Wiki source code of 09 Electronic cam

Version 6.2 by Stone Wu on 2022/09/26 11:54

Show last authors
1 = **Electronic CAM (ECAM) instruction** =
2
3 == {{id name="_Toc15695"/}}**{{id name="_Toc25745"/}}{{id name="_Toc16425"/}}DEGEAR/Electronic gear/32 bit hand wheel instruction** ==
4
5 **DEGEAR**
6
7 Electronic gear function refers to the function of multiplying the speed of the driving shaft by the set gear ratio and outputting to the driven shaft at this speed to control the mechanical operation.
8
9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)]
10
11 (% style="text-align:center" %)
12 [[image:09_html_da882b8c1ba50fe6.png||height="388" width="700" class="img-thumbnail"]]
13
14 **Content, range and data type**
15
16 (% class="table-bordered" %)
17 |**Parameter**|(% style="width:778px" %)**Content**|(% style="width:269px" %)**Range**|**Data type**|**Data type (label)**
18 |(s1)|(% style="width:778px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:269px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
19 |(s2)|(% style="width:778px" %)Specify the data buffer of the electronic gear command|(% style="width:269px" %) |Form type|LIST
20 |(s3)|(% style="width:778px" %)Response time, that is, how often the gear calculation is performed|(% style="width:269px" %)0~~500|Signed BIN 32 bit|ANY32
21 |(d)|(% style="width:778px" %)Specify pulse output axis|(% style="width:269px" %)Y0~~Y7|Bit|ANY_BOOL
22 |(d)|(% style="width:778px" %)Specify direction output shaft|(% style="width:269px" %)Y/M/S/D.b|Bit|ANY_BOOL
23
24 **Device used**
25
26 (% class="table-bordered" %)
27 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="10" %)**Device**|(((
28 **Offset**
29
30 **modification**
31 )))|(((
32 **Pulse**
33
34 **extension**
35 )))
36 |**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
37 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | |●|●| | | |
38 |Parameter 2| | | | |●|●| | | | | |
39 |Parameter 3| | | | |●|●| | |●|●| |
40 |Parameter 4|●| | | | | | | | | | |
41 |Parameter 5|●|●|●|●| | | | | | | |
42
43 **Features**
44
45 •When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s2), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
46
47 •When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
48
49 •When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
50
51 • Electronic gear data buffer (s2) table:
52
53 (% class="table-bordered" %)
54 |(% colspan="5" %)**Electronic gear instruction parameter description table**
55 |**Offset**|(% style="width:348px" %)**Content**|(% style="width:460px" %)**Instruction**|(% style="width:213px" %)**Range**|**Read and write permission**
56 |0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:460px" %)(((
57 Number of outputs =
58
59 Number of inputs in response time*numerator/denominator
60 )))|(% style="width:213px" %)0 to 32767|(% rowspan="2" %)Read/write
61 |1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:213px" %)1 to 32767
62 |2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:460px" %)Max frequency|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
63 |3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:460px" %)Max frequency|Read/write
64 |4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:460px" %)Hand crank input frequency|(% rowspan="2" style="width:213px" %)-|Read-only
65 |5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:460px" %)Hand crank input frequency|Read-only
66 |6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:460px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
67 |7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word)
68 |8|(% style="width:348px" %)Sign|(% style="width:460px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:213px" %)Reserved|Reserved
69 |9|(% style="width:348px" %)interval|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
70 |10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
71 |11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:460px" %)Confirmation value|(% style="width:213px" %)-|Read-only
72 |12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)1 to 200000|Read/write
73 |13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write
74 |14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:460px" %)(((
75 * 1: Switch to the newly set gear ratio immediately. And set the address back to 0.
76 * 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
77 )))|(% style="width:213px" %)0 to 2|Read/write
78 |15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:460px" %)(((
79 * 0: Use 16-bit gear ratio
80 * 1: Use 32-bit gear ratio
81
82 ✎**Note:     **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.
83 )))|(% style="width:213px" %)0 to 1|Read/write
84 |16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)(((
85 Number of outputs = Spindle input number within response time*numerator/denominator
86 )))|(% rowspan="2" style="width:213px" %)0 to 214748647|(% rowspan="2" %)Read/write
87 |17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
88 |18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)1 to 214748647|(% rowspan="2" %)Read/write
89 |19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
90 |20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:460px" %)Confirmation value|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
91 |21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
92 |22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:213px" %)-|(% rowspan="2" %)Read-only
93 |23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
94
95 **✎Note:**
96
97 • When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
98
99 • The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, The computing interval is unchanged, that is, the 8-axis electronic gear instruction is executed at the same time, and the computing interval is also 100us.
100
101 • The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
102
103 • The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
104
105 **Error code**
106
107 (% class="table-bordered" %)
108 |**Error code**|**Content**
109 |4085H|The read address of (s1), (s2) and (s3) exceeds the device range
110 |4084H|The data exceeds the settable range
111 |4EC0H|Electronic gear ratio setting error
112 |4088H|High-speed pulse instructions use the same output shaft (d1)
113
114 **Example**
115
116 **(1) Realize the 1:1 follow function of Y0 output pulse to Y3 output pulse.**
117
118 1) Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode.
119
120 (% style="text-align:center" %)
121 [[image:09_html_c27f358df2fb693.png||class="img-thumbnail"]]
122
123 2) Ladder
124
125 (% style="text-align:center" %)
126 [[image:09_html_242f6504931e93b5.png||class="img-thumbnail"]]
127
128 Connect the Y3 output of the PLC to the X0 input.
129
130 Turn on M1, start M2, and Y3 for output. At this time, Y0 will follow Y3 1:1 (SD880 = SD1060).
131
132 **(2) Use of 32-bit gear ratio.**
133
134 (% style="text-align:center" %)
135 [[image:09_html_5ccccc63668ba219.png||class="img-thumbnail"]]
136
137 Set the 32-bit gear ratio: 18518517: 12345678, set the 15 address of the data buffer to 1, and enable the 32-bit gear ratio function.
138
139 M1 turns ON to turn on the electronic gear command, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 18518517:12345678.
140
141 **(3) Use of gear ratio switching function**
142
143 (% style="text-align:center" %)
144 [[image:09_html_bb25bf2898683582.png||class="img-thumbnail"]]
145
146 Set the gear ratio to 1:1.
147
148 M1 turns ON to turn on the electronic gear instruction, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 1:1. When M3 is turned on, change the gear ratio to 2:1 and enable the switch gear ratio function. After that, the increment of SD880 and the increment of LC0 are always 2:1.
149
150 == {{id name="_Toc4792"/}}**{{id name="_Toc8689"/}}DECAM/32-bit electronic cam instruction** ==
151
152 **DECAM**
153
154 The electronic cam function uses the preset cam curve to determine the slave axis movement amount according to the spindle movement (phase information) and the cam curve, and output. The cam curve refers to each phase (rotation angle (Degree) and CAM curve refers master axis rotation 1 cycle as the movement benchmark. The displacement of the slave axis can be set by the ECAMTBX instruction.
155
156 -[DECAM (s1) (s2) (s3) (d1) (d2)]
157
158 (% style="text-align:center" %)
159 [[image:09_html_a82d001d381b23bb.png||height="476" width="700" class="img-thumbnail"]]
160
161 **Content, range and data type**
162
163 (% class="table-bordered" %)
164 |**Parameter**|(% style="width:790px" %)**Content**|(% style="width:268px" %)**Range**|**Data type**|**Data type (label)**
165 |(s1)|(% style="width:790px" %)Specify to receive the input pulse of the master axis|(% style="width:268px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
166 |(s2)|(% style="width:790px" %)Specify the data buffer of the electronic cam instruction|(% style="width:268px" %) |Form type|LIST
167 |(s3)|(% style="width:790px" %)The external start signal of the electronic cam needs to be enabled in the data buffer area to be effective.|(% style="width:268px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
168 |(d1)|(% style="width:790px" %)Specify pulse output axis|(% style="width:268px" %)Y0~~Y7|Bit|ANY_BOOL
169 |(d2)|(% style="width:790px" %)Specify direction output shaft|(% style="width:268px" %)Y/M/S/D.b|Bit|ANY_BOOL
170
171 **Device used**
172
173 (% class="table-bordered" %)
174 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|(((
175 **Offset**
176
177 **modification**
178 )))|(((
179 **Pulse**
180
181 **extension**
182 )))
183 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|(% style="width:36px" %)**K**|(% style="width:44px" %)**H**|**[D]**|**XXP**
184 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|(% style="width:36px" %)●|(% style="width:44px" %)●| |
185 |Parameter 2| | | | | |●|●| | |(% style="width:36px" %) |(% style="width:44px" %) | |
186 |Parameter 3|●| |●|●|●| | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
187 |Parameter 4| |●| | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
188 |Parameter 5| | | | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
189
190 **Features**
191
192 When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1), calculates the number of pulses that the slave axis needs to output for this calculation according to the set cam curve, and performs the pulse (d1) and direction (d2) Output. When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
193
194 • When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
195
196 • When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
197
198 • When the master axis (s1) uses the constant K/H, the number of input pulses is the time axis. If it is K1, the number of input pulses will increase by 1 every 100 us.
199
200 • Electronic cam data buffer (s2) table:
201
202 (% class="table-bordered" %)
203 |(% style="width:135px" %)**Offset address**|(% style="width:199px" %)**Name**|**Instruction**|**Initial value**|**Range**
204 |(% style="width:135px" %)0|(% style="width:199px" %)Form version number| |5200|
205 |(% rowspan="3" style="width:135px" %)1|(% rowspan="3" style="width:199px" %)Flag register|(((
206 Bit0-Initialization complete flag
207
208 After the electronic cam permission signal is activated, calculate the related
209
210 Data, automatically set to ON after initialization, users need to clear this flag state by themselves
211 )))|0|—
212 |(((
213 Bit1-Cycle complete flag
214
215 Electronic cam completion flag. When the periodic electronic cam is executed
216
217 After completion, this flag will be automatically set to ON; if you want to restart the periodic electronic cam, the user needs to clear this flag state first.
218 )))|0|—
219 |(((
220 Bit2-Pulse transmission delayed flag bit
221
222 Bit3-Error electronic cam stop running flag bit
223
224 Bit4-Parameter error error, electronic cam stop running flag bit
225
226 Bit5-Table error, electronic cam stop running flag
227
228 Bit6-Periodic electronic cam flag
229
230 Bit7-Aperiodic electronic cam flag
231
232 Bit9-Stop flag for current cycle completion
233
234 Bit10-synchronization zone flag
235
236 Bit11-Time axis flag
237
238 Bit12-New form loading complete flag
239
240 Bit13-Periodic delay electronic cam flag
241
242 Bit14-Delayed start function, delayed waiting flag bit
243 )))|0|
244 \\\\\\—
245 |(% style="width:135px" %)2|(% style="width:199px" %)Error register|(((
246 Operation error condition (check Bit3 of address 1): Display Error code.
247
248 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
249
250 Table error condition (check Bit5 of address 1): display Incorrect table segment number.
251 )))|0|
252 \\—
253 |(% style="width:135px" %)3|(% style="width:199px" %)(((
254 Function register
255
256 (Confirm before using electronic cam)
257 )))|(((
258 Bit0-Delayed start enable Bit1-Start at specified position
259
260 Bit2-Spindle zoom Bit3-zoom from axis
261
262 Bit5-Use external start signal Bit6-Start from current position
263
264 *Bit1 and Bit6 cannot both be 1.
265 )))|0|—
266 |(% style="width:135px" %)4|(% style="width:199px" %)(((
267 Function register
268
269 (can be changed while the electronic cam is running)
270 )))|(((
271 Bit0-Sync signal enable
272
273 Bit1-Stop the electronic cam after the current cycle is completed
274
275 Bit2-Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
276 )))|0|
277
278
279 **✎Note:**
280
281 When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
282
283 The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, the time will increase accordingly. If the 8-axis electronic gear command is executed at the same time, the calculation cycle will become 800us.
284
285 The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
286
287 The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
288
289 **Error code**
290
291 (% class="table-bordered" %)
292 |**Error code**|**Content**
293 |4E80H|E-cam table loading error
294 |4E81H|The currently numbered form has a cam in use
295 |4E82H|E-cam table address error
296 |4E83H|The electronic cam table exceeds the device range
297
298 **Example**
299
300 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
301
302 == {{id name="_Toc17791"/}}**{{id name="_Toc17882"/}}{{id name="OLE_LINK605"/}}ECAMCUT/Electronic cam table switching instruction** ==
303
304 **ECAMCUT**
305
306 This instruction needs to be used in conjunction with the electronic cam instruction (DECAM) to specify the newly defined table address to realize the function of switching the electronic cam table periodically during the operation of the electronic cam.
307
308 -[ECAMCUT (s1) (s2)]
309
310 **Content, range and data type**
311
312 (% class="table-bordered" %)
313 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
314 |(s1)|Specify the table number, currently only supports one table|1 to 2 (LX5VT: 1 to 16)|Signed BIN 16 bit|ANY16
315 |(s2)|Specify the first address of the data buffer area of the electronic cam table|-|Form type|LIST
316
317 **Device used**
318
319 (% class="table-bordered" %)
320 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
321 **Offset modification**
322 )))|(((
323 **Pulse extension**
324 )))
325 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
326 |(% rowspan="2" %)ECAMCUT|Parameter 1|●|●|●|●| |
327 |Parameter 2|●|●| | | |
328
329 **Features**
330
331 Table format definition:
332
333 (% class="table-bordered" %)
334 |**Offset**|**Instruction**
335 |0|Number of table segments
336 |1|Table version
337 |2 to 3|Spindle section 0 (double word)
338 |4 to 5|Section 0 slave axis (double word)
339 |6 to 7|Spindle section 1
340 |8 to 9|Section 1 slave axis
341 |(% colspan="2" %)......
