allows the user to describe the curve of the entire cam in a function, rather than a point-to-point description. At present, Wecon PLC provides 3 cam curve modes for users to choose, namely: Const Speed (constant speed), Const Acc (uniform acceleration), BSpline (cycloid).
1225
1226 (% style="text-align:center" %)
1227 [[image:09_html_1c2bc8b46503f556.png||class="img-thumbnail"]]
1228
1229 [Data Setting] The window is composed of sections, each section provides the user to set a section of cam curve, and then the entire section composes the cam curve. Each section is composed of master axis, slave axis, CAM curve and resolution, as explained below:
1230
1231 Main shaft: the displacement of the main shaft, the displacement of the main shaft must be greater than a value of 0, and increase;
1232
1233 Slave axis: the displacement of the slave axis, which is positive or negative;
1234
1235 CAM curve: the function used in the current section;
1236
1237 Resolution: The number of points used in the current section. The entire table can be set in the range 10-512. 1 point occupies 4 WORDs. If not set, the remaining points will be divided equally. The resolution is set according to the requirements of the device. The higher the resolution, the smoother the device runs, but the larger the device.
1238
1239 {{id name="6.2.2_以点对点方式描述主从轴的位置变化"/}}2) Describe the position changes of the master and slave axes in a point-to-point manner
1240
1241 Directly add data to the electronic cam table in a point-to-point mode. A cam table can input up to 512 points of data.
1242
1243 [Export]Export the current table data in a point-to-point manner and store it in the specified file.
1244
1245 [Import] Import the current table data in a point-to-point manner.
1246
1247 **{{id name="6.3_使用ECAM_TBX生成表格"/}}(3) Use ECAM TBX to generate tables**
1248
1249 (% class="table-bordered" %)
1250 |**Name**|**Features**|**Bits (bits)**|**Whether pulse type**|**Instruction format**|**Step count**
1251 |ECAMTBX|Generate spreadsheet data|16|No|ECAMTBXS0 S1 D0 D1|9
1252
1253 S0~-~-parameter address, allowable device: D, R.
1254
1255 For the setting parameters when generating the curve, please refer to the description in [Appendix]-[Parameter List]
1256
1257 S1~-~-curve type, allowable Devicess: D, R, H, K.
1258
1259 Indicates the type of curve to be generated.
1260
1261 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
1262
1263 K2: Customize the specified key point to generate a table
1264
1265 K100: Generate rotary saw curve
1266
1267 K101: Generate chase curve
1268
1269 D0~-~-the first address of cam parameters,
1270
1271 Allowed devices: D, R
1272
1273 The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
1274
1275 D1~-~-form generation result
1276
1277 Allowed devices: D, R
1278
1279 D1 <0 generates a table error;
1280
1281 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
1282
1283 ECAMTBX instruction generating curve error code:
1284
1285 (% class="table-bordered" %)
1286 |**Error code**|**Content**
1287 |-1|Condition parameter error
1288 |-2|The spindle pulse number is too few, not enough for synchronization area
1289 |-3|Unknown cam curve type
1290 |-4|Resolution range error
1291 |-5|Too many pulses of the slave axis calculated
1292 |-6|The calculated number of pulses from the slave axis is too small
1293 |-7|The calculated number of spindle pulses exceeds the set length
1294 |-8|The pulse number of the slave axis is set to 0
1295 |-10|S type acceleration and deceleration curve calculation error
1296 |-11|Unknown curve type
1297 |-12|Curve left wrong
1298 |-13|The number of slave axes that exceeds the range
1299
1300 Key point generating curve Error code:
1301
1302 (% class="table-bordered" %)
1303 |**Error code**|**Content**
1304 |-21|The number of key points is out of range
1305 |-22|Total resolution exceeds range
1306 |-23|Incorrect relationship between spindle size
1307 |-24|The resolution setting of each segment is incorrect
1308 |-25|When calculating, the number of control points is insufficient
1309 |-26|Unknown acceleration curve type
1310 |-27|Spindle pulse number is negative
1311
1312 S-type acceleration and deceleration generated curve Error code:
1313
1314 (% class="table-bordered" %)
1315 |**Error code**|**Content**
1316 |-31|The number of pulses exceeds the range
1317 |-32|Maximum frequency out of range
1318 |-33|Acceleration and deceleration time out of range
1319 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
1320
1321 **✎Note: **After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
1322
1323 == {{id name="_Toc21163"/}}**The application of ECAM** ==
1324
1325 **{{id name="1、飞剪应用"/}}A.Rotary saw application**
1326
1327 In the feeding and cutting application, the traditional method is to use the stop-and-go method. The feeding shaft first walks to a fixed length, and then the cutting shaft moves again, and then the process of "feeding stop" and "cutting stop" is repeated. Disadvantages of the medium method. In the process of feeding shaft stop and stop, the required acceleration and deceleration can not improve the production efficiency. Therefore, the new method is to use the non-stop feeding method. Generally, there are two feeding and cutting methods: rotary saw and flying saw. The difference between the two is that rotary saw moves in the same direction, while flying saw moves back and forth, and the set CAM table curves are also different.
1328
1329 (% style="text-align:center" %)
1330 [[image:09_html_8c06476629016e1b.png||class="img-thumbnail"]]
1331
1332 **{{id name="1.1飞剪动作说明"/}}(1) Description of rotary saw action**
1333
1334 1) Rotary saws control the cutting axis to rotate in the same direction, and cut when the tool touches the material. During this period, the feeding axis will continue to feed at a constant speed without stopping. The action and output stroke of rotary saw control are shown in the figure below:
1335
1336 ①. Accelerate and move to the synchronization area from the beginning of the axis;
1337
1338 ②. In the synchronization zone and the spindle at the same speed and output the cutting signal (CLR0);
1339
1340 ③. After leaving the synchronization zone, the slave axis will decelerate and move back to the origin to complete a cycle of cutting. After knowing the stroke, the speed relationship can be drawn.
1341
1342 2) In the peeling process, the most important thing is speed synchronization. For example, when the cutting knife contacts the material, it must be synchronized with the material speed. If the cutting knife speed is greater than the synchronous speed during contact, a force that pulls the material forward will cause the material to be uneven. If the speed is lower than the material speed, it will appear. Blocking phenomenon.
1343
1344 3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.
1345
1346 (% style="text-align:center" %)
1347 [[image:09_html_88dc65c9b19c9920.gif||height="498" width="500" class="img-thumbnail"]]
1348
1349 4) The relationship between cutting length and cutter circumference:
1350
1351 (% class="table-bordered" %)
1352 |(((
1353 Cutting length <cutter circumference:
1354
1355 In the synchronization zone, the cutter linear speed is synchronized with the feeding speed. After the synchronization zone, in order to catch up with the next cutting, the cutting axis is accelerated, as shown in the figure.
