Wiki source code of 06 Operation

Version 19.1 by Joey on 2022/06/10 14:54

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5
6 |**No.**|**Content**
7 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 |1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 |2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 |3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 |4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 |5|Servo drive and servo motor must be grounded reliably.
13 |6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 |7|The force of all cables is within the specified range.
15 |8|The wiring terminals have been insulated.
16 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 |1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 |2|The servo drive and external braking resistor are not placed on combustible objects.
19 |3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20
21 Table 6-1 Check contents before operation
22
23 == **Power-on** ==
24
25 **(1) Connect the main circuit power supply**
26
27 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
28
29 If the drive panel displays other fault codes, please refer to __[[“10 Faults>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/10%20Malfunctions/#HFaultandwarningcodetable]]__” to analyze and eliminate the cause of the fault.
30
31 **(2) Set the servo drive enable (S-ON) to invalid (OFF)**
32
33 == **Jog operation** ==
34
35 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
36
37 **(1) Panel jog operation**
38
39 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/05%20Panel/#HJogoperation]]__.
40
41 **(2) Jog operation of servo debugging platform**
42
43 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44
45
46 (% class="table-bordered" %)
47 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
48 **Setting method**
49 )))|(% style="text-align:center; vertical-align:middle" %)(((
50 **Effective time**
51 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 |(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
53 Operation setting
54 )))|(% style="text-align:center; vertical-align:middle" %)(((
55 Effective immediately
56 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
57
58 Table 6-2 JOG speed parameter
59
60 == **Rotation direction selection** ==
61
62 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63
64 (% class="table-bordered" %)
65 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
66 **Setting method**
67 )))|(% style="text-align:center; vertical-align:middle" %)(((
68 **Effective time**
69 )))|(% style="text-align:center; vertical-align:middle" %)(((
70 **Default value**
71 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 |(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
73 Shutdown setting
74 )))|(% style="text-align:center; vertical-align:middle" %)(((
75 Effective immediately
76 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
77 Forward rotation: Face the motor shaft to watch
78
79 0: standard setting (CW is forward rotation)
80
81 1: reverse mode (CCW is forward rotation)
82 )))|(% style="text-align:center; vertical-align:middle" %)-
83
84 Table 6-3 Rotation direction parameters** **
85
86 == **Braking resistor** ==
87
88 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
89
90 The basis for judging whether the braking resistor is built-in or external.
91
92 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94
95 (% class="table-bordered" %)
96 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
97 **Setting method**
98 )))|(% style="text-align:center; vertical-align:middle" %)(((
99 **Effective time**
100 )))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 |(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
102 Operation setting
103 )))|(% style="text-align:center; vertical-align:middle" %)(((
104 Effective immediately
105 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
106 0: use built-in braking resistor
107
108 1: use external braking resistor and natural cooling
109
110 2: use external braking resistor and forced air cooling; (cannot be set)
111
112 3: No braking resistor is used, it is all absorbed by capacitor.
113 )))|(% style="text-align:center; vertical-align:middle" %)-
114 |(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 |(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
116 Operation setting
117 )))|(% style="text-align:center; vertical-align:middle" %)(((
118 Effective immediately
119 )))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 |(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
121 Operation setting
122 )))|(% style="text-align:center; vertical-align:middle" %)(((
123 Effective immediately
124 )))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
125
126 Table 6-4 Braking resistor parameters
127
128 == **Servo operation** ==
129
130 **(1) Set the servo enable (S-ON) to valid (ON)**
131
132 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
133
134 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
135
136 **(2) Input the instruction and the motor rotates**
137
138 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/]], the motor could work as expected.