342
343 **Instruction function description**
344
345 (1) In the (s1) parameter, only K1 or K2 can be used to specify the location of the table. The format of the table must be as above.
346
347 K1 means Form 1
348
349 K2 means Form 2
350
351 Form 0 is the original form of the cam (optional)
352
353 (2) When the instruction is running, check the table data in the start address specified by (s2) and verify the correctness of the data. After the operation is successful, the table with the specified table number should point to the starting address of (s2). In the process of command pointing, if the corresponding numbered table is in the current cam operation, an operation error will be reported.
354
355 Before using the table, you need to run this command to configure the address where the table is located. After the table address is specified, it will not be saved after power off.
356
357 (3) Related registers and flags
358
359 •Electronic cam buffer offset 1 (flag bit register)
360
361 bit12 ~-~-- table switching completed flag
362
363 •Electronic cam buffer offset 4 (function register)
364
365 After bit2-cycle is completed, switch to the specified table operation
366
367 •Electronic cam buffer offset 31
368
369 Number of the table to be run in the next cycle (0 ~~ 2)
370
371 •Electronic cam buffer offset 32
372
373 The table number of current cycle operation (0 ~~ 2)
374
375 **✎Note:**
376
377 Table 0 is the self-contained table of the electronic cam, that is, the continuous address starting at offset 38 of the electronic cam data buffer. Therefore, the electronic cam can specify up to 3 tables at the same time, which can be switched freely during operation.
378
379 If the curve generated by the electronic cam table generation command ECAMTBX is used, the data buffer of the ECAMTBX generated table should be offset by 38 addresses and then specified.
380
381 (% style="text-align:center" %)
382 [[image:09_html_214525e2311bb039.png||class="img-thumbnail"]]
383
384 **Error code**
385
386 (% class="table-bordered" %)
387 |**Error code**|**Content**
388 |4E80H|E-cam table loading error
389 |4E81H|The currently numbered form has a cam in use
390 |4084H|Data exceeding 1 to 2 is specified in (s1)
391 |4085H|The (s2) table exceeds the device range
392
393 **Example**
394
395 Realize the mutual switching between electronic cam form 1 and form 2
396
397 (% style="text-align:center" %)
398 [[image:09_html_e4c32bd6a926ac39.png||class="img-thumbnail"]]
399
400 (% style="text-align:center" %)
401 [[image:09_html_808130957dbf9656.png||class="img-thumbnail"]]
402
403 **✎Note:**
404
405 1. According to the above Circuit program, first set M2, configure table 1 data, and use ECAMCUT to designate table 1 as electronic cam operation table 1.
406 1. Set M200 to configure the cam running command DECAM.
407 1. Set M201 to enable electronic cam operation. And automatically prepare table 2 data, and assign table 2 data as electronic cam operation table 2.
408 1. Set the second position of D2004 to 1 to turn on the electronic cam switching table function. At this time, table 1 is run in the current cycle, and table 2 is run in the next cycle.
409 1. Use manual addition (M110) to change the master axis (LC0), and the slave axis pulse number SD880 will also change, and the ratio is the ratio of Table 1 (1:2).
410 1. When LC0 = 100, the program automatically switches to Table 2 to run, LC0 increment: SD880 increment = 2000:120500. And currently running table 2 and next cycle running table 1. When LC0 = 2100, switch back to Table 1 to run.
411
412 == {{id name="_Toc24615"/}}**ECAMTBX/Electronic cam table generation instruction** ==
413
414 **ECAMTBX**
415
416 This instruction is used to generate the table data of the electronic cam.
417
418 -[ECAMTBX (S0) (S1) (D0) (D1)]
419
420 **Content, range and data type**
421
422 (% class="table-bordered" %)
423 |**Parameter**|(% style="width:700px" %)**Content**|(% style="width:138px" %)**Range**|(% style="width:255px" %)**Data type**|**Data type (label)**
424 |(S0)|(% style="width:700px" %)Specify the first address of the electronic cam table parameter|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
425 |(S1)|(% style="width:700px" %)Specify the curve type of the electronic cam|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
426 |(D0)|(% style="width:700px" %)Specify the first address of the data buffer area of the E-cam table|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
427 |(D1)|(% style="width:700px" %)Table generation results|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
428
429 **Device used**
430
431 (% class="table-bordered" %)
432 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
433 **Offset modification**
434 )))|(((
435 **Pulse extension**
436 )))
437 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
438 |(% rowspan="4" %)ECAMTBX|Parameter 1|●|●| | | |
439 |Parameter 2|●|●|●|●| |
440 |Parameter 3|●|●| | | |
441 |Parameter 4|●|●| | | |
442
443 **Features**
444
445 S0~-~-parameter address, allowable Devices: D, R.
446
447 {{id name="OLE_LINK386"/}}Description: Indicate the parameters to be set to generate the curve.
448
449 S1~-~-curve type, allowable Devicess: D, R, H, K.
450
451 Description: Indicates the type of curve to be generated.
452
453 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
454
455 K2: Customize the designated key point to generate a table
456
457 K100: Generate flying shear curve
458
459 K101: Generate chase curve
460
461 D0~-~-The first address of cam parameters, allowable devices: D, R
462
463 Description: The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
464
465 D1-table generation result, allowable Devices: D, R
466
467 D1 <0 generates a table error;
468
469 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
470
471 **Error code**
472
473 ECAMTBX instruction generates curve Error code:
474
475 (% class="table-bordered" %)
476 |**Error code**|**Content**
477 |-1|Condition parameter error
478 |-2|The spindle pulse number is too few, not enough for synchronization area
479 |-3|Unknown cam curve type
480 |-4|Resolution range error
481 |-5|Too many pulses of the slave axis calculated
482 |-6|The calculated number of pulses from the slave axis is too small
483 |-7|The calculated number of spindle pulses exceeds the set length
484 |-8|The pulse number of the slave axis is set to 0
485 |-10|S type acceleration and deceleration curve calculation error
486 |-11|Unknown curve type
487 |-12|Curve left wrong
488 |-13|The number of slave axes exceeds the range
489
490 Key point generating curve Error code:
491
492 (% class="table-bordered" %)
493 |**Error code**|**Content**
494 |-21|The number of key points is out of range
495 |-22|Total resolution exceeds range
496 |-23|Incorrect relationship between spindle size
497 |-24|The resolution setting of each segment is incorrect
498 |-25|When calculating, the number of control points is insufficient
499 |-26|Unknown acceleration curve type
500 |-27|Spindle pulse number is negative
501
502 S-type acceleration and deceleration generated curve Error code:
503
504 (% class="table-bordered" %)
505 |**Error code**|**Content**
506 |-31|The number of pulses exceeds the range
507 |-32|Maximum frequency out of range
508 |-33|Acceleration and deceleration time out of range
509 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
510
511 **✎Note:**
512
513 After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
514
515 **Example**
516
517 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
518
519 = {{id name="_Toc30498"/}}**Instruction manual of Electronic CAM (ECAM )** =
520
521 == {{id name="_Toc4483"/}}**{{id name="_Toc15753"/}}{{id name="_Toc16335"/}}{{id name="一、电子凸轮原理"/}}{{id name="_Toc18423"/}}{{id name="_Toc19697"/}}{{id name="_电子凸轮说明手册"/}}{{id name="电子凸轮功能使用指南V2.0版"/}}Principle of ECAM** ==
522
523 The traditional mechanical cam is composed of cam, follower and frame. A mechanical cam is an irregular part, generally an input part with a constant speed, which can transmit motion to a follower through direct contact, so that the action moves according to a set law. The follower is a passive part driven by a mechanical cam, and is generally an output part that produces unequal speed, discontinuous, and irregular motion.
524
525 ECAM is a software system that uses the constructed concave wheel curve to simulate mechanical cam to achieve the same relative motion between the camshaft and the main shaft of the mechanical cam system.
526
527 Compared with mechanical cams, ECAM makes the design of mechanical and electrical parts more and more simple. ECAM allows the equipment to be flexibly used in different templates and plate styles, and also allows the operation process and cycle of the equipment to be modified, either during the design phase of the equipment or after the equipment is formed. It reduces the complexity of the equipment, makes the equipment run more smoothly and doubles the production efficiency.
528
529 == {{id name="_Toc10338"/}}**{{id name="_Toc21791"/}}{{id name="_Toc18361"/}}{{id name="_Toc4935"/}}Description of ECAM function** ==
530
531 **A.Establish ECAM data**
532
533 {{id name="二、电子凸轮功能描述"/}}{{id name="1、建立电子凸轮数据"/}}LX5V provides 3 ways to establish ECAM data:
534
535 ① Write table data to the table data area by DMOV instruction.
536
537 ② Generate ECAM data automatically by ECAMTBX instruction.
538
539 ③ Draw ECAM data with PLC Editor software.
540
541 **{{id name="2、主轴脉冲选择"/}}B.Spindle pulse selection**
542
543 The selectable spindles of LX5V series PLC are HSC, LC type and virtual time axis K.
544
545 Among them, external high-speed input uses high-speed counter, which supports single-phase single-count input\single-phase double-count input and biphase double-count input. As for the assignment of counters, refer to the instructions for high-speed counters in the PLC help.
546
547 When using HSC register (high-speed counter), the pulse of spindle is obtained internally. Modifying the value of the counter does not affect the cam to judge the actual pulse input quantity.
548
549 When using the normal counter LC, the pulse of spindle is obtained from devices. Modifying the value of the register will affect the judgment of the pulse of spindle .
550
551 When using the K type register, it means to use the internal virtual time axis, and the minimum unit is 100us, K1=100us, K10=1ms.
552
553 **{{id name="3、启用电子凸轮配置"/}}C.Enable ECAM configuration**
554
555 Use the DECAM instruction to configure the ECAM function of PLC.
556
557 (% class="table-bordered" %)
558 |**Name**|**Function**|**Bits**|**Whether pulse type**|**Instruction format**|**Step number**
559 |DECAM|ECAM configuration|32|No|DECAM s1 s2 s3 d1 d2|10
560
561 Ladder :
562
563 (% style="text-align:center" %)
564 [[image:09_html_763f6b25c0dc7c9b.png||class="img-thumbnail"]]
565
566 **(1) Parameters**
567
568 (% class="table-bordered" %)
569 |**Parameter**|(% style="width:527px" %)**Content**|(% style="width:226px" %)**Range**|(% style="width:143px" %)**Data type**|**Data type (label)**
570 |(s1)|(% style="width:527px" %)Specify to receive the input pulse of the master axis|(% style="width:226px" %)(((
571 -2147483648 to +2147483647
572 )))|(% style="width:143px" %)Signed BIN 32 bit|ANY32
573 |(s2)|(% style="width:527px" %)Specify the data buffer area of the ECAM instruction|(% style="width:226px" %) |(% style="width:143px" %)Form|LIST
574 |(s3)|(% style="width:527px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:226px" %)X/M/S/D.b|(% style="width:143px" %)Signed BIN 32 bit|ANY32
575 |(d1)|(% style="width:527px" %)Specify pulse output axis|(% style="width:226px" %)Y0 to Y7|(% style="width:143px" %)Bit|ANY_BOOL
576 |(d2)|(% style="width:527px" %)Specify direction output axis|(% style="width:226px" %)Y/M/S/D.b|(% style="width:143px" %)Bit|ANY_BOOL
577
578 **{{id name="_Toc9293"/}}Device used:**
579
580 (% class="table-bordered" %)
581 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="11" %)**Device**|(((
582 **Offset**
583
584 **modification**
585 )))|(((
586 **Pulse**
587
588 **extension**
589 )))
590 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
591 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|●|●| |
592 |Parameter 2| | | | | | | | | | | | |
593 |Parameter 3|●| |●|●|●|●|●| | | | | |
594 |Parameter 4| |●| | | | | | | | | | |
595 |Parameter 5| |●|●| |●| | | | | | | |
596
597 **(2) Function description**
598
599 When the contact M0 is turned on, the PLC activates ECAM function, but the ECAM function is not yet running at this time, it just initializes the parameters of the cam. It includes that D1000 to D1005, D1031, D1032 will be cleared and check whether the cam table is correct. After initialization, these registers still need to be set for control.
600
601 This instruction configures the relevant registers and required data for cam operation, and enables the function of ECAM, but the cam does not actually run. To actually enable the ECAM function, the relevant device in the cache address of the instruction (such as D1000 in the instruction) is also needed to control the start and stop of the cam.
602
603 If the instruction is disconnected, the cam stops working.
604
605 Refer to the description of "9.2.2.5 ECAM function register" for the definition of cam parameter devices.
606
607 **(3) Instruction error description**
608
609 When the instruction is running, PLC will check the relevant cam parameters in the cache address and prompt the corresponding error. You can find the error according to the prompt [PLC Error code information]:
610
611 (% class="table-bordered" %)
612 |**Error code**|**Content**
613 |4084H|The parameter set in the instruction exceeds the limit
614 |4085H|The device used in the instruction exceeds the maximum device number
615 |4088H|Multiple application instructions use the same output axis for pulse output
616 |4E80H|ECAM table loading error
617 |4E81H|The currently numbered form has a cam in use
618 |4E82H|ECAM table address error
619 |4E83H|The electronic cam table exceeds the device range
620
621 When an error occurs, the ECAM function is not enabled at this time.
622
623 **(4) Devices involved in instruction execution**
624
625 (% class="table-bordered" %)
626 |**Devices**|**Content**
627 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
628 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
629 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
630 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
631 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
632 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
633 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
634 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
635
636 (% class="table-bordered" %)
637 |**Devices**|**Content**|**Devices**|**Content**
638 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
639 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
640 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
641 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
642 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
643 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
644 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
645 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
646
647 **{{id name="4、电子凸轮启动/停止"/}}D.ECAM start/stop**
648
649 **{{id name="4.1周期式电子凸轮启动/停止"/}}(1) Periodic ECAM start/stop**
650
651 Periodic ECAM means that while the main axis is continuously advancing, the cam axis will realize the corresponding position according to the "ECAM curve table (table)", but the table only defines one period of data, so the positional relationship of master/slave axis in this mode is the continuous repetitive extension of the table.