1356 )))|[[image:09_html_80a90f759be3a8d9.gif||class="img-thumbnail"]]
1357 |(((
1358 Cutting length = cutter circumference:
1359
1360 Average speed of cutting axis
1361 )))|[[image:09_html_75f2a002afdb5c2.gif||class="img-thumbnail"]]
1362 |1 times cutter circumference <cutting length <2 times cutter circumference:After the cutting action in the synchronization zone is completed, the cutting axis decelerates, then speed up to synchronize the next cutting, as shown in the figure.|[[image:09_html_d8e09cd43d7a2aba.gif||class="img-thumbnail"]]
1363 |Cutting length> 2 times the circumference of the cutter:When the cutting length is greater than 2 times the knife circumference (this is also the most common situation), in a cycle, after the cutting of the knife edge in the synchronization zone is completed, it decelerates to a stop, waits for a certain length to pass, and then starts the next cutting .|[[image:09_html_8c9af77a8c8fff2.gif]]
1364
1365 {{id name="1.3飞剪配置"/}}{{id name="1.2_飞剪生成"/}}**(2) Rotary saw generation**
1366
1367 The PLC built-in rotary saw curve automatically generates instructions. For the parameters needed to generate the curve, please refer to the "Rotary saw Parameter Table". The CAM curve in depth 6 has 5 forms. The combination of these 5 forms can generate the required rotary saw curve. ,As shown below.
1368
1369 (% class="table-bordered" %)
1370 |(% colspan="5" %)**Rotary saw curve parameter setting**
1371 |(% style="width:105px" %)**Parameter**|(% style="width:88px" %)**Offset address**|(% style="width:165px" %)**Name**|**Format**|**Instruction**
1372 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:88px" %)Address 0|(% rowspan="2" style="width:165px" %)Spindle length|(% rowspan="2" %)32 Bits Integer|(% rowspan="2" %)The cutting length of the feeding axis moving, the unit is Pulse.
1373 |(% style="width:88px" %)Address 1
1374 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:88px" %)Address 2|(% rowspan="2" style="width:165px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1375 The circumference of the cutting axis (including the tool length), the unit is Pulse.
1376
1377 Range [-2000000000, 2000000000]
1378 )))
1379 |(% style="width:88px" %)Address 3
1380 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:88px" %)Address 4|(% rowspan="2" style="width:165px" %)Slave axis sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1381 The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S-type rotary saw is selected, the value satisfies 40 *synchronization ratio<=synchronization length<slave axis
1382
1383 Length-2. ), synchronization area range: 0<synchronization area length<|slave axis length|
1384 )))
1385 |(% style="width:88px" %)Address 5
1386 |(% rowspan="2" style="width:105px" %)Parameter 4|(% style="width:88px" %)Address 6|(% rowspan="2" style="width:165px" %)(((
1387 Slave axis synchronization
1388
1389 magnification
1390 )))|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1391 Calculation method 1: In the synchronization zone, the speed of the master axis and the slave axis are equal, and the calculation method of synchronization magnification:
1392
1393 [[image:09_html_d11c191bffc9429b.jpg||class="img-thumbnail"]]
1394
1395 among them
1396
1397 V1(V2)=Master (slave) axis speed
1398
1399 F1(F2)=Master (slave) axis speed (Hz)
1400
1401 D1(D2)=Master (slave) shaft diameter
1402
1403 R1 (R2) = master (slave) axis pulse number per revolution
1404
1405 Calculation method two:
1406
1407 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/
1408
1409 Number of pulses required by 1mm spindle
1410 )))
1411 |(% style="width:88px" %)Address 7
1412 |(% rowspan="2" style="width:105px" %)Parameter 5|(% style="width:88px" %)Address 8|(% rowspan="2" style="width:165px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1413 Maximum magnification=
1414
1415 Maximum speed of slave axis/maximum speed of main axis
1416 )))
1417 |(% style="width:88px" %)Address 9
1418 |(% style="width:105px" %)Parameter 6|(% style="width:88px" %)Address 10|(% style="width:165px" %)Acceleration curve|Integer|(((
1419 0: constant acceleration curve, the speed curve is T type
1420
1421 1: Constant jerk curve, speed curve is S type
1422
1423 2: reserved
1424
1425 3: reserved
1426
1427 4: New S type rotary saw curve (the synchronization zone is in the middle),Please refer to the appendix for details. The current curve only supports CAM curve 0
1428 )))
1429 |(% style="width:105px" %)Parameter 7|(% style="width:88px" %)Address 11|(% style="width:165px" %)CAM curve|Integer|(((
1430 Start, stop, and various curve selections of different synchronization zone positions:
1431
1432 0: LeftCAM synchronization area is located on the front curve;
1433
1434 1: MidCAMall;
1435
1436 2: MidCAMBegin initial curve;
1437
1438 3: MidCAMEnd end curve;
1439
1440 4: RightCAM sync area is located at the back curve;
1441
1442 BIT[15]=1: continue the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
1443 )))
1444 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:88px" %)Address 12|(% style="width:165px" %)Resolution|Integer|(((
1445 Range [31,511], of which 20 synchronization areas;
1446
1447 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
1448 )))
1449 |(% style="width:88px" %)Address 13|(% style="width:165px" %)Reserved|Retained|Reserved
1450 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:88px" %)Address 14|(% rowspan="2" style="width:165px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1451 |(% style="width:88px" %)Address 15
1452 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:88px" %)Address 16|(% rowspan="2" style="width:165px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1453 |(% style="width:88px" %)Address 17
1454 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:88px" %)Address 18|(% rowspan="2" style="width:165px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than the speed corresponding to this value. Thereby adjusting the slope of the deceleration section.
1455 |(% style="width:88px" %)Address 19
1456
1457 (% style="text-align:center" %)
1458 [[image:09_html_85b39cb6a2a254f4.png||class="img-thumbnail"]]
1459
1460 **(3) Rotary saw configuration**
1461
1462 {{id name="1.3.1概述"/}}1) Overview
1463
1464 Synchronization zone: At this time, the feeding axis and the cutter axis rotate at a fixed speed ratio (the linear velocity of the cutter head is equal to the linear velocity of the cutting surface), and the cutting of the material occurs in the synchronous zone.
1465
1466 Adjustment area: due to different cutting lengths, corresponding displacement adjustments are required. According to the cutting length adjustment zone, it can be divided into the following three situations.
1467
1468 Short material cutting: the cutter shaft first has a uniform speed in the adjustment area, and then decelerates to the synchronous speed.
1469
1470 Normal material cutting: In this case, the cutter axis accelerates first in the adjustment zone. Then decelerate to synchronous speed.
1471
1472 Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.
1473
1474 (% style="text-align:center" %)
1475 [[image:09_html_ac77ff756d4dd1b2.gif||height="335" width="800" class="img-thumbnail"]]
1476
1477 (% style="text-align:center" %)
1478 [[image:09_html_7947002c875493ad.gif||height="337" width="400" class="img-thumbnail"]]
1479
1480 **{{id name="_Toc28644"/}}✎Note:**
1481
1482 When setting the maximum limit magnification, synchronization magnification, and minimum limit operation magnification, the material length boundary is also determined. Several limit values are as follows:
1483
1484 ①The speed of the shortest material (Lm1) satisfies: the actual maximum operating magnification = the maximum limit magnification, and the adjustment area is a constant speed + deceleration process.
1485
1486 (% style="text-align:center" %)
1487 [[image:09_html_e6ef7719c15b9c56.gif||class="img-thumbnail"]]
1488
1489 ②The shortest normal material (Lm2): the actual maximum operating magnification = the maximum limit magnification, the adjustment area is the acceleration + deceleration process.