139
140 **(3) Timing diagram of power on**
141
142 (% style="text-align:center" %)
143 [[image:image-20220608163014-1.png]]
144
145 Figure 6-1 Timing diagram of power on
146
147 == **Servo shutdown** ==
148
149 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150
151 (% class="table-bordered" %)
152 |Shutdown mode|Shutdown description|Shutdown characteristics
153 |Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 |Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155
156 Table 6-5 Comparison of two shutdown modes
157
158 (% class="table-bordered" %)
159 |(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 |(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161
162 Table 6-6 Comparison of two shutdown status
163
164 **(1) Servo enable (S-ON) OFF shutdown**
165
166 The related parameters of the servo OFF shutdown mode are shown in the table below.
167
168 (% class="table-bordered" %)
169 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
170 **Setting method**
171 )))|(% style="text-align:center; vertical-align:middle" %)(((
172 **Effective time**
173 )))|(% style="text-align:center; vertical-align:middle" %)(((
174 **Default value**
175 )))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 |(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
177 Shutdown
178
179 setting
180 )))|(% style="text-align:center; vertical-align:middle" %)(((
181 Effective
182
183 immediately
184 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
185 0: Free shutdown, and the motor shaft remains free status.
186
187 1: Zero-speed shutdown, and the motor shaft remains free status.
188 )))|(% style="text-align:center; vertical-align:middle" %)-
189
190 Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191
192 **(2) Emergency shutdown**
193
194 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration".
195
196 **(3) Overtravel shutdown**
197
198 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
199
200 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
201
202 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203
204 (% class="table-bordered" %)
205 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
206 **Setting method**
207 )))|(% style="text-align:center; vertical-align:middle" %)(((
208 **Effective time**
209 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 |(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
211 0: OFF (not used)
212
213 01: S-ON servo enable
214
215 02: A-CLR fault and Warning Clear
216
217 03: POT forward drive prohibition
218
219 04: NOT Reverse drive prohibition
220
221 05: ZCLAMP Zero speed
222
223 06: CL Clear deviation counter
224
225 07: C-SIGN Inverted instruction
226
227 08: E-STOP Emergency stop
228
229 09: GEAR-SEL Electronic Gear Switch 1
230
231 10: GAIN-SEL gain switch
232
233 11: INH Instruction pulse prohibited input
234
235 12: VSSEL Vibration control switch input
236
237 13: INSPD1 Internal speed instruction selection 1
238
239 14: INSPD2 Internal speed instruction selection 2
240
241 15: INSPD3 Internal speedinstruction selection 3
242
243 16: J-SEL inertia ratio switch (not implemented yet)
244
245 17: MixModesel mixed mode selection
246
247 20: Internal multi-segment position enable signal
248
249 21: Internal multi-segment position selection 1
250
251 22: Internal multi-segment position selection 2
252
253 23: Internal multi-segment position selection 3
254
255 24: Internal multi-segment position selection 4
256
257 Others: reserved
258 )))|(% style="text-align:center; vertical-align:middle" %)-
259 |(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
260 Effective immediately
261 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
262 DI port input logic validity function selection.
263
264 0: Normally open input. Active low level (switch on);
265
266 1: Normally closed input. Active high level (switch off);
267 )))|(% style="text-align:center; vertical-align:middle" %)-
268 |(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
269 Effective immediately
270 )))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
271 Select the DI_3 port type to enable
272
273 0: Hardware DI_3 input terminal
274
275 1: virtual VDI_3 input terminal
276 )))|(% style="text-align:center; vertical-align:middle" %)-
277
278 (% class="table-bordered" %)
279 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
280 Operation setting
281 )))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
282 again Power-on
283 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
284 0 off (not used)
285
286 01: SON Servo enable
287
288 02: A-CLR Fault and Warning Clear
289
290 03: POT Forward drive prohibition
291
292 04: NOT Reverse drive prohibition
293
294 05: ZCLAMP Zero speed
295
296 06: CL Clear deviation counter
297
298 07: C-SIGN Inverted instruction
299
300 08: E-STOP Emergency shutdown
301
302 09: GEAR-SEL Electronic Gear Switch 1
303
304 10: GAIN-SEL gain switch
305
306 11: INH Instruction pulse prohibited input
307
308 12: VSSEL Vibration control switch input
309
310 13: INSPD1 Internal speed instruction selection 1
311
312 14: INSPD2 Internal speed instruction selection 2
313
314 15: INSPD3 Internal speed instruction selection 3
315
316 16: J-SEL inertia ratio switch (not implemented yet)