652
653 (% style="text-align:center" %)
654 [[image:09_html_b2aea2b9660ae563.gif||class="img-thumbnail"]]
655
656 {{id name="_Toc9"/}}1) {{id name="(1)周期式电子凸轮启动"/}}Periodic ECAM start
657
658 Periodic ECAM start sequence is as below.
659
660 ✎At time T1, address 5=1, start periodic electronic cam.
661
662 ✎After the time T2 has elapsed, the PLC takes the initiative to set address 1-bit0 (ECAM initialization complete flag).
663
664 ✎During time T3, ECAM initialization is completed and the periodic action is started. The slave axis follows the movement of the spindle according to the position relationship in the table, and the synchronization signal terminal is output according to the synchronization point range.
665
666 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.
667
668 (% style="text-align:center" %)
669 [[image:image-20220926115030-2.jpeg||class="img-thumbnail"]]
670
671 {{id name="_Toc18782"/}}2) Periodic ECAM stop
672
673 The periodic ECAM stop sequence is as below.
674
675 ✎When ECAM starts register (address 5) = 0, the ECAM stops operating immediately.
676
677 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again.
678
679 [[image:image-20220926115519-3.jpeg]]
680
681 {{id name="_Toc31992"/}}3) Example description
682
683 The following figure shows the ECAM data, where the spindle length is 50000, the output unit is the number of pulses, and the synchronization range is 20000 to 30000. When running into the synchronization zone, the synchronization terminal output can be used as a control signal. To create ECAM data, please refer to the ECAM data. Hardware circuit Y1 outputs pulse to connect to X0, and it means that the spindle input terminal receives the output pulse of Y1.
684
685 (% style="text-align:center" %)
686 [[image:09_html_b46d1fff9093d80c.gif||class="img-thumbnail"]]
687
688 This example is to use the software PLC Editor2 to set the table.
689
690 **Instructions**
691
692 ① When executing the program, the special register is set first. The set parameters are as follows:
693
694 A. Double word is composed of SD881 and SD880, the current position of Y0 is cleared to 0,
695
696 B. Start the high-speed counter HSC0 and configure it as a single-phase input to receive the high-speed pulse input of X0 (in this case, the pulse of X0 comes from the output pulse of Y1).
697
698 ② SET M0 to start the ECAM, Y axis starts to perform variable speed movement. The main axis receives variable speed input pulse of Y axis, the slave axis outputs pulse according to the ECAM curve, and when the main axis position is 20000-30000 in each cycle, Y7 is ON state.
699
700 **✎Note: **Special registers must be set before the ECAM is started. Set the upper and lower limits of the synchronization position of the ECAM D2009 = 20000, D2011 = 30000; and set the number of the synchronization terminal Y D2008, and the synchronization output enable D2004-BIT0, an ECAM cycle is 50000 pulses and when the spindle position is 20000-30000 pulses (monitored by D2025 and D2026), the synchronization terminal is ON.
701
702 ③ RST M0, the cam stops running.
703
704 PLC program
705
706 (% style="text-align:center" %)
707 [[image:09_html_90fe8b1de142b4f3.png||height="942" width="600" class="img-thumbnail"]]
708
709 **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop**
710
711 Aperiodic ECAM refers to the timing when the camshaft starts to realize the corresponding position according to the table while the main shaft is continuously advancing after the cam start signal is input. Different from the periodic ECAM, The position relationship of the master/slave axis in this mode actually only runs for one cycle, that is, the table only moves once.
712
713 (% style="text-align:center" %)
714 [[image:09_html_86b1dc09cd872158.gif||class="img-thumbnail"]]
715
716 1) Aperiodic ECAM start
717
718 The aperiodic ECAM stop sequence is as below.
719
720 1. At time T1, address 5=2, and aperiodic ECAM is started.
721 1. After the calculation of the time T2, the PLC actively sets the address 1-bit0=ON (the initialization of aperiodic ECAM is completed). At this time, the slave axis will not follow the movement of the master axis.
722 1. At time T3, the ECAM start signal is turned ON (when the external start signal is used), the slave axis will follow the spindle movement for one cycle according to the position relationship in the table.
723 1. After the cycle is completed at the position of time T4, the PLC will actively clear the state of address 1-bit0=ON, and the user can also judge whether the cycle is completed according to the state of address 1-bit1 to .
724 1. During the time T5, the user can choose whether to set the address 1-bit0=ON again through the program , for the purpose of completing the judgment next time.
725 1. Time T6/T7 position is to repeat the action of T3 to T4 again. **✎Note: **The interval between the rising edges of the cam start signal must be more than 0.5ms.
726 1. Sync signal terminal output.
727
728 (% style="text-align:center" %)
729 [[image:09_html_8efdb40d8fd3ece6.gif||height="357" width="900" class="img-thumbnail"]]
730
731 2) Aperiodic electronic cam stop
732
733 1. When starting the ECAM register address 5=0, the ECAM slave axis stops operating immediately, as shown in the figure below.
734
735 [[image:09_html_7d9a964fd1036d74.gif]]
736
737 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.
738
739 (% style="text-align:center" %)
740 [[image:09_html_93e0a854c1e8db80.gif||height="333" width="800" class="img-thumbnail"]]
741
742 3) Example explanation
743
744 The following figure shows the ECAM running table (the spindle length is 0 to 100000 for a cycle), and its output is the number of pulses. When the external signal X2 is triggered by the rising edge, execute two consecutive tables (D1014=2), and wait for the X2 rising edge Trigger again, and execute two consecutive tables again, and so on.
745
746 (% style="text-align:center" %)
747 [[image:09_html_690e150bae16339c.gif||class="img-thumbnail"]]
748
749 This example uses the software PLC EDITOR to ECam0. Please refer to 9.2.2.5 for the detailed steps of creating an ECAM curve. The Y1 axis of the hardware circuit outputs pulse and connects to the X0 axis input terminal, indicating that input terminal position of master axis is to receive the pulse output of Y1 axis as input.
750
751 **{{id name="_Toc973"/}}Operation steps**
752
753 ① When the program is executed, set special registers first, and the set parameters are as follows:
754
755 A. The contents of SD880, SD881 and SD940, SD941 are cleared to 0
756
757 B. Set D1014=2 (repeat the form twice)
758
759 ② Set M0: Configure and start the cam. When M0 is the rising edge, set D1003-Bit5 to use an external start signal; when D1005=2, Y1 outputs pulses, and Y0 axis has not output yet at this time.
760
761 ③ The external signal X2 is triggered, and Y0 axis is output with the ECAM curve; the output stops after 2 cycles.
762
763 ④ RST M0: Close the ECAM mode; if runs RST M0 when the ECAM is running, Y0 axis will stop output immediately.
764
765 [PLC program]
766
767 (% style="text-align:center" %)
768 [[image:image-20220926114246-1.jpeg]]
769
770 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register**
771
772 (% class="table-bordered" %)
773 |**Offset address**|**Name**|(% style="width:944px" %)**Instruction**|(% style="width:126px" %)(((
774 **Initial value**
775 )))|(% style="width:154px" %)**Range**
776 |0|Form version number|(% style="width:944px" %) |(% style="width:126px" %)0|(% style="width:154px" %)
777 |(% rowspan="3" %)1|(% rowspan="3" %)Flag register|(% style="width:944px" %)(((
778 Bit0: Initialization complete flag
779
780 After the ECAM permission signal is activated, calculate the related data, and automatically set to ON after initialization. Users need to clear the state of this flag by themselves.
781 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
782 |(% style="width:944px" %)(((
783 Bit1: Cycle completion flag
784
785 ECAM completion flag. When the periodic ECAM is executed, this flag will be automatically set to ON; if you want to restart the periodic ECAM, clear the state of this flag first.
786 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
787 |(% style="width:944px" %)(((
788 Bit2: Pulse sending delayed flag
789
790 Bit3: ECAM error stop running flag
791
792 Bit4: Parameter error, ECAM stop running flag
793
794 Bit5: Table error, electronic cam stop running flag
795
796 Bit6: Periodic ECAM flag
797
798 Bit7: Aperiodic ECAM flag
799
800 Bit9: Current cycle completion stop flag
801
802 Bit10: synchronization zone flag
803
804 Bit11: Time axis flag
805
806 Bit12: New form load completion flag
807
808 Bit13: Periodic delay ECAM flag
809
810 Bit14: Delayed start function, delayed waiting flag bit
811 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
812 |2|Register error|(% style="width:944px" %)(((
813 Operation error condition (check Bit3 of address 1): Display Error code.
814
815 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
816
817 Table error condition (check Bit5 of address 1): display error
818
819 Incorrect table segment number.
820
821 **✎Note:** Bit3 of address 1 must be set with Bit4 and Bit5
822 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
823 |3|(((
824 Function register
825
826 (Confirm before using electronic cam)
827 )))|(% style="width:944px" %)(((
828 Bit0: Delayed start enable Bit1: Start at specified position Bit2: Spindle zoom
829
830 Bit3: zoom from axis
831
832 Bit5: Use external start signal
833
834 Bit6: Start from current position
835 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
836 |4|(((
837 Function register
838
839 (Can be changed while the ECAM is running)
840 )))|(% style="width:944px" %)(((
841 Bit0: Sync signal enable
842
843 Bit1: Stop the electronic cam after the current cycle is completed
844
845 Bit2: Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
846 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
847 |5|ECAM start register|(% style="width:944px" %)(((
848 0: Stop the electronic cam immediately
849
850 1: Periodic electronic cam (start)
851
852 2: Aperiodic electronic cam (start)
853
854 3: Stop after the cycle is completed, this register automatically becomes 3
855
856 4: Periodic delay electronic cam (start)
857
858 Other: reserved, not available
859 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
860 |6|Maximum output frequency setting of ECAM|(% rowspan="2" style="width:944px" %)(((
861 Maximum output frequency setting of electronic cam;
862
863 When the frequency is less than 0 or greater than 200K, it is 200K
864 )))|(% style="width:126px" %)200000|(% style="width:154px" %)0 to 200000
865 |7|The highest ECAM output frequency setting|(% style="width:126px" %) |(% style="width:154px" %)
866 |8|Sync signal Y terminal number|(% style="width:944px" %)(((
867 Output terminal number:
868
869 Set the Y number of the synchronization output terminal, the range is 0 to 1777 (octal), when the synchronization output function is enabled, when in the synchronization area, the corresponding Y terminal outputs the synchronization signal. This function needs to set the upper and lower limits of the synchronization position first .
870 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 1777
871 |9|(((
872 CAM synchronization position lower limit
873
874 (Low word)
875 )))|(% rowspan="4" style="width:944px" %)(((
876 The synchronization position upper/lower limit setting of the electronic cam,
877
878 When the synchronization position lower limit ≤ spindle position ≤ position upper limit
879
880 And the synchronization signal terminal Y output is ON when the synchronization signal is enabled (address 4, BIT0).
881
882 When the lower limit> the upper limit, the upper and lower limit values will be exchanged.
883 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
884 |10|(((
885 CAM synchronization position lower limit
886
887 (High word)
888 )))
889 |11|(((
890 CAM synchronization position upper limit
891
892 (Low word)
893 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
894 |12|(((
895 CAM synchronization position upper limit
896
897 (High word)
898 )))
899 |13|Electronic cam pulse remainder distribution setting (reserved)|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
900 |14|Aperiodic ECAM execution times|(% style="width:944px" %)(((
901 Periodic electronic cam: reserved;
902
903 Aperiodic electronic cam: control table execution times; when the value is H0001, the electronic cam will stop after executing once;
904
905 When the value is HFFFF, it will become a periodic electronic cam execution.
906 )))|(% style="width:126px" %)11|(% style="width:154px" %)1 to 65535
907 |15|ECAM start delay pulse setting (low word)|(% rowspan="2" style="width:944px" %)(((
908 Periodic electronic cam: reserved
909
910 Aperiodic electronic cams and periodic delay electronic cams: the delayed start function can be enabled through (Address 3, Bit0-delayed start enable). When the aperiodic electronic cam is executed, a cam start signal is received. If the electronic cam table is not executed immediately, but the spindle rotates for a few pulses, the table is run. At this time, this register sets the number of delayed pulses.
911 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
912 |16|ECAM start delay pulse setting (high word)
913 |17|(((
914 Spindle specified position start
915
916 (Low word)
917 )))|(% rowspan="2" style="width:944px" %)(((
918 Periodic electronic cam: reserved
919
920 Aperiodic electronic cam:
921
922 It can be enabled by (address 3, Bit1-specified location start enable),
923
924 To enable the function of the specified location. The starting position is set by this address. The setting value must be within the table period.