1490
1491 (% style="text-align:center" %)
1492 [[image:09_html_b59eeb079fa045f8.gif||class="img-thumbnail"]]
1493
1494 ③The shortest length of material (Lm3): the actual maximum operating magnification = the minimum limit operating magnification, the adjustment area is acceleration + deceleration + dwell process.
1495
1496 (% style="text-align:center" %)
1497 [[image:09_html_2546314cd37aed9d.gif||class="img-thumbnail"]]
1498
1499 Therefore, the length of the material determines the type of operation of the slave axis:
1500
1501 ① When Lm1 ≤ L <Lm2, this is a short material, and its 0 ≤ actual maximum operating magnification ≤ maximum limit magnification
1502
1503 ② When Lm2 ≤ L <Lm3, this is a normal material, and its minimum limit operation magnification ≤ actual maximum operation magnification ≤ maximum limit magnification
1504
1505 ③ When L ≥ Lm3, this is a long material, and the actual maximum operating magnification = minimum limit magnification. There is a residence zone, the longer the material, the longer the residence time.
1506
1507 {{id name="1.3.2示例"/}}2) Example
1508
1509 The process result will be different according to the difference of the maximum limit magnification, synchronization magnification and minimum limit operation magnification.
1510
1511 ① Synchronous magnification <minimum limit operation magnification <maximum limit magnification
1512
1513 The parameter settings are as follows:
1514
1515 (% style="text-align:center" %)
1516 [[image:09_html_9c3f0a8bc2f79674.gif||height="310" width="500" class="img-thumbnail"]]
1517
1518 **Short material:**{{id name="OLE_LINK389"/}}
1519
1520 (% style="text-align:center" %)
1521 [[image:09_html_a335f05c7945dd4b.gif||height="320" width="800" class="img-thumbnail"]]
1522
1523 **Normal materials:**
1524
1525 (% style="text-align:center" %)
1526 [[image:09_html_ecd43824be58368a.gif||height="326" width="800" class="img-thumbnail"]]
1527
1528 **Long material:**
1529
1530 (% style="text-align:center" %)
1531 [[image:09_html_5cf341fa104d76d3.gif||height="318" width="800" class="img-thumbnail"]]
1532
1533 ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification
1534
1535 In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:
1536
1537 (% style="text-align:center" %)
1538 [[image:09_html_95b3fe4d6308ff9a.gif||height="329" width="500" class="img-thumbnail"]]
1539
1540 The situation of short material and normal material is the same as described in 2.1.
1541
1542 Long material: (no deceleration process in the adjustment zone)
1543
1544 (% style="text-align:center" %)
1545 [[image:09_html_74f9770e2a994f81.gif||class="img-thumbnail"]]
1546
1547 ③ Synchronous magnification = minimum limit operation magnification = maximum limit magnification
1548
1549 In this case, there are no normal materials, only short materials and long materials. The parameter settings are as follows:
1550
1551 (% style="text-align:center" %)
1552 [[image:09_html_ae0be67bb13d9c18.gif||class="img-thumbnail"]]
1553
1554 **Short material        Long material**
1555
1556 (% style="text-align:center" %)
1557 [[image:09_html_7033bb8aa22df588.gif||class="img-thumbnail"]]
1558
1559 **{{id name="1.4_案例"/}}(4) Case**
1560
1561 1) Control requirements:
1562
1563 ①. Use rotary saw curve to automatically generate cam table.
1564
1565 ②. For the equipment matched with the cutting axis and the feeding axis, the servo parameter is 1,000 pulse/rev.
1566
1567 ③. Related parameters:
1568
1569 Cutting material length is 1000 mm, cutting shaft circumference is 60πmm, feeding shaft circumference is 100πmm, and feeding shaft speed is 1,000 Hz
1570
1571 2) Parameters required to establish rotary saw curve
1572
1573 Parameter 1: You eed to input the length of the spindle cutting material because the cutting material length is 1000mm, it is converted to pulse
1574
1575 1000*1000/100Pi=3183 (pulse)
1576
1577 Parameter 2: The circumference of the slave shaft, that is, the number of pulses required for one revolution of the slave shaft 1000 pulse
1578
1579 Parameter 3: The synchronization length of the slave axis is set to approximately 1/3 of the circumference of the slave axis as 1000/3=333 pulse.
1580
1581 Parameter 4: During synchronization, the speed ratio of master and slave
1582
1583 (% style="text-align:center" %)
1584 [[image:09_html_5d7398a6b51d0822.png||class="img-thumbnail"]]
1585
1586 Parameter 5: The maximum magnification limit is: set to 10 times the synchronization magnification as 50/3 (floating point number).
1587
1588 Parameter 6: Low WORD is set to 0 - uniform acceleration
1589
1590 High WORD set to 0 - LEFTCAM
1591
1592 Parameter 7: Set the curve generation result to 0
1593
1594 Using curve generation instructions, ECAMTBX generates curves.
1595
1596 Circuit program corresponding to the case:
1597
1598 Spindle length
1599
1600 Slave length
1601
1602 Slave synchronization length
1603
1604 Slave axis synchronization magnification
1605
1606 Slave axis maximum magnification limit
1607
1608 Acceleration curve
1609
1610 CAM curve solution resolution
1611
1612 Set as rotary saw curve
1613
1614 Curve generation instruction
1615
1616 (% style="text-align:center" %)
1617 [[image:09_html_d35bbecf23e4f86c.png||height="592" width="500" class="img-thumbnail"]]
1618
1619 The curve corresponding to the Circuit program:
1620
1621 Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.
1622
1623 (% style="text-align:center" %)
1624 [[image:09_html_c2f99535690a2e69.gif||height="483" width="600" class="img-thumbnail"]]
1625
1626 **{{id name="2、追剪应用"/}}Flying saw application**
1627
1628 The flying saw system means that the feeding shaft will not stop while the system is cutting, so the camshaft must keep the same speed with the feeding shaft when cutting, and the same speed time must be enough for the cutter to complete the cutting and detach to safety s position. The flying saw camshaft will drive the cutter and the entire group of cutting mechanisms to move, so that it can maintain the same speed with the main shaft during cutting.
1629
1630 **{{id name="2.1_追剪动作说明"/}}(1) Description of flying saw action**
1631
1632 Suppose the wiring is as shown in the figure below, where 1, 2, 3, 4 are the waiting point (starting point), synchronization point, synchronization departure point, and waiting point (starting point), and its actions will follow the movement of the spindle. At the beginning, the camshaft stops at position 1, and then accelerates forward to position 2 to achieve speed synchronization, and continues to position 3, then decelerates and returns to position 4 in the opposite direction (assuming position 1 and position 4 are the same), and then repeat this action .
1633
1634 (% style="text-align:center" %)
1635 [[image:09_html_883677875ea25ecd.gif||class="img-thumbnail"]]
1636
1637 Flying saw control is used in pipe cutting machines, beverage filling and other equipment that needs to move with the processed product; its action is to add axis (slave axis)-start to accelerate and follow the processed product, and after moving to the synchronization zone, it will contact the processed product Start processing at a constant speed. After leaving the synchronization zone, the speed will decrease and stop, and then return to the starting position. All the stroke feeding axes (spindles) have been feeding at a constant speed. As shown below.{{id name="OLE_LINK475"/}}
1638
1639 (% style="text-align:center" %)
1640 [[image:09_html_f748f42472a5e8bc.gif||class="img-thumbnail"]]
1641
1642 The stroke of the flying saw is divided into two parts: the following part and the returning part. The two moving distances must be the same. From the speed stroke point of view, that is, positive area = negative area.