925 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)(((
926 32-bit unsigned integer
927
928 number
929 )))
930 |18|(((
931 Spindle specified position start
932
933 (high word)
934 )))
935 |19|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
936 Output shaft: current position of slave shaft (after conversion)
937
938 The position of the slave axis during the current cam execution, after scaling
939 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
940 |20|Current position of slave axis (high word)
941 |21|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
942 Output shaft: current position of slave shaft (before conversion)
943
944 The position of the slave axis during the current cam execution, before scaling
945 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
946 |22|Current position of slave axis (high word)
947 |23|Denominator of slave axis magnification|(% rowspan="2" style="width:944px" %)Zoom from axis|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
948 |24|Slave magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
949 |25|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
950 Input axis: the current position of the spindle (after conversion)
951
952 The position of the main axis during the current cam execution, after scaling
953 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
954 |26|Spindle current position (high word)
955 |27|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
956 Input axis: the current position of the spindle (before conversion)
957
958 The position of the main axis during the current cam execution, before scaling
959 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
960 |28|Spindle current position (high word)
961 |29|Denominator of spindle magnification|(% rowspan="2" style="width:944px" %)Spindle zoom|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
962 |30|Spindle magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
963 |31|Specify the table to be run in the next cycle|(% style="width:944px" %)(((
964 Switch to use in the table function after the cycle is completed. 0: Use the default table
965
966 1: Use the data in Table 1 (ECAMCUT specifies the address)
967
968 2: Use the data in Table 2 (ECAMCUT specifies the address)
969 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
970 |32|Table running in current cycle|(% style="width:944px" %)(((
971 Switch to use in the table function after the cycle is completed. Indicates the current week
972
973 Periodically run form.
974 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
975 |33|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
976 |34|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
977 |35|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
978 |36|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
979 |37|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
980 |38|Number of segments in the table|(% style="width:944px" %)Total data segment of cam table data|(% style="width:126px" %)0|(% style="width:154px" %)0 to 512
981 |39|Start offset of the table|(% style="width:944px" %)Specify the offset address of the cam table, fixed to 40|(% style="width:126px" %)40|(% style="width:154px" %)40
982 |40|(((
983 Spindle segment 0
984
985 (low word)
986 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
987 |41|(((
988 Spindle segment 0
989
990 (high word)
991 )))
992 |42|(((
993 Section 0 slave axis
994
995 (low word)
996 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
997 |43|(((
998 Section 0 slave axis
999
1000 (high word)
1001 )))
1002 |44|(((
1003 Spindle section 1
1004
1005 (low word)
1006 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1007 |45|(((
1008 Spindle section 1
1009
1010 (high word)
1011 )))
1012 |46|(((
1013 Section 1 slave axis
1014
1015 (low word)
1016 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1017 |47|(((
1018 Section 1 slave axis
1019
1020 (high word)
1021 )))
1022 |40+ N*4|(((
1023 Nth spindle
1024
1025 (low word)
1026 )))|(% rowspan="2" style="width:944px" %)Nth segment spindle position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1027 |40+ N*4+1|(((
1028 Nth spindle
1029
1030 (high word)
1031 )))
1032 |40+ N*4+2|Nth segment slave axis(low word)|(% rowspan="2" style="width:944px" %)Nth segment slave axis position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1033 |40+ N*4+3|Nth segment slave axis(high word)
1034
1035 **{{id name="5.1凸轮寄存器相关说明"/}}Description of cam register**
1036
1037 **(1) Address 2 - Error register:**
1038
1039 Operation error (check Bit3 of address 1) error code description:
1040
1041 (% class="table-bordered" %)
1042 |**Error code**|**Content**
1043 |-1|Form number is out of range
1044 |-2|The table is not initialized properly
1045 |-3|The number of table segments is too short
1046 |1|Spindle input error, pulse change is too large, 100us exceeds 200
1047 |3|Too many slave axes calculated
1048 |5|The spindle has too many unprocessed pulses in the current cycle
1049 |8|Calculate the number of pulses that the slave axis currently needs to output is too much
1050 |9|The cam master is 2 cycles ahead of the slave
1051 |Parameter error (check Bit4 of address 1)|Display the offset address of the error parameter register.
1052 |Form error (check Bit5 of address 1)|The wrong table segment number is displayed.
1053
1054 **(2) Address 3—function register before ECAM is enabled**
1055
1056 Start the corresponding function register of the cam. When the corresponding setting is 1, the corresponding function of the cam is enabled.
1057
1058 BIT6: start from current position
1059
1060 You can set the starting point of the master and slave when the cam starts.
1061
1062 When this function is enabled, the initial position of the spindle is obtained from [Address 27, 28 — current position of the spindle (before conversion)];
1063
1064 The initial position of the slave axis is obtained from [Address 19, 20 — current position of the slave axis (after conversion)].
1065
1066 **(3) Address 4—function register in ECAM operation**
1067
1068 Bit0-Sync signal enable
1069
1070 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position ≤ the spindle position ≤ the upper limit of the synchronous position, the synchronous terminal outputs.
1071
1072 Bit1-Stop when the current cycle is completed
1073
1074 When address 4-BIT1 = 1, the cam will stop immediately after the execution of the current table is completed. After stopping, address 5 will automatically change to 3, reset to 1, and the periodic electronic cam can be started again. The same applies to non-periodic electronic cams.
1075
1076 **(4) Address 5—electronic cam start register**
1077
1078 Periodic electronic cam start: when address 5=1, start periodic electronic cam: when address 5=0, stop electronic cam.
1079
1080 Periodic delay electronic cam start: when address 5=2, start the first period delay pulse set by address 15, 16 and execute according to periodic electronic cam; address 5=0, stop electronic cam.
1081
1082 When switching between periodic electronic cam and non-periodic electronic cam, the data switching between address 5=1→address 5=0→address 5=2 requires an interval of more than 100us.
1083
1084 **(5) Address 8—synchronization signal Y terminal number**
1085
1086 This register is used to set the terminal number of the synchronization signal output.
1087
1088 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position≦the spindle position≦the upper limit of the synchronous position, the synchronous terminal outputs.
1089
1090 **(6) Address 9-12—synchronization position upper and lower limit**
1091
1092 (% class="table-bordered" %)
1093 |**Address**|**Features**|**Range**
1094 |Address 9|CAM synchronization position lower limit (LOW WORD)|(% rowspan="2" %)0 to 2147483647
1095 |Address 10|CAM synchronization position lower limit (HIGH WORD)
1096 |Address 11|CAM synchronization LOW WORD)|(% rowspan="2" %)0 to 2147483647
1097 |Address 12|CAM synchronization position upper limit (HIGH WORD)
1098
1099 The synchronization position upper/lower limit of the electronic cam is set. When the synchronization position lower limit ≤ spindle position ≤ position upper limit and the synchronization signal is enabled (address 4, BIT0), the synchronization signal terminal Y is output.
1100
1101 (% style="text-align:center" %)
1102 [[image:09_html_696eef9be2fe781b.gif||class="img-thumbnail"]]
1103
1104 **(7) Address 14—Aperiodic electronic cam execution times setting**
1105
1106 (% class="table-bordered" %)
1107 |**Address**|**Features**|**Range**
1108 |Address 14|(((
1109 Periodic electronic cam-reserved
1110
1111 Non-periodic electronic cam-control the number of times the electronic cam is executed
1112 )))|1 to 65535
1113
1114 When the non-periodic electronic cam mode is selected, the address 14 controls the execution times of the electronic cam. The current address is set to the number of times the cam repeats the table. When the value is HFFFF, it will become periodic cam execution. When the value is 0, the current address will automatically become 1 if it exceeds the range.
1115
1116 **Number of repetitions=0**
1117
1118 (% style="text-align:center" %)
1119 [[image:09_html_cd76208bae686662.gif||class="img-thumbnail"]]
1120
1121 **Number of repetitions=1**
1122
1123 (% style="text-align:center" %)
1124 [[image:09_html_32911c7488cda346.gif||class="img-thumbnail"]]
1125
1126 **(8) Address 15-16—Electronic cam start delay pulse setting**
1127
1128 (% class="table-bordered" %)
1129 |(% style="width:129px" %)**Address**|(% style="width:809px" %)**Features**|**Range**
1130 |(% style="width:129px" %)Address 15|(% rowspan="2" style="width:809px" %)Aperiodic electronic cams or periodic delay electronic cams. The electronic cam table will be executed immediately after the spindle rotates the set number of pulses|(% rowspan="2" %)32-bit unsigned integer
1131 |(% style="width:129px" %)Address 16
1132
1133 When executing aperiodic electronic cams or periodic delayed electronic cams, if address 3 (Bit0-delayed start enable) is set, the delayed start function is enabled. The slave axis receives a cam start signal. If the electronic cam table is not executed immediately, the table is run after delaying the spindle rotation for several pulses. At this time, the number of delayed pulses must be set for address 16.
1134
1135 As shown in the figure below: When the system receives a cam start signal, the electronic cam table will be executed immediately after the spindle rotates the set number of pulses.
1136
1137 **Delayed start pulse=10**
1138
1139 (% style="text-align:center" %)
1140 [[image:09_html_6e842f28225b1875.gif||class="img-thumbnail"]]
1141
1142 **Delayed start pulse=50**
1143
1144 (% style="text-align:center" %)
1145 [[image:09_html_d581ddc508fba3fa.gif||class="img-thumbnail"]]
1146
1147 **(9) Address 17-18—start at the specified position of the spindle**
1148
1149 (% class="table-bordered" %)
1150 |(% style="width:110px" %)**Address**|(% style="width:827px" %)**Features**|**Range**
1151 |(% style="width:110px" %)Address 17|(% rowspan="2" style="width:827px" %)The non-periodic electronic cam can be started at the specified position by address 3 (Bit1-specified position start enable). The starting location is set by this address|(% rowspan="2" %)32-bit unsigned integer
1152 |(% style="width:110px" %)Address 18
1153
1154 (% style="text-align:center" %)
1155 [[image:09_html_ac82ab14a3800b51.gif||class="img-thumbnail"]]
1156
1157 **{{id name="6、电子凸轮电子表格数据建立"/}}9.2.2.6 E-cam spreadsheet data creation**
1158
1159 **{{id name="6.1_单笔表格数据变更设定"/}}(1) Single table data change setting**
1160
1161 Each electronic cam table can create 512 points of data, which are set using offset address 40-address [40+n*4+4] respectively. Every 4 points of data is a group of ECAM data, which is composed of master axis position and slave axis position.
1162
1163 Use DMOV instruction to manipulate table data:
1164
1165 (% style="text-align:center" %)
1166 [[image:09_html_66dcb0a2e81acec5.jpg||class="img-thumbnail"]]
1167
1168 (((
1169 Set the total data segment of the spreadsheet data to 3
1170
1171 The spindle position of segment 0 is 0
1172
1173 The position of the 0th segment slave axis is 0
1174
1175 The spindle position of the first segment is 100
1176
1177 The first segment slave axis position is 100
1178
1179 The second stage spindle position is 200
1180
1181 The second segment slave axis position is 0
1182
1183 Configure electronic cam
1184
1185
1186 )))
1187
1188 **{{id name="6.2_使用PLC_Editor生成表格数据"/}}(2) Use PLC Editor to generate table data**
1189
1190 Define the relationship between master axis and slave axis, which is called electronic cam table data. In the data input, the electronic cam table has two ways to express:
1191
1192 Method 1: The functional relationship between the adopter
1193
1194 Method 2: Use the point-to-point relationship of X and Y to obtain the electronic cam table in two ways:
1195
1196 Approach 1: According to the standard function relationship of the master and slave axis
1197
1198 Approach 2: According to the corresponding relationship between points measured in actual work.
1199
1200 The cam table can define multiple CAM curves. After the relationship is determined, the position of the slave axis can be obtained according to the position of the master axis.
1201
1202 For example, the cam table for sinusoidal signals:
1203
1204 (% style="text-align:center" %)
1205 [[image:09_html_642ffea375343f61.png||class="img-thumbnail"]]
1206
1207 The electronic cam table is called electronic cam table in PLC Editor. Select [electronic cam table] in [Project Properties]-[Protection Function], right click to add and delete the table.
1208
1209 (% style="text-align:center" %)
1210 [[image:09_html_8d0f9043566eacf4.png||class="img-thumbnail"]]
1211
1212 The chart is mainly divided into 4 parts, namely the relative position of the master/slave axis, the relative speed of the master/slave axis, the relative acceleration of the master/slave axis, and the bottom data setting. The first three parts are used to display the CAM data set by the user. The horizontal axis is the main axis, and the vertical axis is the position of the slave axis, the speed ratio of the slave axis to the master axis, and the acceleration ratio of the slave axis to the master axis. The data setting area is introduced as follows:
1213
1214 1. Displacement resolution: Provide users to set the total number of data points occupied by the table, and the setting range is from 10 to 512, one point occupies 4 WORD Devicess.
1215 1. Data setting: Describe the displacement change of the master/slave axis by function.
1216 1. Import: describe the displacement change of the master/slave axis through a point-to-point method.
1217 1. Export: Export and archive the change relationship of the master/slave axis in a point-to-point manner.
1218
1219 {{id name="6.2.1_以函数方式描述主从轴的位置变化"/}}1) Functionally describe the position changes of the master and slave axes
1220
1221 Select [Data Setting] in the data setting area and the "Data Setting Window" will appear, which allows the user to describe the curve of the entire cam in a function, rather than a point-to-point description. At present, Wecon PLC provides 3 cam curve modes for users to choose, namely: Const Speed (constant speed), Const Acc (uniform acceleration), BSpline (cycloid).
1222
1223 (% style="text-align:center" %)
1224 [[image:09_html_1c2bc8b46503f556.png||class="img-thumbnail"]]
1225
1226 [Data Setting] The window is composed of sections, each section provides the user to set a section of cam curve, and then the entire section composes the cam curve. Each section is composed of master axis, slave axis, CAM curve and resolution, as explained below:
1227
1228 Main shaft: the displacement of the main shaft, the displacement of the main shaft must be greater than a value of 0, and increase;
1229
1230 Slave axis: the displacement of the slave axis, which is positive or negative;
1231
1232 CAM curve: the function used in the current section;
1233
1234 Resolution: The number of points used in the current section. The entire table can be set in the range 10-512. 1 point occupies 4 WORDs. If not set, the remaining points will be divided equally. The resolution is set according to the requirements of the device. The higher the resolution, the smoother the device runs, but the larger the device.
1235
1236 {{id name="6.2.2_以点对点方式描述主从轴的位置变化"/}}2) Describe the position changes of the master and slave axes in a point-to-point manner
1237
1238 Directly add data to the electronic cam table in a point-to-point mode. A cam table can input up to 512 points of data.
1239
1240 [Export]Export the current table data in a point-to-point manner and store it in the specified file.
1241
1242 [Import] Import the current table data in a point-to-point manner.
1243
1244 **{{id name="6.3_使用ECAM_TBX生成表格"/}}(3) Use ECAM TBX to generate tables**
1245
1246 (% class="table-bordered" %)
1247 |**Name**|**Features**|**Bits (bits)**|**Whether pulse type**|**Instruction format**|**Step count**
1248 |ECAMTBX|Generate spreadsheet data|16|No|ECAMTBXS0 S1 D0 D1|9
1249
1250 S0~-~-parameter address, allowable device: D, R.
1251
1252 For the setting parameters when generating the curve, please refer to the description in [Appendix]-[Parameter List]
1253
1254 S1~-~-curve type, allowable Devicess: D, R, H, K.
1255
1256 Indicates the type of curve to be generated.
1257
1258 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
1259
1260 K2: Customize the specified key point to generate a table
1261
1262 K100: Generate rotary saw curve
1263
1264 K101: Generate chase curve
1265
1266 D0~-~-the first address of cam parameters,
1267
1268 Allowed devices: D, R
1269
1270 The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
1271
1272 D1~-~-form generation result
1273
1274 Allowed devices: D, R
1275
1276 D1 <0 generates a table error;
1277
1278 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
1279
1280 ECAMTBX instruction generating curve error code:
1281
1282 (% class="table-bordered" %)
1283 |**Error code**|**Content**
1284 |-1|Condition parameter error
1285 |-2|The spindle pulse number is too few, not enough for synchronization area
1286 |-3|Unknown cam curve type
1287 |-4|Resolution range error
1288 |-5|Too many pulses of the slave axis calculated
1289 |-6|The calculated number of pulses from the slave axis is too small
1290 |-7|The calculated number of spindle pulses exceeds the set length
1291 |-8|The pulse number of the slave axis is set to 0
1292 |-10|S type acceleration and deceleration curve calculation error
1293 |-11|Unknown curve type
1294 |-12|Curve left wrong
1295 |-13|The number of slave axes that exceeds the range
1296
1297 Key point generating curve Error code:
1298
1299 (% class="table-bordered" %)
1300 |**Error code**|**Content**
1301 |-21|The number of key points is out of range
1302 |-22|Total resolution exceeds range
1303 |-23|Incorrect relationship between spindle size
1304 |-24|The resolution setting of each segment is incorrect
1305 |-25|When calculating, the number of control points is insufficient
1306 |-26|Unknown acceleration curve type
1307 |-27|Spindle pulse number is negative
1308
1309 S-type acceleration and deceleration generated curve Error code:
1310
1311 (% class="table-bordered" %)
1312 |**Error code**|**Content**
1313 |-31|The number of pulses exceeds the range
1314 |-32|Maximum frequency out of range
1315 |-33|Acceleration and deceleration time out of range
1316 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
1317
1318 **✎Note: **After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
1319
1320 == {{id name="_Toc21163"/}}**The application of ECAM** ==
1321
1322 **{{id name="1、飞剪应用"/}}A.Rotary saw application**
1323
1324 In the feeding and cutting application, the traditional method is to use the stop-and-go method. The feeding shaft first walks to a fixed length, and then the cutting shaft moves again, and then the process of "feeding stop" and "cutting stop" is repeated. Disadvantages of the medium method. In the process of feeding shaft stop and stop, the required acceleration and deceleration can not improve the production efficiency. Therefore, the new method is to use the non-stop feeding method. Generally, there are two feeding and cutting methods: rotary saw and flying saw. The difference between the two is that rotary saw moves in the same direction, while flying saw moves back and forth, and the set CAM table curves are also different.
1325
1326 (% style="text-align:center" %)
1327 [[image:09_html_8c06476629016e1b.png||class="img-thumbnail"]]
1328
1329 **{{id name="1.1飞剪动作说明"/}}(1) Description of rotary saw action**
1330
1331 1) Rotary saws control the cutting axis to rotate in the same direction, and cut when the tool touches the material. During this period, the feeding axis will continue to feed at a constant speed without stopping. The action and output stroke of rotary saw control are shown in the figure below:
1332
1333 ①. Accelerate and move to the synchronization area from the beginning of the axis;
1334
1335 ②. In the synchronization zone and the spindle at the same speed and output the cutting signal (CLR0);
1336
1337 ③. After leaving the synchronization zone, the slave axis will decelerate and move back to the origin to complete a cycle of cutting. After knowing the stroke, the speed relationship can be drawn.
1338
1339 2) In the peeling process, the most important thing is speed synchronization. For example, when the cutting knife contacts the material, it must be synchronized with the material speed. If the cutting knife speed is greater than the synchronous speed during contact, a force that pulls the material forward will cause the material to be uneven. If the speed is lower than the material speed, it will appear. Blocking phenomenon.
1340
1341 3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.
1342
1343 (% style="text-align:center" %)
1344 [[image:09_html_88dc65c9b19c9920.gif||height="498" width="500" class="img-thumbnail"]]
1345
1346 4) The relationship between cutting length and cutter circumference:
1347
1348 (% class="table-bordered" %)
1349 |(((
1350 Cutting length <cutter circumference:
1351
1352 In the synchronization zone, the cutter linear speed is synchronized with the feeding speed. After the synchronization zone, in order to catch up with the next cutting, the cutting axis is accelerated, as shown in the figure.
1353 )))|[[image:09_html_80a90f759be3a8d9.gif||class="img-thumbnail"]]
1354 |(((
1355 Cutting length = cutter circumference:
1356
1357 Average speed of cutting axis
1358 )))|[[image:09_html_75f2a002afdb5c2.gif||class="img-thumbnail"]]
1359 |1 times cutter circumference <cutting length <2 times cutter circumference:After the cutting action in the synchronization zone is completed, the cutting axis decelerates, then speed up to synchronize the next cutting, as shown in the figure.|[[image:09_html_d8e09cd43d7a2aba.gif||class="img-thumbnail"]]
1360 |Cutting length> 2 times the circumference of the cutter:When the cutting length is greater than 2 times the knife circumference (this is also the most common situation), in a cycle, after the cutting of the knife edge in the synchronization zone is completed, it decelerates to a stop, waits for a certain length to pass, and then starts the next cutting .|[[image:09_html_8c9af77a8c8fff2.gif]]
1361
1362 {{id name="1.3飞剪配置"/}}{{id name="1.2_飞剪生成"/}}**(2) Rotary saw generation**
1363
1364 The PLC built-in rotary saw curve automatically generates instructions. For the parameters needed to generate the curve, please refer to the "Rotary saw Parameter Table". The CAM curve in depth 6 has 5 forms. The combination of these 5 forms can generate the required rotary saw curve. ,As shown below.
1365
1366 (% class="table-bordered" %)
1367 |(% colspan="5" %)**Rotary saw curve parameter setting**
1368 |(% style="width:105px" %)**Parameter**|(% style="width:88px" %)**Offset address**|(% style="width:165px" %)**Name**|**Format**|**Instruction**
1369 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:88px" %)Address 0|(% rowspan="2" style="width:165px" %)Spindle length|(% rowspan="2" %)32 Bits Integer|(% rowspan="2" %)The cutting length of the feeding axis moving, the unit is Pulse.
1370 |(% style="width:88px" %)Address 1
1371 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:88px" %)Address 2|(% rowspan="2" style="width:165px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1372 The circumference of the cutting axis (including the tool length), the unit is Pulse.
1373
1374 Range [-2000000000, 2000000000]
1375 )))
1376 |(% style="width:88px" %)Address 3
1377 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:88px" %)Address 4|(% rowspan="2" style="width:165px" %)Slave axis sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1378 The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S-type rotary saw is selected, the value satisfies 40 *synchronization ratio<=synchronization length<slave axis
1379
1380 Length-2. ), synchronization area range: 0<synchronization area length<|slave axis length|
1381 )))
1382 |(% style="width:88px" %)Address 5
1383 |(% rowspan="2" style="width:105px" %)Parameter 4|(% style="width:88px" %)Address 6|(% rowspan="2" style="width:165px" %)(((
1384 Slave axis synchronization
1385
1386 magnification
1387 )))|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1388 Calculation method 1: In the synchronization zone, the speed of the master axis and the slave axis are equal, and the calculation method of synchronization magnification:
1389
1390 [[image:09_html_d11c191bffc9429b.jpg||class="img-thumbnail"]]
1391
1392 among them
1393
1394 V1(V2)=Master (slave) axis speed
1395
1396 F1(F2)=Master (slave) axis speed (Hz)
1397
1398 D1(D2)=Master (slave) shaft diameter
1399
1400 R1 (R2) = master (slave) axis pulse number per revolution
1401
1402 Calculation method two:
1403
1404 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/
1405
1406 Number of pulses required by 1mm spindle
1407 )))
1408 |(% style="width:88px" %)Address 7
1409 |(% rowspan="2" style="width:105px" %)Parameter 5|(% style="width:88px" %)Address 8|(% rowspan="2" style="width:165px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1410 Maximum magnification=
1411
1412 Maximum speed of slave axis/maximum speed of main axis
1413 )))
1414 |(% style="width:88px" %)Address 9
1415 |(% style="width:105px" %)Parameter 6|(% style="width:88px" %)Address 10|(% style="width:165px" %)Acceleration curve|Integer|(((
1416 0: constant acceleration curve, the speed curve is T type
1417
1418 1: Constant jerk curve, speed curve is S type
1419
1420 2: reserved
1421
1422 3: reserved
1423
1424 4: New S type rotary saw curve (the synchronization zone is in the middle),Please refer to the appendix for details. The current curve only supports CAM curve 0
1425 )))
1426 |(% style="width:105px" %)Parameter 7|(% style="width:88px" %)Address 11|(% style="width:165px" %)CAM curve|Integer|(((
1427 Start, stop, and various curve selections of different synchronization zone positions:
1428
1429 0: LeftCAM synchronization area is located on the front curve;
1430
1431 1: MidCAMall;
1432
1433 2: MidCAMBegin initial curve;
1434
1435 3: MidCAMEnd end curve;
1436
1437 4: RightCAM sync area is located at the back curve;
1438
1439 BIT[15]=1: continue the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
1440 )))
1441 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:88px" %)Address 12|(% style="width:165px" %)Resolution|Integer|(((
1442 Range [31,511], of which 20 synchronization areas;
1443
1444 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
1445 )))
1446 |(% style="width:88px" %)Address 13|(% style="width:165px" %)Reserved|Retained|Reserved
1447 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:88px" %)Address 14|(% rowspan="2" style="width:165px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1448 |(% style="width:88px" %)Address 15
1449 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:88px" %)Address 16|(% rowspan="2" style="width:165px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1450 |(% style="width:88px" %)Address 17
1451 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:88px" %)Address 18|(% rowspan="2" style="width:165px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than the speed corresponding to this value. Thereby adjusting the slope of the deceleration section.
1452 |(% style="width:88px" %)Address 19
1453
1454 (% style="text-align:center" %)
1455 [[image:09_html_85b39cb6a2a254f4.png||class="img-thumbnail"]]
1456
1457 **(3) Rotary saw configuration**
1458
1459 {{id name="1.3.1概述"/}}1) Overview
1460
1461 Synchronization zone: At this time, the feeding axis and the cutter axis rotate at a fixed speed ratio (the linear velocity of the cutter head is equal to the linear velocity of the cutting surface), and the cutting of the material occurs in the synchronous zone.
1462
1463 Adjustment area: due to different cutting lengths, corresponding displacement adjustments are required. According to the cutting length adjustment zone, it can be divided into the following three situations.
1464
1465 Short material cutting: the cutter shaft first has a uniform speed in the adjustment area, and then decelerates to the synchronous speed.
1466
1467 Normal material cutting: In this case, the cutter axis accelerates first in the adjustment zone. Then decelerate to synchronous speed.
1468
1469 Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.
1470
1471 (% style="text-align:center" %)
1472 [[image:09_html_ac77ff756d4dd1b2.gif||height="335" width="800" class="img-thumbnail"]]
1473
1474 (% style="text-align:center" %)
1475 [[image:09_html_7947002c875493ad.gif||height="337" width="400" class="img-thumbnail"]]
1476
1477 **{{id name="_Toc28644"/}}✎Note:**
1478
1479 When setting the maximum limit magnification, synchronization magnification, and minimum limit operation magnification, the material length boundary is also determined. Several limit values are as follows:
1480
1481 ①The speed of the shortest material (Lm1) satisfies: the actual maximum operating magnification = the maximum limit magnification, and the adjustment area is a constant speed + deceleration process.
1482
1483 (% style="text-align:center" %)
1484 [[image:09_html_e6ef7719c15b9c56.gif||class="img-thumbnail"]]
1485
1486 ②The shortest normal material (Lm2): the actual maximum operating magnification = the maximum limit magnification, the adjustment area is the acceleration + deceleration process.
1487
1488 (% style="text-align:center" %)
1489 [[image:09_html_b59eeb079fa045f8.gif||class="img-thumbnail"]]
1490
1491 ③The shortest length of material (Lm3): the actual maximum operating magnification = the minimum limit operating magnification, the adjustment area is acceleration + deceleration + dwell process.
1492
1493 (% style="text-align:center" %)
1494 [[image:09_html_2546314cd37aed9d.gif||class="img-thumbnail"]]
1495
1496 Therefore, the length of the material determines the type of operation of the slave axis:
1497
1498 ① When Lm1 ≤ L <Lm2, this is a short material, and its 0 ≤ actual maximum operating magnification ≤ maximum limit magnification
1499
1500 ② When Lm2 ≤ L <Lm3, this is a normal material, and its minimum limit operation magnification ≤ actual maximum operation magnification ≤ maximum limit magnification
1501
1502 ③ When L ≥ Lm3, this is a long material, and the actual maximum operating magnification = minimum limit magnification. There is a residence zone, the longer the material, the longer the residence time.
1503
1504 {{id name="1.3.2示例"/}}2) Example
1505
1506 The process result will be different according to the difference of the maximum limit magnification, synchronization magnification and minimum limit operation magnification.