1643
1644 During flying saw, you need to pay attention that the feeding will not stop during processing, so the processing axis must keep the same speed with the feeding axis, and the synchronization time must be enough for the equipment to complete processing and move to a safe position.
1645
1646 The stroke length of the synchronization area is also the processing time, which can be considered when planning the synchronization area. In addition, the planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is large in a cutting cycle, the acceleration and deceleration time will be smaller, indicating that the equipment needs to be accelerated and decelerated in a short time. For motors, machines, and cutters The impact is very large, and it is easy to cause the servo over-current alarm, and the equipment cannot operate normally.
1647
1648 **{{id name="2.2_追剪参数表"/}}(2) Flying saw parameter table**
1649
1650 (((
1651 (% class="table-bordered" %)
1652 |(% colspan="5" %)**Parameter setting of flying saw curve**
1653 |(% style="width:118px" %)**Parameter**|(% style="width:96px" %)**Offset address**|(% style="width:195px" %)**Name**|(% style="width:102px" %)**Format**|(% style="width:958px" %)**Instruction**
1654 |(% rowspan="2" style="width:118px" %)Parameter 1|(% style="width:96px" %)Address 0|(% rowspan="2" style="width:195px" %)Spindle length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The cutting length of the feeding axis moving, the unit is Pulse.
1655 |(% style="width:96px" %)Address 1
1656 |(% rowspan="2" style="width:118px" %)Parameter 2|(% style="width:96px" %)Address 2|(% rowspan="2" style="width:195px" %)Slave length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The circumference of the cutting axis (including the tool length), the unit is Pulse. Range [-2000000000, 2000000000]
1657 |(% style="width:96px" %)Address 3
1658 |(% rowspan="2" style="width:118px" %)Parameter 3|(% style="width:96px" %)Address 4|(% rowspan="2" style="width:195px" %)Slave synchronization length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
1659 |(% style="width:96px" %)Address 5
1660 |(% rowspan="2" style="width:118px" %)Parameter 4|(% style="width:96px" %)Address 6|(% rowspan="2" style="width:195px" %)Slave axis synchronization magnification|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1661 Calculation method one:
1662
1663 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the synchronization magnification calculation method:
1664
1665 V1(V2)=Master (slave) axis speed
1666
1667 F1(F2)=Master (slave) axis speed (Hz)
1668
1669 D1(D2)=Master (slave) shaft diameter
1670
1671 R1 (R2) = master (slave) axis pulse number per revolution
1672
1673 Calculation method two:
1674
1675 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm
1676
1677 Number of pulses required by the spindle
1678 )))
1679 |(% style="width:96px" %)Address 7
1680 |(% rowspan="2" style="width:118px" %)Parameter 5|(% style="width:96px" %)Address 8|(% rowspan="2" style="width:195px" %)Slave axis maximum magnification limit|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
1681 |(% style="width:96px" %)Address 9
1682 |(% rowspan="2" style="width:118px" %)Parameter 6|(% style="width:96px" %)Address 10|(% style="width:195px" %)Acceleration curve|(% style="width:102px" %)Integer|(% style="width:958px" %)(((
1683 0: constant acceleration curve, the speed curve is T type
1684
1685 1: Constant jerk curve, the speed curve is S type
1686 )))
1687 |(% style="width:96px" %)Address 11|(% style="width:195px" %)CAM curve|(% style="width:102px" %)Integer|(% style="width:958px" %)Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the default tracking RightCam, and the return LeftCam curve type. May not be set)
1688 |(% rowspan="2" style="width:118px" %)Parameter 7|(% style="width:96px" %)Address 12|(% style="width:195px" %)Resolution|(% style="width:102px" %)Integer|(% style="width:958px" %)Range [62,511]
1689 |(% style="width:96px" %)Address 13|(% style="width:195px" %)Reserved|(% style="width:102px" %)Retained|(% style="width:958px" %)Reserved
1690 |(% rowspan="2" style="width:118px" %)Parameter 8|(% style="width:96px" %)Address 14|(% rowspan="2" style="width:195px" %)synchronization zone start position|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1691 |(% style="width:96px" %)Address 15
1692 |(% rowspan="2" style="width:118px" %)Parameter 9|(% style="width:96px" %)Address 16|(% rowspan="2" style="width:195px" %)End of synchronization zone|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1693 |(% style="width:96px" %)Address 17
1694 |(% rowspan="2" style="width:118px" %)Parameter 10|(% style="width:96px" %)Address 18|(% rowspan="2" style="width:195px" %)Reserved|(% rowspan="2" style="width:102px" %)Reserved|(% rowspan="2" style="width:958px" %)Reserved
1695 |(% style="width:96px" %)Address 19
1696 |(% rowspan="2" style="width:118px" %)Parameter 11|(% style="width:96px" %)Address 20|(% rowspan="2" style="width:195px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1697 The maximum magnification of the actual operation of slave axis:
1698
1699 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
1700 )))
1701 |(% style="width:96px" %)Address 21
1702 )))
1703
1704 **{{id name="2.3_案例"/}}(3) Case**
1705
1706 1) Control parameters
1707
1708 ①. The servo parameter is 1000 pulse/rev.
1709
1710 ②. Related parameters
1711
1712 The processing length of the feeding shaft is 660 mm, and the circumference of the feeding shaft is 60πmm
1713
1714 The machining length of the machining shaft is 40 mm
1715
1716 {{id name="_Toc11189"/}}One rotation of the machining axis is 20 mm
1717
1718 The feed shaft speed is 1000 Hz
1719
1720 {{id name="2.3.1_利用飞剪曲线来建立追剪曲线"/}}2) Establish flying saw curve by rotary saw curve
1721
1722 The parameters needed to establish rotary saw curve
1723
1724 Spindle length (processing length): Assuming that the spindle servo parameter is 1000 pulse/rev and the mechanism parameter is 60π mm/rev, then 1pulse is 0.188mm. If the actual processing length is 660mm→convert to 660/0.188=3501 pulse.
1725
1726 Slave axis length(machining axis length):
1727
1728 First consider that the slave axis servo parameter is 1000 pulse/rev and the mechanism parameter is 20mm/rev, then 1pulse=0.01mm can be obtained.
1729
1730 The actual measured slave shaft machining length is 40 mm → converted to 2000 Pulse.
1731
1732 The location of the synchronization zone;
1733
1734 The lower limit of the synchronization zone is when the actual START0 signal is triggered, the slave axis goes from 0 to the position 200 where it catches up with the spindle speed;
1735
1736 The upper limit of the synchronization zone is the position 500 where the processing time ends and the processing equipment also leaves.
1737
1738 The speed ratio of master and slave axis in synchronization zone: the speed ratio of the master axis and slave axis in the synchronization zone.
1739
1740 The speed ratio of master and slave axis when returning:
1741
1742 After the total length of the stroke subtracts the stroke of the following movement, the return stroke length can be obtained, and then use the following stroke distance = return stroke distance to know the speed ratio when returning = 3.