1507
1508 ① Synchronous magnification <minimum limit operation magnification <maximum limit magnification
1509
1510 The parameter settings are as follows:
1511
1512 (% style="text-align:center" %)
1513 [[image:09_html_9c3f0a8bc2f79674.gif||height="310" width="500" class="img-thumbnail"]]
1514
1515 **Short material:**{{id name="OLE_LINK389"/}}
1516
1517 (% style="text-align:center" %)
1518 [[image:09_html_a335f05c7945dd4b.gif||height="320" width="800" class="img-thumbnail"]]
1519
1520 **Normal materials:**
1521
1522 (% style="text-align:center" %)
1523 [[image:09_html_ecd43824be58368a.gif||height="326" width="800" class="img-thumbnail"]]
1524
1525 **Long material:**
1526
1527 (% style="text-align:center" %)
1528 [[image:09_html_5cf341fa104d76d3.gif||height="318" width="800" class="img-thumbnail"]]
1529
1530 ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification
1531
1532 In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:
1533
1534 (% style="text-align:center" %)
1535 [[image:09_html_95b3fe4d6308ff9a.gif||height="329" width="500" class="img-thumbnail"]]
1536
1537 The situation of short material and normal material is the same as described in 2.1.
1538
1539 Long material: (no deceleration process in the adjustment zone)
1540
1541 (% style="text-align:center" %)
1542 [[image:09_html_74f9770e2a994f81.gif||class="img-thumbnail"]]
1543
1544 ③ Synchronous magnification = minimum limit operation magnification = maximum limit magnification
1545
1546 In this case, there are no normal materials, only short materials and long materials. The parameter settings are as follows:
1547
1548 (% style="text-align:center" %)
1549 [[image:09_html_ae0be67bb13d9c18.gif||class="img-thumbnail"]]
1550
1551 **Short material        Long material**
1552
1553 (% style="text-align:center" %)
1554 [[image:09_html_7033bb8aa22df588.gif||class="img-thumbnail"]]
1555
1556 **{{id name="1.4_案例"/}}(4) Case**
1557
1558 1) Control requirements:
1559
1560 ①. Use rotary saw curve to automatically generate cam table.
1561
1562 ②. For the equipment matched with the cutting axis and the feeding axis, the servo parameter is 1,000 pulse/rev.
1563
1564 ③. Related parameters:
1565
1566 Cutting material length is 1000 mm, cutting shaft circumference is 60πmm, feeding shaft circumference is 100πmm, and feeding shaft speed is 1,000 Hz
1567
1568 2) Parameters required to establish rotary saw curve
1569
1570 Parameter 1: You eed to input the length of the spindle cutting material because the cutting material length is 1000mm, it is converted to pulse
1571
1572 1000*1000/100Pi=3183 (pulse)
1573
1574 Parameter 2: The circumference of the slave shaft, that is, the number of pulses required for one revolution of the slave shaft 1000 pulse
1575
1576 Parameter 3: The synchronization length of the slave axis is set to approximately 1/3 of the circumference of the slave axis as 1000/3=333 pulse.
1577
1578 Parameter 4: During synchronization, the speed ratio of master and slave
1579
1580 (% style="text-align:center" %)
1581 [[image:09_html_5d7398a6b51d0822.png||class="img-thumbnail"]]
1582
1583 Parameter 5: The maximum magnification limit is: set to 10 times the synchronization magnification as 50/3 (floating point number).
1584
1585 Parameter 6: Low WORD is set to 0 - uniform acceleration
1586
1587 High WORD set to 0 - LEFTCAM
1588
1589 Parameter 7: Set the curve generation result to 0
1590
1591 Using curve generation instructions, ECAMTBX generates curves.
1592
1593 Circuit program corresponding to the case:
1594
1595 Spindle length
1596
1597 Slave length
1598
1599 Slave synchronization length
1600
1601 Slave axis synchronization magnification
1602
1603 Slave axis maximum magnification limit
1604
1605 Acceleration curve
1606
1607 CAM curve solution resolution
1608
1609 Set as rotary saw curve
1610
1611 Curve generation instruction
1612
1613 (% style="text-align:center" %)
1614 [[image:09_html_d35bbecf23e4f86c.png||height="592" width="500" class="img-thumbnail"]]
1615
1616 The curve corresponding to the Circuit program:
1617
1618 Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.
1619
1620 (% style="text-align:center" %)
1621 [[image:09_html_c2f99535690a2e69.gif||height="483" width="600" class="img-thumbnail"]]
1622
1623 **{{id name="2、追剪应用"/}}Flying saw application**
1624
1625 The flying saw system means that the feeding shaft will not stop while the system is cutting, so the camshaft must keep the same speed with the feeding shaft when cutting, and the same speed time must be enough for the cutter to complete the cutting and detach to safety s position. The flying saw camshaft will drive the cutter and the entire group of cutting mechanisms to move, so that it can maintain the same speed with the main shaft during cutting.
1626
1627 **{{id name="2.1_追剪动作说明"/}}(1) Description of flying saw action**
1628
1629 Suppose the wiring is as shown in the figure below, where 1, 2, 3, 4 are the waiting point (starting point), synchronization point, synchronization departure point, and waiting point (starting point), and its actions will follow the movement of the spindle. At the beginning, the camshaft stops at position 1, and then accelerates forward to position 2 to achieve speed synchronization, and continues to position 3, then decelerates and returns to position 4 in the opposite direction (assuming position 1 and position 4 are the same), and then repeat this action .
1630
1631 (% style="text-align:center" %)
1632 [[image:09_html_883677875ea25ecd.gif||class="img-thumbnail"]]
1633
1634 Flying saw control is used in pipe cutting machines, beverage filling and other equipment that needs to move with the processed product; its action is to add axis (slave axis)-start to accelerate and follow the processed product, and after moving to the synchronization zone, it will contact the processed product Start processing at a constant speed. After leaving the synchronization zone, the speed will decrease and stop, and then return to the starting position. All the stroke feeding axes (spindles) have been feeding at a constant speed. As shown below.{{id name="OLE_LINK475"/}}
1635
1636 (% style="text-align:center" %)
1637 [[image:09_html_f748f42472a5e8bc.gif||class="img-thumbnail"]]
1638
1639 The stroke of the flying saw is divided into two parts: the following part and the returning part. The two moving distances must be the same. From the speed stroke point of view, that is, positive area = negative area.
1640
1641 During flying saw, you need to pay attention that the feeding will not stop during processing, so the processing axis must keep the same speed with the feeding axis, and the synchronization time must be enough for the equipment to complete processing and move to a safe position.
1642
1643 The stroke length of the synchronization area is also the processing time, which can be considered when planning the synchronization area. In addition, the planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is large in a cutting cycle, the acceleration and deceleration time will be smaller, indicating that the equipment needs to be accelerated and decelerated in a short time. For motors, machines, and cutters The impact is very large, and it is easy to cause the servo over-current alarm, and the equipment cannot operate normally.
1644
1645 **{{id name="2.2_追剪参数表"/}}(2) Flying saw parameter table**
1646
1647 (((
1648 (% class="table-bordered" %)
1649 |(% colspan="5" %)**Parameter setting of flying saw curve**
1650 |(% style="width:118px" %)**Parameter**|(% style="width:96px" %)**Offset address**|(% style="width:195px" %)**Name**|(% style="width:102px" %)**Format**|(% style="width:958px" %)**Instruction**
1651 |(% rowspan="2" style="width:118px" %)Parameter 1|(% style="width:96px" %)Address 0|(% rowspan="2" style="width:195px" %)Spindle length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The cutting length of the feeding axis moving, the unit is Pulse.
1652 |(% style="width:96px" %)Address 1
1653 |(% rowspan="2" style="width:118px" %)Parameter 2|(% style="width:96px" %)Address 2|(% rowspan="2" style="width:195px" %)Slave length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The circumference of the cutting axis (including the tool length), the unit is Pulse. Range [-2000000000, 2000000000]
1654 |(% style="width:96px" %)Address 3
1655 |(% rowspan="2" style="width:118px" %)Parameter 3|(% style="width:96px" %)Address 4|(% rowspan="2" style="width:195px" %)Slave synchronization length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
1656 |(% style="width:96px" %)Address 5
1657 |(% rowspan="2" style="width:118px" %)Parameter 4|(% style="width:96px" %)Address 6|(% rowspan="2" style="width:195px" %)Slave axis synchronization magnification|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1658 Calculation method one:
1659
1660 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the synchronization magnification calculation method:
1661
1662 V1(V2)=Master (slave) axis speed
1663
1664 F1(F2)=Master (slave) axis speed (Hz)
1665
1666 D1(D2)=Master (slave) shaft diameter
1667
1668 R1 (R2) = master (slave) axis pulse number per revolution
1669
1670 Calculation method two:
1671
1672 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm
1673
1674 Number of pulses required by the spindle
1675 )))
1676 |(% style="width:96px" %)Address 7
1677 |(% rowspan="2" style="width:118px" %)Parameter 5|(% style="width:96px" %)Address 8|(% rowspan="2" style="width:195px" %)Slave axis maximum magnification limit|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
1678 |(% style="width:96px" %)Address 9
1679 |(% rowspan="2" style="width:118px" %)Parameter 6|(% style="width:96px" %)Address 10|(% style="width:195px" %)Acceleration curve|(% style="width:102px" %)Integer|(% style="width:958px" %)(((
1680 0: constant acceleration curve, the speed curve is T type
1681
1682 1: Constant jerk curve, the speed curve is S type
1683 )))
1684 |(% style="width:96px" %)Address 11|(% style="width:195px" %)CAM curve|(% style="width:102px" %)Integer|(% style="width:958px" %)Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the default tracking RightCam, and the return LeftCam curve type. May not be set)
1685 |(% rowspan="2" style="width:118px" %)Parameter 7|(% style="width:96px" %)Address 12|(% style="width:195px" %)Resolution|(% style="width:102px" %)Integer|(% style="width:958px" %)Range [62,511]
1686 |(% style="width:96px" %)Address 13|(% style="width:195px" %)Reserved|(% style="width:102px" %)Retained|(% style="width:958px" %)Reserved
1687 |(% rowspan="2" style="width:118px" %)Parameter 8|(% style="width:96px" %)Address 14|(% rowspan="2" style="width:195px" %)synchronization zone start position|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1688 |(% style="width:96px" %)Address 15
1689 |(% rowspan="2" style="width:118px" %)Parameter 9|(% style="width:96px" %)Address 16|(% rowspan="2" style="width:195px" %)End of synchronization zone|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1690 |(% style="width:96px" %)Address 17
1691 |(% rowspan="2" style="width:118px" %)Parameter 10|(% style="width:96px" %)Address 18|(% rowspan="2" style="width:195px" %)Reserved|(% rowspan="2" style="width:102px" %)Reserved|(% rowspan="2" style="width:958px" %)Reserved
1692 |(% style="width:96px" %)Address 19
1693 |(% rowspan="2" style="width:118px" %)Parameter 11|(% style="width:96px" %)Address 20|(% rowspan="2" style="width:195px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1694 The maximum magnification of the actual operation of slave axis:
1695
1696 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
1697 )))
1698 |(% style="width:96px" %)Address 21
1699 )))
1700
1701 **{{id name="2.3_案例"/}}(3) Case**
1702
1703 1) Control parameters
1704
1705 ①. The servo parameter is 1000 pulse/rev.
1706
1707 ②. Related parameters
1708
1709 The processing length of the feeding shaft is 660 mm, and the circumference of the feeding shaft is 60πmm
1710
1711 The machining length of the machining shaft is 40 mm
1712
1713 {{id name="_Toc11189"/}}One rotation of the machining axis is 20 mm
1714
1715 The feed shaft speed is 1000 Hz
1716
1717 {{id name="2.3.1_利用飞剪曲线来建立追剪曲线"/}}2) Establish flying saw curve by rotary saw curve
1718
1719 The parameters needed to establish rotary saw curve
1720
1721 Spindle length (processing length): Assuming that the spindle servo parameter is 1000 pulse/rev and the mechanism parameter is 60π mm/rev, then 1pulse is 0.188mm. If the actual processing length is 660mm→convert to 660/0.188=3501 pulse.
1722
1723 Slave axis length(machining axis length):
1724
1725 First consider that the slave axis servo parameter is 1000 pulse/rev and the mechanism parameter is 20mm/rev, then 1pulse=0.01mm can be obtained.
1726
1727 The actual measured slave shaft machining length is 40 mm → converted to 2000 Pulse.
1728
1729 The location of the synchronization zone;
1730
1731 The lower limit of the synchronization zone is when the actual START0 signal is triggered, the slave axis goes from 0 to the position 200 where it catches up with the spindle speed;
1732
1733 The upper limit of the synchronization zone is the position 500 where the processing time ends and the processing equipment also leaves.
1734
1735 The speed ratio of master and slave axis in synchronization zone: the speed ratio of the master axis and slave axis in the synchronization zone.
1736
1737 The speed ratio of master and slave axis when returning:
1738
1739 After the total length of the stroke subtracts the stroke of the following movement, the return stroke length can be obtained, and then use the following stroke distance = return stroke distance to know the speed ratio when returning = 3.