1743
1744 3) Establish flying saw curve automatically by rotary saw curve
1745
1746 ① Establish a positive area curve
1747
1748 Parameter 1: It needs to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle = 3501/2 =1750 pulse;
1749
1750 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1751
1752 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3 = 667 pulse;
1753
1754 Parameter 4:
1755
1756 (% style="text-align:center" %)
1757 [[image:09_html_68100086fd1c297a.gif||class="img-thumbnail"]]
1758
1759 Parameter 5: the highest synchronization magnification 10 (floating point number);
1760
1761 Parameter 6: Low word setting 0: uniform acceleration;
1762
1763 High word setting 0: LeftCam.
1764
1765 ② Establish a negative area curve
1766
1767 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle =3501/2 =1750 pulse;
1768
1769 Parameter 2: Reverse running size is -2000;
1770
1771 Parameter 3: Same;
1772
1773 Parameter 4: Same;
1774
1775 Parameter 5: Same;
1776
1777 Parameter 6: Low word setting 0: uniform acceleration;
1778
1779 High word setting H8000: LeftCam continues the existing table data.
1780
1781 4) Generate tables with the function of flying saw
1782
1783 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse;
1784
1785 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1786
1787 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3=667 pulse;
1788
1789 Parameter 4:
1790
1791 (% style="text-align:center" %)
1792 [[image:09_html_bd90dcc010d13207.gif||class="img-thumbnail"]]
1793
1794 Parameter 5: the highest synchronization magnification 10 (floating point number)
1795
1796 Parameter 6: Low word setting 1: Uniform acceleration;
1797
1798 High word setting 0: invalid.
1799
1800 Use ECAMTBX to generate curves:
1801
1802 (% style="text-align:center" %)
1803 [[image:09_html_67c3ab90b2ffbbd3.png||height="449" width="500" class="img-thumbnail"]]
1804
1805 (((
1806 Spindle length
1807
1808 Slave length
1809
1810 Slave synchronization length
1811
1812 Slave axis synchronization magnification
1813
1814 Slave axis maximum magnification limit
1815
1816 Acceleration curve
1817
1818 CAM curve solution resolution
1819
1820 Set as rotary saw curve
1821
1822 Curve generation instruction
1823
1824
1825 )))
1826
1827 Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}}
1828
1829 (% style="text-align:center" %)
1830 [[image:09_html_88ff5c1c9ceb8325.gif||height="455" width="600" class="img-thumbnail"]]
1831
1832 **S type acceleration and deceleration curve establishment**
1833
1834 **{{id name="3.1_S型加减速曲线表格参数"/}}(1) S type acceleration and deceleration curve table parameters**
1835
1836 (% class="table-bordered" %)
1837 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
1838 |(% style="width:105px" %)**Parameter**|(% style="width:98px" %)**Offset address**|(% style="width:238px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
1839 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:98px" %)Address 0|(% rowspan="2" style="width:238px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
1840 |(% style="width:98px" %)Address 1
1841 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:98px" %)Address 2|(% rowspan="2" style="width:238px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
1842 |(% style="width:98px" %)Address 3
1843 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:98px" %)Address 4|(% rowspan="2" style="width:238px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)
1844 |(% style="width:98px" %)Address 5
1845 |(% style="width:105px" %)Parameter 4|(% style="width:98px" %)Address 6|(% style="width:238px" %)Accelerated Time|16-bit integer|Pulse acceleration time|ms|2 to 32767
1846 |(% style="width:105px" %)Parameter 5|(% style="width:98px" %)Address 7|(% style="width:238px" %)deceleration time|16-bit integer|Pulse deceleration time|ms|2 to 32767
1847 |(% style="width:105px" %)Parameter 6|(% style="width:98px" %)Address 8|(% style="width:238px" %)Resolution|16-bit integer|Pulse resolution|Length|50 to 511
1848 |(% style="width:105px" %)Parameter 7|(% style="width:98px" %)Address 9|(% style="width:238px" %)Reserved|Retained|Reserved| |
1849 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:98px" %)Address 10|(% rowspan="2" style="width:238px" %)Number of spindle pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of spindle pulses in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
1850 \\Internally generated
1851 |(% style="width:98px" %)Address 11
1852 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:98px" %)Address 12|(% rowspan="2" style="width:238px" %)Number of slave axis pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses from the last segment of the slave axis (high and low bits)|(% rowspan="2" %)Pulse
1853 |(% style="width:98px" %)Address 13
1854 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:98px" %)Address 14|(% rowspan="2" style="width:238px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the pulse at a constant speed|(% rowspan="2" %)Pulse
1855 |(% style="width:98px" %)Address 15
1856 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:98px" %)Address 16|(% rowspan="2" style="width:238px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Maximum speed of curve results during operation|(% rowspan="2" %)Hz
1857 |(% style="width:98px" %)Address 17
1858 |(% style="width:105px" %)Parameter 12|(% style="width:98px" %)Address 18|(% style="width:238px" %)Reserved| | | |
1859 |(% style="width:105px" %)Parameter 13|(% style="width:98px" %)Address 19|(% style="width:238px" %)Curve generation result| | | |
1860
1861 **✎Note:**
1862
1863 Generate S type acceleration and deceleration curve (table) with the given acceleration time, deceleration time, and the highest speed. When calculating, the spindle uses the pulse input frequency of 1K (1ms) as the calculation basis.