1740
1741 3) Establish flying saw curve automatically by rotary saw curve
1742
1743 ① Establish a positive area curve
1744
1745 Parameter 1: It needs to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle = 3501/2 =1750 pulse;
1746
1747 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1748
1749 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3 = 667 pulse;
1750
1751 Parameter 4:
1752
1753 (% style="text-align:center" %)
1754 [[image:09_html_68100086fd1c297a.gif||class="img-thumbnail"]]
1755
1756 Parameter 5: the highest synchronization magnification 10 (floating point number);
1757
1758 Parameter 6: Low word setting 0: uniform acceleration;
1759
1760 High word setting 0: LeftCam.
1761
1762 ② Establish a negative area curve
1763
1764 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle =3501/2 =1750 pulse;
1765
1766 Parameter 2: Reverse running size is -2000;
1767
1768 Parameter 3: Same;
1769
1770 Parameter 4: Same;
1771
1772 Parameter 5: Same;
1773
1774 Parameter 6: Low word setting 0: uniform acceleration;
1775
1776 High word setting H8000: LeftCam continues the existing table data.
1777
1778 4) Generate tables with the function of flying saw
1779
1780 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse;
1781
1782 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1783
1784 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3=667 pulse;
1785
1786 Parameter 4:
1787
1788 (% style="text-align:center" %)
1789 [[image:09_html_bd90dcc010d13207.gif||class="img-thumbnail"]]
1790
1791 Parameter 5: the highest synchronization magnification 10 (floating point number)
1792
1793 Parameter 6: Low word setting 1: Uniform acceleration;
1794
1795 High word setting 0: invalid.
1796
1797 Use ECAMTBX to generate curves:
1798
1799 (% style="text-align:center" %)
1800 [[image:09_html_67c3ab90b2ffbbd3.png||height="449" width="500" class="img-thumbnail"]]
1801
1802 (((
1803 Spindle length
1804
1805 Slave length
1806
1807 Slave synchronization length
1808
1809 Slave axis synchronization magnification
1810
1811 Slave axis maximum magnification limit
1812
1813 Acceleration curve
1814
1815 CAM curve solution resolution
1816
1817 Set as rotary saw curve
1818
1819 Curve generation instruction
1820
1821
1822 )))
1823
1824 Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}}
1825
1826 (% style="text-align:center" %)
1827 [[image:09_html_88ff5c1c9ceb8325.gif||height="455" width="600" class="img-thumbnail"]]
1828
1829 **S type acceleration and deceleration curve establishment**
1830
1831 **{{id name="3.1_S型加减速曲线表格参数"/}}(1) S type acceleration and deceleration curve table parameters**
1832
1833 (% class="table-bordered" %)
1834 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
1835 |(% style="width:105px" %)**Parameter**|(% style="width:98px" %)**Offset address**|(% style="width:238px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
1836 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:98px" %)Address 0|(% rowspan="2" style="width:238px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
1837 |(% style="width:98px" %)Address 1
1838 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:98px" %)Address 2|(% rowspan="2" style="width:238px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
1839 |(% style="width:98px" %)Address 3
1840 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:98px" %)Address 4|(% rowspan="2" style="width:238px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)
1841 |(% style="width:98px" %)Address 5
1842 |(% style="width:105px" %)Parameter 4|(% style="width:98px" %)Address 6|(% style="width:238px" %)Accelerated Time|16-bit integer|Pulse acceleration time|ms|2 to 32767
1843 |(% style="width:105px" %)Parameter 5|(% style="width:98px" %)Address 7|(% style="width:238px" %)deceleration time|16-bit integer|Pulse deceleration time|ms|2 to 32767
1844 |(% style="width:105px" %)Parameter 6|(% style="width:98px" %)Address 8|(% style="width:238px" %)Resolution|16-bit integer|Pulse resolution|Length|50 to 511
1845 |(% style="width:105px" %)Parameter 7|(% style="width:98px" %)Address 9|(% style="width:238px" %)Reserved|Retained|Reserved| |
1846 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:98px" %)Address 10|(% rowspan="2" style="width:238px" %)Number of spindle pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of spindle pulses in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
1847 \\Internally generated
1848 |(% style="width:98px" %)Address 11
1849 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:98px" %)Address 12|(% rowspan="2" style="width:238px" %)Number of slave axis pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses from the last segment of the slave axis (high and low bits)|(% rowspan="2" %)Pulse
1850 |(% style="width:98px" %)Address 13
1851 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:98px" %)Address 14|(% rowspan="2" style="width:238px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the pulse at a constant speed|(% rowspan="2" %)Pulse
1852 |(% style="width:98px" %)Address 15
1853 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:98px" %)Address 16|(% rowspan="2" style="width:238px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Maximum speed of curve results during operation|(% rowspan="2" %)Hz
1854 |(% style="width:98px" %)Address 17
1855 |(% style="width:105px" %)Parameter 12|(% style="width:98px" %)Address 18|(% style="width:238px" %)Reserved| | | |
1856 |(% style="width:105px" %)Parameter 13|(% style="width:98px" %)Address 19|(% style="width:238px" %)Curve generation result| | | |
1857
1858 **✎Note:**
1859
1860 Generate S type acceleration and deceleration curve (table) with the given acceleration time, deceleration time, and the highest speed. When calculating, the spindle uses the pulse input frequency of 1K (1ms) as the calculation basis.
1861
1862 **{{id name="3.2_案例"/}}(2) Case**
1863
1864 1) Related control parameters
1865
1866 Calculation case:
1867
1868 Total number of pulses (length): 10000 pulses
1869
1870 Acceleration time: 100ms
1871
1872 Deceleration time: 100ms Resolution: 200
1873
1874 2) 2. Curve parameters:
1875
1876 Parameter 1: The total number of output pulses 10000
1877
1878 Parameter 2: Maximum speed 50000
1879
1880 Parameter 6: acceleration time 100
1881
1882 Parameter 7: acceleration time 100
1883
1884 Parameter 8: Resolution 200
1885
1886 (% style="text-align:center" %)
1887 [[image:09_html_aa28fc53f7b57a5e.png||height="392" width="500" class="img-thumbnail"]]
1888
1889 (((
1890 Pulse maximum speed
1891
1892 Total pulse number
1893
1894 Acceleration time
1895
1896 Deceleration time
1897
1898 Resolution
1899
1900 Set S type acceleration and deceleration curve
1901
1902 Curve generation instruction
1903
1904
1905 )))
1906
1907 (% style="text-align:center" %)
1908 [[image:09_html_ce402394c75f0459.gif||class="img-thumbnail"]]
1909
1910 **C.Customize specified key points to generate a table**
1911
1912 **{{id name="4.1_指定关键点生成表格参数"/}}(1) Specified key points generate table parameters**
1913
1914 (% class="table-bordered" %)
1915 |(% colspan="6" %)**Specified key points generate table parameters**
1916 |(% colspan="2" %)**Address**|(% style="width:333px" %)**Name**|(% style="width:197px" %)**Length**|**Instruction**|**Range**
1917 |(% colspan="2" %)S0|(% style="width:333px" %)Curve result|(% style="width:197px" %)Single word|(((
1918 ~>0: The curve is generated successfully
1919
1920 <0: Failed to generate curve
1921 )))|
1922 |(% colspan="2" %)S0+1|(% style="width:333px" %)Error parameter position|(% style="width:197px" %)Single word| |
1923 |(% colspan="2" %)S0+2|(% style="width:333px" %)Total resolution|(% style="width:197px" %)Single word| |10 to 511
1924 |(% colspan="2" %)S0+3|(% style="width:333px" %)Number of key points (n)|(% style="width:197px" %)Single word| |1 to 10
1925 |(% colspan="2" %)S0+4|(% rowspan="2" style="width:333px" %)The initial position of slave axis|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Set the initial offset position of slave axis|(% rowspan="2" %)Reserved
1926 |(% colspan="2" %)S0+5
1927 |(% colspan="2" %)S0+6|(% style="width:333px" %)Spindle segment 0|(% style="width:197px" %)Single word|(% rowspan="2" %)The master/slave axis segment 0 is always 0|(% rowspan="2" %)Reserved
1928 |(% colspan="2" %)S0+7|(% style="width:333px" %)Slave axis segment 0|(% style="width:197px" %)Single word
1929 |(% rowspan="6" %)(((
1930 Key
1931
1932 point 1
1933 )))|S0+8|(% rowspan="2" style="width:333px" %)Spindle segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 1|(% rowspan="2" %)32-bit integer
1934 |S0+9
1935 |S0+10|(% rowspan="2" style="width:333px" %)Slave axis segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 1|(% rowspan="2" %)32-bit integer
1936 |S0+11
1937 |S0+12|(% style="width:333px" %)Curve type of segment 1|(% style="width:197px" %)Single word|*1|
1938 |S0+13|(% style="width:333px" %)Resolution of segment 1|(% style="width:197px" %)Single word|*2|
1939 |(% rowspan="6" %)(((
1940 Key
1941
1942 point 2
1943 )))|S0+14|(% rowspan="2" style="width:333px" %)Spindle segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 2|(% rowspan="2" %)32-bit integer
1944 |S0+15
1945 |S0+16|(% rowspan="2" style="width:333px" %)Slave axis segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 2|(% rowspan="2" %)32-bit integer
1946 |S0+17
1947 |S0+18|(% style="width:333px" %)Curve type of segment 2|(% style="width:197px" %)Single word|*1|
1948 |S0+19|(% style="width:333px" %)Resolution of segment 2|(% style="width:197px" %)Single word|*2|
1949 | |**......**|(% style="width:333px" %)**......**|(% style="width:197px" %)**.....**|**......**|**......**
1950 |(% rowspan="6" %)(((
1951 Key point
1952
1953 N
1954 )))|S0+n*6+2|(% rowspan="2" style="width:333px" %)Spindle segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment N|(% rowspan="2" %)32-bit integer
1955 |S0+n*6+3
1956 |S0+n*6+4|(% rowspan="2" style="width:333px" %)Slave axis segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment N|(% rowspan="2" %)32-bit integer
1957 |S0+n*6+5
1958 |S0+n*6+6|(% style="width:333px" %)Curve type of segment N|(% style="width:197px" %)Single word|*1|
1959 |S0+n*6+7|(% style="width:333px" %)Resolution of segment N|(% style="width:197px" %)Single word|*2|
1960
1961 Curve type: Different values represent different curve types.
1962
1963 0 = uniform acceleration, 1 = S acceleration and deceleration (uniform acceleration), 2 = cycloid, 3 = uniform speed.
1964
1965 The resolution range is 0-511, the total resolution of all segments does not exceed the total resolution set by [S0]. if the resolution of all segments is set to 0, the total resolution set by [S0] split equally. When the curve type is cycloid, the corresponding resolution range is 3-511.W
1966
1967 Refer to the setting method of PLC Editor to generate a table based on the given key points and the given function relationship. The parameter setting is the same as the setting method of the upper computer. The editing interface of the upper computer is shown below. When the table is generated in K2 mode, The generated result is similar to the table result set by the relevant parameters of the upper computer. This mode expands the function of the table generated by the lower computer through the key points. In the key point curve, the spindle must have an increasing relationship, that is, the spindle pulse number of the next point must be greater than the spindle pulse number of the previous point, otherwise an error will be reported.
1968
1969 **{{id name="4.2_案例"/}}(2) Case**
1970
1971 1) Specified key points parameters
1972
1973 When the spindle has 0-600 pulses, the slave axis stops at position 0;
1974
1975 When the spindle has 600-1500 pulses, the slave axis moves to the position 2000;
1976
1977 When the spindle is 1500-1700 pulses, the slave axis stops at position 2000;
1978
1979 When the spindle has 1700-1900 pulses, the slave axis will return to position 600;
1980
1981 When the spindle has 1900-2000 pulses, the slave axis returns to position 0.
1982
1983 2) Specified key points for tabulation
1984
1985 Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.
1986
1987 (% style="text-align:center" %)
1988 [[image:09_html_b99e5227a35871ab.png||height="295" width="400" class="img-thumbnail"]]
1989
1990 Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
1991
1992 3) Specified key point parameters table
1993
1994 (((
1995 (% class="table-bordered" %)
1996 |**Address**|**Instruction**|**Set value**|**Address**|**Instruction**|**Set value**
1997 |S0|Curve generation result| |S0+19|Resolution of segment 2|0
1998 |S0+1|Error parameter location| |S0+20|(% rowspan="2" %)Spindle position of segment 3|(% rowspan="2" %)1700
1999 |S0+2|Total resolution|100|S0+21
2000 |S0+3|Number of key point|1-10|S0+22|(% rowspan="2" %)Slave axis position of segment 3|(% rowspan="2" %)2000
2001 |S0+4|(% rowspan="2" %)Initial position of slave axis|(% rowspan="2" %)——|S0+23
2002 |S0+5|S0+24|Curve type of segment 3|0
2003 |S0+6|Spindle position of segment 0|Reserved|S0+25|Resolution of segment 3|0
2004 |S0+7|Slave axis position of segment 0|Reserved|S0+26|(% rowspan="2" %)Spindle position of segment 4|(% rowspan="2" %)1900
2005 |S0+8|(% rowspan="2" %)Spindle position of segment 1|(% rowspan="2" %)600|S0+27
2006 |S0+9|S0+28|(% rowspan="2" %)Slave axis position of segment 4|(% rowspan="2" %)600
2007 |S0+10|(% rowspan="2" %)Slave axis position of segment 1|(% rowspan="2" %)0|S0+29
2008 |S0+11|S0+30|Curve type of segment 4|0
2009 |S0+12|Curve type of segment 1|0|S0+31|Resolution of segment 4|0
2010 |S0+13|Resolution of segment 1|0|S0+32|(% rowspan="2" %)Spindle position of segment 5|(% rowspan="2" %)2000
2011 |S0+14|(% rowspan="2" %)Spindle position of segment 2|(% rowspan="2" %)1500|S0+33
2012 |S0+15|S0+34|(% rowspan="2" %)Slave axis position of segment 5|(% rowspan="2" %)0
2013 |S0+16|(% rowspan="2" %)Slave axis position of segment 2|(% rowspan="2" %)1200|S0+35
2014 |S0+17|S0+36|Curve type of segment 5|0
2015 |S0+18|Curve type of segment 2|0|S0+37|Resolution of segment 5|0
2016 )))
2017
2018 4) The table generated by specified key points is shown as below.
2019
2020 (% style="text-align:center" %)
2021 [[image:09_html_7f4633272893860d.gif||class="img-thumbnail"]]
2022
2023 5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
2024
2025 (% style="text-align:center" %)
2026 [[image:09_html_b7baa900608277e3.png||width="500" class="img-thumbnail"]]
2027
2028
2029 (% style="text-align:center" %)
2030 [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]]
2031
2032 == {{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address** ==
2033
2034 (% class="table-bordered" %)
2035 |**Devices**|**Content**
2036 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
2037 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
2038 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
2039 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
2040 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
2041 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
2042 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
2043 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
2044
2045 (% class="table-bordered" %)
2046 |**Devices**|**Content**|**Devices**|**Content**
2047 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
2048 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
2049 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
2050 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
2051 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
2052 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
2053 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
2054 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
2055
2056 == {{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix** ==
2057
2058 **Rotary saw parameter table**
2059
2060 (% class="table-bordered" %)
2061 |(% colspan="5" %)**Rotary saw curve parameter setting**
2062 |(% style="width:117px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:162px" %)**Name**|**Format**|**Instruction**
2063 |(% rowspan="2" style="width:117px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:162px" %)Spindle length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The moving cut length of the feeding axis moving. Unit: pulse.
2064 |(% style="width:94px" %)Address 1
2065 |(% rowspan="2" style="width:117px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:162px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: pulse. Range [-2,000,000,000, 2,000,000,000]
2066 |(% style="width:94px" %)Address 3
2067 |(% rowspan="2" style="width:117px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:162px" %)Slave sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S type rotary saw is selected, the value satisfies 40 *sync ratio<=sync length< slave axis length-2. ). Sync area range: 0<sync area length<~|slave axis length~|
2068 |(% style="width:94px" %)Address 5
2069 |(% rowspan="2" style="width:117px" %)Parameter 4|(% style="width:94px" %)
2070 Address 6|(% rowspan="2" style="width:162px" %)Slave axis sync magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2071 Calculation method one:
2072
2073 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the sync magnification calculation method:
2074
2075 V1(V2)=Master (slave) axis speed
2076
2077 F1(F2)=Master (slave) axis speed (Hz)
2078
2079 D1(D2)=Master (slave) axis diameter
2080
2081 R1 (R2) = master (slave) axis pulse number per revolution
2082
2083 Calculation method two:
2084
2085 Slave axis sync magnification=the number of pulses required by 1mm slave axis/the number of pulses required by 1mm spindle
2086 )))
2087 |(% style="width:94px" %)Address 7
2088 |(% rowspan="2" style="width:117px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:162px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of spindle
2089 |(% style="width:94px" %)Address 9
2090 |(% style="width:117px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:162px" %)Acceleration curve|Integer|(((
2091 0: Constant acceleration curve, the speed curve is T type
2092
2093 1: Constant jerk curve, the speed curve is S type
2094
2095 2: reserved
2096
2097 3: reserved
2098
2099 4: New S rotary saw curve (synchronization zone is in the middle), see appendix for details. Current curve only supports CAM curve as 0.
2100 )))
2101 |(% style="width:117px" %)Parameter 7|(% style="width:94px" %)Address 11|(% style="width:162px" %)CAM curve|Integer|(((
2102 Start, stop, and various curve selections of different synchronization zone positions:
2103
2104 0: LeftCAM synchronization area is on the front curve;
2105
2106 1: MidCAMall;
2107
2108 2: MidCAMBegin start curve;
2109
2110 3: MidCAMEnd end curve;
2111
2112 4: RightCAM synchronization area is on the back curve;
2113
2114 BIT[15]=1: Continuing the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
2115 )))
2116 |(% style="width:117px" %)Parameter 8|(% style="width:94px" %)Address 12|(% style="width:162px" %)Resolution|Integer|(((
2117 Range [31,511], of which 20 synchronization areas;
2118
2119 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
2120 )))
2121 |(% style="width:117px" %) |(% style="width:94px" %)Address 13|(% style="width:162px" %)Reserved|Retained|Reserved
2122 |(% rowspan="2" style="width:117px" %)Parameter 9|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:162px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated start position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2123 |(% style="width:94px" %)Address 15
2124 |(% rowspan="2" style="width:117px" %)Parameter 10|(% style="width:94px" %)Address 16|(% rowspan="2" style="width:162px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2125 |(% style="width:94px" %)Address 17
2126 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 18|(% rowspan="2" style="width:162px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than this value magnification corresponds to the speed so as to adjust the slope of the deceleration section.
2127 |(% style="width:94px" %)Address 19
2128 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 20|(% rowspan="2" style="width:162px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2129 The maximum magnification of the actual operation of slave axis:
2130
2131 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2132 )))
2133 |(% style="width:94px" %)Address 21
2134
2135 **{{id name="2、追剪参数表"/}}9.2.5.2 Flying saw parameter table**
2136
2137 (% class="table-bordered" %)
2138 |(% colspan="6" %)**Parameter setting of flying saw curve**
2139 |(% style="width:113px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:199px" %)**Name**|(% colspan="2" %)**Format**|**Instruction**
2140 |(% rowspan="2" style="width:113px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:199px" %)Spindle length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The cutting length of the feeding axis moving. Unit: Pulse.
2141 |(% style="width:94px" %)Address 1
2142 |(% rowspan="2" style="width:113px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:199px" %)Slave length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: Pulse. Range [-2,000,000,000, 2,000,000,000]
2143 |(% style="width:94px" %)Address 3
2144 |(% rowspan="2" style="width:113px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:199px" %)Slave synchronization length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
2145 |(% style="width:94px" %)Address 5
2146 |(% rowspan="2" style="width:113px" %)Parameter 4|(% style="width:94px" %)Address 6|(% rowspan="2" style="width:199px" %)Slave axis synchronization magnification|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)(((
2147 Calculation method one:
2148
2149 In the synchronization zone, the speed of master axis and the slave axis are equal, and the synchronization magnification calculation method is as below.
2150
2151 [[image:09_html_abe2ece300f76c28.jpg]]
2152
2153 among them
2154
2155 V1(V2)=Master (slave) axis speed
2156
2157 F1(F2)=Master (slave) axis speed (Hz)
2158
2159 D1(D2)=Master (slave) axis diameter
2160
2161 R1 (R2) = master (slave) axis pulse number per revolution
2162
2163 Calculation method two:
2164
2165 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm The number of pulses required by the spindle
2166 )))
2167 |(% style="width:94px" %)Address 7
2168 |(% rowspan="2" style="width:113px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:199px" %)Slave axis maximum magnification limit|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
2169 |(% style="width:94px" %)Address 9
2170 |(% rowspan="2" style="width:113px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:199px" %)Acceleration curve|(% colspan="2" %)Integer|(((
2171 0: constant acceleration curve, the speed curve is T type
2172
2173 1: Constant jerk curve, the speed curve is S type
2174 )))
2175 |(% style="width:94px" %)Address 11|(% style="width:199px" %)CAM curve|(% colspan="2" %)Integer|Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the tracking RightCam and the return LeftCam curve type are defaulted and can not be set)
2176 |(% style="width:113px" %)Parameter 7|(% style="width:94px" %)Address 12|(% style="width:199px" %)Resolution|(% colspan="2" %)Integer|Range [62,511]
2177 |(% style="width:113px" %) |(% style="width:94px" %)Address 13|(% style="width:199px" %)Reserved|(% colspan="2" %)Reserved|Reserved
2178 |(% rowspan="2" style="width:113px" %)Parameter 8|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:199px" %)Synchronization zone start position|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2179 |(% style="width:94px" %)Address 15
2180 |(% rowspan="2" style="width:113px" %)Parameter 9|(% style="width:94px" %)Address 16|(% colspan="2" rowspan="2" style="width:199px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2181 |(% style="width:94px" %)Address 17
2182 |(% rowspan="2" style="width:113px" %)Parameter 11|(% style="width:94px" %)Address 20|(% colspan="2" rowspan="2" style="width:199px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2183 The maximum magnification of the actual operation of slave axis:
2184
2185 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2186 )))
2187 |(% style="width:94px" %)Address 21
2188
2189 **{{id name="OLE_LINK387"/}}S type acceleration and deceleration curve parameter table**
2190
2191 (% class="table-bordered" %)
2192 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
2193 |(% style="width:110px" %)**Parameter**|(% style="width:104px" %)**Offset address**|(% style="width:252px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
2194 |(% rowspan="2" style="width:110px" %)Parameter 1|(% style="width:104px" %)Address 0|(% rowspan="2" style="width:252px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
2195 |(% style="width:104px" %)Address 1
2196 |(% rowspan="2" style="width:110px" %)Parameter 2|(% style="width:104px" %)Address 2|(% rowspan="2" style="width:252px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
2197 |(% style="width:104px" %)Address 3
2198 |(% rowspan="2" style="width:110px" %)Parameter 3|(% style="width:104px" %)Address 4|(% rowspan="2" style="width:252px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)2 to 32767
2199 |(% style="width:104px" %)Address 5
2200 |(% style="width:110px" %)Parameter 4|(% style="width:104px" %)Address 6|(% style="width:252px" %)Accelerated time|16-bit integer|Pulse acceleration time|ms|2 to 32767
2201 |(% style="width:110px" %)Parameter 5|(% style="width:104px" %)Address 7|(% style="width:252px" %)Deceleration time|16-bit integer|Pulse deceleration time|ms|50 to 511
2202 |(% style="width:110px" %)Parameter 6|(% style="width:104px" %)Address 8|(% style="width:252px" %)Resolution|16-bit integer|Pulse resolution|Length|51 to 512
2203 |(% style="width:110px" %)Parameter 7|(% style="width:104px" %)Address 9|(% style="width:252px" %)Reserved|Reserved|Reserved| |
2204 |(% rowspan="2" style="width:110px" %)Parameter 8|(% style="width:104px" %)Address 10|(% rowspan="2" style="width:252px" %)Number of pulses of spindle in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of spindle in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
2205 \\Internally generated
2206 |(% style="width:104px" %)Address 11
2207 |(% rowspan="2" style="width:110px" %)Parameter 9|(% style="width:104px" %)Address 12|(% rowspan="2" style="width:252px" %)Number of pulses of slave axis in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of slave axis in the last segment(high and low)|(% rowspan="2" %)Pulse
2208 |(% style="width:104px" %)Address 13
2209 |(% rowspan="2" style="width:110px" %)Parameter 10|(% style="width:104px" %)Address 14|(% rowspan="2" style="width:252px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The time span when outputting pulses at a constant speed|(% rowspan="2" %)Pulse
2210 |(% style="width:104px" %)Address 15
2211 |(% rowspan="2" style="width:110px" %)Parameter 11|(% style="width:104px" %)Address 16|(% rowspan="2" style="width:252px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The maximum speed of curve during operation|(% rowspan="2" %)Hz
2212 |(% style="width:104px" %)Address 17
2213 |(% style="width:110px" %)Parameter 12|(% style="width:104px" %)Address 18|(% style="width:252px" %)Reserved| | | |
2214 |(% style="width:110px" %)Parameter 13|(% style="width:104px" %)Address 19|(% style="width:252px" %)Curve generation result| | | |
2215
2216 **{{id name="4、指定关键点生成表格"/}}4 Specified key points generate a table**
2217
2218 (% class="table-bordered" %)
2219 |(% colspan="6" %)**Specified key points generate table parameters**
2220 |(% colspan="2" %)**Address**|**Name**|**Length**|**Instruction**|**Range**
2221 |(% colspan="2" %)S0|Curve generation result|Single word|(((
2222 ~>0: The curve is generated successfully
2223
2224 <0: Failed to generate the curve
2225 )))|
2226 |(% colspan="2" %)S0+1|Error parameter location|Single word| |
2227 |(% colspan="2" %)S0+2|Total resolution|Single word| |10 to 511
2228 |(% colspan="2" %)S0+3|Number of key points (n)|Single word| |1 to 10
2229 |(% colspan="2" %)S0+4|(% rowspan="2" %)Start position of slave axis|(% rowspan="2" %)Double word|(% rowspan="2" %)Set the start offset position of slave axis|(% rowspan="2" %)Reserved
2230 |(% colspan="2" %)S0+5
2231 |(% colspan="2" %)S0+6|Spindle segment 0|Single word|(% rowspan="2" %)The master/slave axis of segment 0 is always 0|(% rowspan="2" %)Reserved
2232 |(% colspan="2" %)S0+7|Slave axis segment 0|Single word
2233 |(% rowspan="6" %)(((
2234
2235
2236 Key
2237
2238 point 1
2239 )))|S0+8|(% rowspan="2" %)Spindle segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 1|(% rowspan="2" %)32-bit integer
2240 |S0+9
2241 |S0+10|(% rowspan="2" %)Slave axis segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 1|(% rowspan="2" %)32-bit integer
2242 |S0+11
2243 |S0+12|Curve type of segment 1|Single word|*1|
2244 |S0+13|Resolution of segment 1|Single word|*2|
2245 |(% rowspan="6" %)(((
2246
2247
2248 Key
2249
2250 Point 2
2251 )))|S0+14|(% rowspan="2" %)Spindle segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 2|(% rowspan="2" %)32-bit integer
2252 |S0+15
2253 |S0+16|(% rowspan="2" %)Slave axis segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 2|(% rowspan="2" %)32-bit integer
2254 |S0+17
2255 |S0+18|Curve type of segment 2|Single word|*1|
2256 |S0+19|Resolution of segment 2|Single word|*2|
2257 | |......|......|....|......|......
2258 |(% rowspan="6" %)(((
2259
2260
2261 Key
2262
2263 point N
2264 )))|S0+n*6+2|(% rowspan="2" %)Spindle segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment N|(% rowspan="2" %)32-bit integer
2265 |S0+n*6+3
2266 |S0+n*6+4|(% rowspan="2" %)Slave axis segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment N|(% rowspan="2" %)32-bit integer
2267 |S0+n*6+5
2268 |S0+n*6+6|Curve type of segment N|Single word|*1|
2269 |S0+n*6+7|Resolution of segment N|Single word|*2|