1864
1865 **{{id name="3.2_案例"/}}(2) Case**
1866
1867 1) Related control parameters
1868
1869 Calculation case:
1870
1871 Total number of pulses (length): 10000 pulses
1872
1873 Acceleration time: 100ms
1874
1875 Deceleration time: 100ms Resolution: 200
1876
1877 2) 2. Curve parameters:
1878
1879 Parameter 1: The total number of output pulses 10000
1880
1881 Parameter 2: Maximum speed 50000
1882
1883 Parameter 6: acceleration time 100
1884
1885 Parameter 7: acceleration time 100
1886
1887 Parameter 8: Resolution 200
1888
1889 (% style="text-align:center" %)
1890 [[image:09_html_aa28fc53f7b57a5e.png||height="392" width="500" class="img-thumbnail"]]
1891
1892 (((
1893 Pulse maximum speed
1894
1895 Total pulse number
1896
1897 Acceleration time
1898
1899 Deceleration time
1900
1901 Resolution
1902
1903 Set S type acceleration and deceleration curve
1904
1905 Curve generation instruction
1906
1907
1908 )))
1909
1910 (% style="text-align:center" %)
1911 [[image:09_html_ce402394c75f0459.gif||class="img-thumbnail"]]
1912
1913 **C.Customize specified key points to generate a table**
1914
1915 **{{id name="4.1_指定关键点生成表格参数"/}}(1) Specified key points generate table parameters**
1916
1917 (% class="table-bordered" %)
1918 |(% colspan="6" %)**Specified key points generate table parameters**
1919 |(% colspan="2" %)**Address**|(% style="width:333px" %)**Name**|(% style="width:197px" %)**Length**|**Instruction**|**Range**
1920 |(% colspan="2" %)S0|(% style="width:333px" %)Curve result|(% style="width:197px" %)Single word|(((
1921 ~>0: The curve is generated successfully
1922
1923 <0: Failed to generate curve
1924 )))|
1925 |(% colspan="2" %)S0+1|(% style="width:333px" %)Error parameter position|(% style="width:197px" %)Single word| |
1926 |(% colspan="2" %)S0+2|(% style="width:333px" %)Total resolution|(% style="width:197px" %)Single word| |10 to 511
1927 |(% colspan="2" %)S0+3|(% style="width:333px" %)Number of key points (n)|(% style="width:197px" %)Single word| |1 to 10
1928 |(% colspan="2" %)S0+4|(% rowspan="2" style="width:333px" %)The initial position of slave axis|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Set the initial offset position of slave axis|(% rowspan="2" %)Reserved
1929 |(% colspan="2" %)S0+5
1930 |(% colspan="2" %)S0+6|(% style="width:333px" %)Spindle segment 0|(% style="width:197px" %)Single word|(% rowspan="2" %)The master/slave axis segment 0 is always 0|(% rowspan="2" %)Reserved
1931 |(% colspan="2" %)S0+7|(% style="width:333px" %)Slave axis segment 0|(% style="width:197px" %)Single word
1932 |(% rowspan="6" %)(((
1933 Key
1934
1935 point 1
1936 )))|S0+8|(% rowspan="2" style="width:333px" %)Spindle segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 1|(% rowspan="2" %)32-bit integer
1937 |S0+9
1938 |S0+10|(% rowspan="2" style="width:333px" %)Slave axis segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 1|(% rowspan="2" %)32-bit integer
1939 |S0+11
1940 |S0+12|(% style="width:333px" %)Curve type of segment 1|(% style="width:197px" %)Single word|*1|
1941 |S0+13|(% style="width:333px" %)Resolution of segment 1|(% style="width:197px" %)Single word|*2|
1942 |(% rowspan="6" %)(((
1943 Key
1944
1945 point 2
1946 )))|S0+14|(% rowspan="2" style="width:333px" %)Spindle segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 2|(% rowspan="2" %)32-bit integer
1947 |S0+15
1948 |S0+16|(% rowspan="2" style="width:333px" %)Slave axis segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 2|(% rowspan="2" %)32-bit integer
1949 |S0+17
1950 |S0+18|(% style="width:333px" %)Curve type of segment 2|(% style="width:197px" %)Single word|*1|
1951 |S0+19|(% style="width:333px" %)Resolution of segment 2|(% style="width:197px" %)Single word|*2|
1952 | |**......**|(% style="width:333px" %)**......**|(% style="width:197px" %)**.....**|**......**|**......**
1953 |(% rowspan="6" %)(((
1954 Key point
1955
1956 N
1957 )))|S0+n*6+2|(% rowspan="2" style="width:333px" %)Spindle segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment N|(% rowspan="2" %)32-bit integer
1958 |S0+n*6+3
1959 |S0+n*6+4|(% rowspan="2" style="width:333px" %)Slave axis segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment N|(% rowspan="2" %)32-bit integer
1960 |S0+n*6+5
1961 |S0+n*6+6|(% style="width:333px" %)Curve type of segment N|(% style="width:197px" %)Single word|*1|
1962 |S0+n*6+7|(% style="width:333px" %)Resolution of segment N|(% style="width:197px" %)Single word|*2|
1963
1964 Curve type: Different values represent different curve types.
1965
1966 0 = uniform acceleration, 1 = S acceleration and deceleration (uniform acceleration), 2 = cycloid, 3 = uniform speed.
1967
1968 The resolution range is 0-511, the total resolution of all segments does not exceed the total resolution set by [S0]. if the resolution of all segments is set to 0, the total resolution set by [S0] split equally. When the curve type is cycloid, the corresponding resolution range is 3-511.W
1969
1970 Refer to the setting method of PLC Editor to generate a table based on the given key points and the given function relationship. The parameter setting is the same as the setting method of the upper computer. The editing interface of the upper computer is shown below. When the table is generated in K2 mode, The generated result is similar to the table result set by the relevant parameters of the upper computer. This mode expands the function of the table generated by the lower computer through the key points. In the key point curve, the spindle must have an increasing relationship, that is, the spindle pulse number of the next point must be greater than the spindle pulse number of the previous point, otherwise an error will be reported.
1971
1972 **{{id name="4.2_案例"/}}(2) Case**
1973
1974 1) Specified key points parameters
1975
1976 When the spindle has 0-600 pulses, the slave axis stops at position 0;
1977
1978 When the spindle has 600-1500 pulses, the slave axis moves to the position 2000;
1979
1980 When the spindle is 1500-1700 pulses, the slave axis stops at position 2000;
1981
1982 When the spindle has 1700-1900 pulses, the slave axis will return to position 600;
1983
1984 When the spindle has 1900-2000 pulses, the slave axis returns to position 0.
1985
1986 2) Specified key points for tabulation
1987
1988 Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.
1989
1990 (% style="text-align:center" %)
1991 [[image:09_html_b99e5227a35871ab.png||height="295" width="400" class="img-thumbnail"]]
1992
1993 Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
1994
1995 3) Specified key point parameters table
1996
1997 (((
1998 (% class="table-bordered" %)
1999 |**Address**|**Instruction**|**Set value**|**Address**|**Instruction**|**Set value**
2000 |S0|Curve generation result| |S0+19|Resolution of segment 2|0
2001 |S0+1|Error parameter location| |S0+20|(% rowspan="2" %)Spindle position of segment 3|(% rowspan="2" %)1700
2002 |S0+2|Total resolution|100|S0+21
2003 |S0+3|Number of key point|1-10|S0+22|(% rowspan="2" %)Slave axis position of segment 3|(% rowspan="2" %)2000
2004 |S0+4|(% rowspan="2" %)Initial position of slave axis|(% rowspan="2" %)——|S0+23
2005 |S0+5|S0+24|Curve type of segment 3|0
2006 |S0+6|Spindle position of segment 0|Reserved|S0+25|Resolution of segment 3|0
2007 |S0+7|Slave axis position of segment 0|Reserved|S0+26|(% rowspan="2" %)Spindle position of segment 4|(% rowspan="2" %)1900
2008 |S0+8|(% rowspan="2" %)Spindle position of segment 1|(% rowspan="2" %)600|S0+27
2009 |S0+9|S0+28|(% rowspan="2" %)Slave axis position of segment 4|(% rowspan="2" %)600
2010 |S0+10|(% rowspan="2" %)Slave axis position of segment 1|(% rowspan="2" %)0|S0+29
2011 |S0+11|S0+30|Curve type of segment 4|0
2012 |S0+12|Curve type of segment 1|0|S0+31|Resolution of segment 4|0
2013 |S0+13|Resolution of segment 1|0|S0+32|(% rowspan="2" %)Spindle position of segment 5|(% rowspan="2" %)2000
2014 |S0+14|(% rowspan="2" %)Spindle position of segment 2|(% rowspan="2" %)1500|S0+33
2015 |S0+15|S0+34|(% rowspan="2" %)Slave axis position of segment 5|(% rowspan="2" %)0
2016 |S0+16|(% rowspan="2" %)Slave axis position of segment 2|(% rowspan="2" %)1200|S0+35
2017 |S0+17|S0+36|Curve type of segment 5|0
2018 |S0+18|Curve type of segment 2|0|S0+37|Resolution of segment 5|0
2019 )))
2020
2021 4) The table generated by specified key points is shown as below.
2022
2023 (% style="text-align:center" %)
2024 [[image:09_html_7f4633272893860d.gif||class="img-thumbnail"]]
2025
2026 5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
2027
2028 (% style="text-align:center" %)
2029 [[image:09_html_b7baa900608277e3.png||width="500" class="img-thumbnail"]]
2030
2031
2032 (% style="text-align:center" %)
2033 [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]]
2034
2035 == {{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address** ==
2036
2037 (% class="table-bordered" %)
2038 |**Devices**|**Content**
2039 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
2040 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
2041 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
2042 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
2043 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
2044 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
2045 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
2046 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
2047
2048 (% class="table-bordered" %)
2049 |**Devices**|**Content**|**Devices**|**Content**
2050 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
2051 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
2052 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
2053 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
2054 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
2055 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
2056 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
2057 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
2058
2059 == {{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix** ==
2060
2061 **Rotary saw parameter table**
2062
2063 (% class="table-bordered" %)
2064 |(% colspan="5" %)**Rotary saw curve parameter setting**
2065 |(% style="width:117px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:162px" %)**Name**|**Format**|**Instruction**
2066 |(% rowspan="2" style="width:117px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:162px" %)Spindle length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The moving cut length of the feeding axis moving. Unit: pulse.
2067 |(% style="width:94px" %)Address 1
2068 |(% rowspan="2" style="width:117px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:162px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: pulse. Range [-2,000,000,000, 2,000,000,000]
2069 |(% style="width:94px" %)Address 3
2070 |(% rowspan="2" style="width:117px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:162px" %)Slave sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S type rotary saw is selected, the value satisfies 40 *sync ratio<=sync length< slave axis length-2. ). Sync area range: 0<sync area length<~|slave axis length~|
2071 |(% style="width:94px" %)Address 5
2072 |(% rowspan="2" style="width:117px" %)Parameter 4|(% style="width:94px" %)
2073 Address 6|(% rowspan="2" style="width:162px" %)Slave axis sync magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2074 Calculation method one:
2075
2076 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the sync magnification calculation method:
2077
2078 V1(V2)=Master (slave) axis speed
2079
2080 F1(F2)=Master (slave) axis speed (Hz)
2081
2082 D1(D2)=Master (slave) axis diameter
2083
2084 R1 (R2) = master (slave) axis pulse number per revolution
2085
2086 Calculation method two:
2087
2088 Slave axis sync magnification=the number of pulses required by 1mm slave axis/the number of pulses required by 1mm spindle
2089 )))
2090 |(% style="width:94px" %)Address 7
2091 |(% rowspan="2" style="width:117px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:162px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of spindle
2092 |(% style="width:94px" %)Address 9
2093 |(% style="width:117px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:162px" %)Acceleration curve|Integer|(((
2094 0: Constant acceleration curve, the speed curve is T type
2095
2096 1: Constant jerk curve, the speed curve is S type
2097
2098 2: reserved
2099
2100 3: reserved
2101
2102 4: New S rotary saw curve (synchronization zone is in the middle), see appendix for details. Current curve only supports CAM curve as 0.
2103 )))
2104 |(% style="width:117px" %)Parameter 7|(% style="width:94px" %)Address 11|(% style="width:162px" %)CAM curve|Integer|(((
2105 Start, stop, and various curve selections of different synchronization zone positions:
2106
2107 0: LeftCAM synchronization area is on the front curve;
2108
2109 1: MidCAMall;
2110
2111 2: MidCAMBegin start curve;
2112
2113 3: MidCAMEnd end curve;
2114
2115 4: RightCAM synchronization area is on the back curve;
2116
2117 BIT[15]=1: Continuing the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
2118 )))
2119 |(% style="width:117px" %)Parameter 8|(% style="width:94px" %)Address 12|(% style="width:162px" %)Resolution|Integer|(((
2120 Range [31,511], of which 20 synchronization areas;
2121
2122 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
2123 )))
2124 |(% style="width:117px" %) |(% style="width:94px" %)Address 13|(% style="width:162px" %)Reserved|Retained|Reserved
2125 |(% rowspan="2" style="width:117px" %)Parameter 9|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:162px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated start position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2126 |(% style="width:94px" %)Address 15
2127 |(% rowspan="2" style="width:117px" %)Parameter 10|(% style="width:94px" %)Address 16|(% rowspan="2" style="width:162px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2128 |(% style="width:94px" %)Address 17
2129 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 18|(% rowspan="2" style="width:162px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than this value magnification corresponds to the speed so as to adjust the slope of the deceleration section.
2130 |(% style="width:94px" %)Address 19
2131 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 20|(% rowspan="2" style="width:162px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2132 The maximum magnification of the actual operation of slave axis:
2133
2134 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2135 )))
2136 |(% style="width:94px" %)Address 21
2137
2138 **{{id name="2、追剪参数表"/}}9.2.5.2 Flying saw parameter table**
2139
2140 (% class="table-bordered" %)
2141 |(% colspan="6" %)**Parameter setting of flying saw curve**
2142 |(% style="width:113px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:199px" %)**Name**|(% colspan="2" %)**Format**|**Instruction**
2143 |(% rowspan="2" style="width:113px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:199px" %)Spindle length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The cutting length of the feeding axis moving. Unit: Pulse.
2144 |(% style="width:94px" %)Address 1
2145 |(% rowspan="2" style="width:113px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:199px" %)Slave length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: Pulse. Range [-2,000,000,000, 2,000,000,000]
2146 |(% style="width:94px" %)Address 3
2147 |(% rowspan="2" style="width:113px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:199px" %)Slave synchronization length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
2148 |(% style="width:94px" %)Address 5
2149 |(% rowspan="2" style="width:113px" %)Parameter 4|(% style="width:94px" %)Address 6|(% rowspan="2" style="width:199px" %)Slave axis synchronization magnification|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)(((
2150 Calculation method one:
2151
2152 In the synchronization zone, the speed of master axis and the slave axis are equal, and the synchronization magnification calculation method is as below.
2153
2154 [[image:09_html_abe2ece300f76c28.jpg]]
2155
2156 among them
2157
2158 V1(V2)=Master (slave) axis speed
2159
2160 F1(F2)=Master (slave) axis speed (Hz)
2161
2162 D1(D2)=Master (slave) axis diameter
2163
2164 R1 (R2) = master (slave) axis pulse number per revolution
2165
2166 Calculation method two:
2167
2168 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm The number of pulses required by the spindle
2169 )))
2170 |(% style="width:94px" %)Address 7
2171 |(% rowspan="2" style="width:113px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:199px" %)Slave axis maximum magnification limit|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
2172 |(% style="width:94px" %)Address 9
2173 |(% rowspan="2" style="width:113px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:199px" %)Acceleration curve|(% colspan="2" %)Integer|(((
2174 0: constant acceleration curve, the speed curve is T type
2175
2176 1: Constant jerk curve, the speed curve is S type
2177 )))
2178 |(% style="width:94px" %)Address 11|(% style="width:199px" %)CAM curve|(% colspan="2" %)Integer|Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the tracking RightCam and the return LeftCam curve type are defaulted and can not be set)
2179 |(% style="width:113px" %)Parameter 7|(% style="width:94px" %)Address 12|(% style="width:199px" %)Resolution|(% colspan="2" %)Integer|Range [62,511]
2180 |(% style="width:113px" %) |(% style="width:94px" %)Address 13|(% style="width:199px" %)Reserved|(% colspan="2" %)Reserved|Reserved
2181 |(% rowspan="2" style="width:113px" %)Parameter 8|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:199px" %)Synchronization zone start position|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2182 |(% style="width:94px" %)Address 15
2183 |(% rowspan="2" style="width:113px" %)Parameter 9|(% style="width:94px" %)Address 16|(% colspan="2" rowspan="2" style="width:199px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2184 |(% style="width:94px" %)Address 17
2185 |(% rowspan="2" style="width:113px" %)Parameter 11|(% style="width:94px" %)Address 20|(% colspan="2" rowspan="2" style="width:199px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2186 The maximum magnification of the actual operation of slave axis:
2187
2188 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2189 )))
2190 |(% style="width:94px" %)Address 21
2191
2192 **{{id name="OLE_LINK387"/}}S type acceleration and deceleration curve parameter table**
2193
2194 (% class="table-bordered" %)
2195 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
2196 |(% style="width:110px" %)**Parameter**|(% style="width:104px" %)**Offset address**|(% style="width:252px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
2197 |(% rowspan="2" style="width:110px" %)Parameter 1|(% style="width:104px" %)Address 0|(% rowspan="2" style="width:252px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
2198 |(% style="width:104px" %)Address 1
2199 |(% rowspan="2" style="width:110px" %)Parameter 2|(% style="width:104px" %)Address 2|(% rowspan="2" style="width:252px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
2200 |(% style="width:104px" %)Address 3
2201 |(% rowspan="2" style="width:110px" %)Parameter 3|(% style="width:104px" %)Address 4|(% rowspan="2" style="width:252px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)2 to 32767
2202 |(% style="width:104px" %)Address 5
2203 |(% style="width:110px" %)Parameter 4|(% style="width:104px" %)Address 6|(% style="width:252px" %)Accelerated time|16-bit integer|Pulse acceleration time|ms|2 to 32767
2204 |(% style="width:110px" %)Parameter 5|(% style="width:104px" %)Address 7|(% style="width:252px" %)Deceleration time|16-bit integer|Pulse deceleration time|ms|50 to 511
2205 |(% style="width:110px" %)Parameter 6|(% style="width:104px" %)Address 8|(% style="width:252px" %)Resolution|16-bit integer|Pulse resolution|Length|51 to 512
2206 |(% style="width:110px" %)Parameter 7|(% style="width:104px" %)Address 9|(% style="width:252px" %)Reserved|Reserved|Reserved| |
2207 |(% rowspan="2" style="width:110px" %)Parameter 8|(% style="width:104px" %)Address 10|(% rowspan="2" style="width:252px" %)Number of pulses of spindle in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of spindle in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
2208 \\Internally generated
2209 |(% style="width:104px" %)Address 11
2210 |(% rowspan="2" style="width:110px" %)Parameter 9|(% style="width:104px" %)Address 12|(% rowspan="2" style="width:252px" %)Number of pulses of slave axis in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of slave axis in the last segment(high and low)|(% rowspan="2" %)Pulse
2211 |(% style="width:104px" %)Address 13
2212 |(% rowspan="2" style="width:110px" %)Parameter 10|(% style="width:104px" %)Address 14|(% rowspan="2" style="width:252px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The time span when outputting pulses at a constant speed|(% rowspan="2" %)Pulse
2213 |(% style="width:104px" %)Address 15
2214 |(% rowspan="2" style="width:110px" %)Parameter 11|(% style="width:104px" %)Address 16|(% rowspan="2" style="width:252px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The maximum speed of curve during operation|(% rowspan="2" %)Hz
2215 |(% style="width:104px" %)Address 17
2216 |(% style="width:110px" %)Parameter 12|(% style="width:104px" %)Address 18|(% style="width:252px" %)Reserved| | | |
2217 |(% style="width:110px" %)Parameter 13|(% style="width:104px" %)Address 19|(% style="width:252px" %)Curve generation result| | | |
2218
2219 **{{id name="4、指定关键点生成表格"/}}4 Specified key points generate a table**
2220
2221 (% class="table-bordered" %)
2222 |(% colspan="6" %)**Specified key points generate table parameters**
2223 |(% colspan="2" %)**Address**|**Name**|**Length**|**Instruction**|**Range**
2224 |(% colspan="2" %)S0|Curve generation result|Single word|(((
2225 ~>0: The curve is generated successfully
2226
2227 <0: Failed to generate the curve
2228 )))|
2229 |(% colspan="2" %)S0+1|Error parameter location|Single word| |
2230 |(% colspan="2" %)S0+2|Total resolution|Single word| |10 to 511
2231 |(% colspan="2" %)S0+3|Number of key points (n)|Single word| |1 to 10
2232 |(% colspan="2" %)S0+4|(% rowspan="2" %)Start position of slave axis|(% rowspan="2" %)Double word|(% rowspan="2" %)Set the start offset position of slave axis|(% rowspan="2" %)Reserved
2233 |(% colspan="2" %)S0+5
2234 |(% colspan="2" %)S0+6|Spindle segment 0|Single word|(% rowspan="2" %)The master/slave axis of segment 0 is always 0|(% rowspan="2" %)Reserved
2235 |(% colspan="2" %)S0+7|Slave axis segment 0|Single word
2236 |(% rowspan="6" %)(((
2237
2238
2239 Key
2240
2241 point 1
2242 )))|S0+8|(% rowspan="2" %)Spindle segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 1|(% rowspan="2" %)32-bit integer
2243 |S0+9
2244 |S0+10|(% rowspan="2" %)Slave axis segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 1|(% rowspan="2" %)32-bit integer
2245 |S0+11
2246 |S0+12|Curve type of segment 1|Single word|*1|
2247 |S0+13|Resolution of segment 1|Single word|*2|
2248 |(% rowspan="6" %)(((
2249
2250
2251 Key
2252
2253 Point 2
2254 )))|S0+14|(% rowspan="2" %)Spindle segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 2|(% rowspan="2" %)32-bit integer
2255 |S0+15
2256 |S0+16|(% rowspan="2" %)Slave axis segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 2|(% rowspan="2" %)32-bit integer
2257 |S0+17
2258 |S0+18|Curve type of segment 2|Single word|*1|
2259 |S0+19|Resolution of segment 2|Single word|*2|
2260 | |......|......|....|......|......
2261 |(% rowspan="6" %)(((
2262
2263
2264 Key
2265
2266 point N
2267 )))|S0+n*6+2|(% rowspan="2" %)Spindle segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment N|(% rowspan="2" %)32-bit integer
2268 |S0+n*6+3
2269 |S0+n*6+4|(% rowspan="2" %)Slave axis segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment N|(% rowspan="2" %)32-bit integer
2270 |S0+n*6+5
2271 |S0+n*6+6|Curve type of segment N|Single word|*1|
2272 |S0+n*6+7|Resolution of segment N|Single word|*2|