317
318 17: MixModesel mixed mode selection
319
320 20: Internal multi-segment position enable signal
321
322 21: Internal multi-segment position selection 1
323
324 22: Internal multi-segment position selection 2
325
326 23: Internal multi-segment position selection 3
327
328 24: Internal multi-segment position selection 4
329
330 Others: reserved
331 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
333 Effective immediately
334 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
335 DI port input logic validity function selection.
336
337 0: Normally open input. Active low level (switch on);
338
339 1: Normally closed input. Active high level (switch off);
340 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 |(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
342 Effective immediately
343 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
344 Select the DI_4 port type to enable
345
346 0: Hardware DI_4 input terminal
347
348 1: virtual VDI_4 input terminal
349 )))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
350
351 Table 6-8 DI3 and DI4 channel parameters
352
353 **(4) Malfunction shutdown**
354
355 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
356
357 == **Brake device** ==
358
359 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360
361 (% class="table-bordered" %)
362 |(((
363 (% style="text-align:center" %)
364 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
365 )))
366 |(((
367 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
368
369 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
370
371 ✎The brake coil has no polarity;
372
373 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
374
375 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
376 )))
377
378 **(1) Wiring of brake device**
379
380 The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381
382 (% style="text-align:center" %)
383 [[image:image-20220608163136-2.png]]
384
385 Figure 6-2 VD2B servo drive brake wiring
386
387 (% class="table-bordered" %)
388 |(((
389 (% style="text-align:center" %)
390 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
391 )))
392 |(((
393 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
394
395 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
396
397 ✎It is recommended to use cables above 0.5 mm².
398 )))
399
400 **(2) Brake software setting**
401
402 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
403
404 Related function code is as below.
405
406 (% class="table-bordered" %)
407 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
408 **Effective time**
409 )))
410 |(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
411 BRK-OFF Brake output
412 )))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
413
414 Table 6-2 Relevant function codes for brake setting
415
416 (% class="table-bordered" %)
417 |(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 **Setting method**
419 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
420 **Effective time**
421 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
423 Operation setting
424 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
426 Operation setting
427 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
429 Operation setting
430 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
431 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432
433 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 )))|(% style="text-align:center; vertical-align:middle" %)rpm
435 |(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
436 Operation setting
437 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
438 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439
440 When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 )))|(% style="text-align:center; vertical-align:middle" %)ms
442
443 Table 6-9 Brake setting function codes
444
445 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
446
447 **(3) Servo drive brake timing in normal state**
448
449 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
450
451 1) Brake timing when servo motor is stationary
452
453 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454
455 (% class="table-bordered" %)
456 |(((
457 (% style="text-align:center" %)
458 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
459 )))
460 |(((
461 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
462
463 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 )))
465
466 (% style="text-align:center" %)
467 [[image:image-20220608163304-3.png]]
468
469 Figure 6-3 Brake Timing of when the motor is stationary
470
471 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
472
473 2) The brake timing when servo motor rotates
474
475 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476
477 (% class="table-bordered" %)
478 |(((
479 (% style="text-align:center" %)
480 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
481 )))
482 |(((
483 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
484
485 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
486
487 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
488
489 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
490
491 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 )))
493
494 (% style="text-align:center" %)
495 [[image:image-20220608163425-4.png]]
496
497 Figure 6-4 Brake timing when the motor rotates
498
499 **(4) Brake timing when the servo drive fails**
500
501 The brake timing (free shutdown) in the fault status is as follows.
502
503 (% style="text-align:center" %)
504 [[image:image-20220608163541-5.png]]
505
506 Figure 6-5 The brake timing (free shutdown) in the fault state
507
508 = **Position control mode** =
509
510 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511
512 (% style="text-align:center" %)
513 [[image:image-20220608163643-6.png]]
514
515 Figure 6-6 Position control diagram
516
517 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518
519 (% class="table-bordered" %)
520 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
521 **Setting method**
522 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
523 **Effective time**
524 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 |(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
526 Operation setting
527 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
528 immediately Effective
529 )))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
530 0: position control
531
532 2: speed control
533
534 3: torque control
535
536 4: position/speed mix control
537
538 5: position/torque mix control
539
540 6: speed /torque mix control
541 )))|(% style="text-align:center; vertical-align:middle" %)-
542
543 Table 6-10 Control mode parameters
544
545 == **Position instruction input setting** ==
546
547 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548
549 (% class="table-bordered" %)
550 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
551 **Setting method**
552 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
553 **Effective time**
554 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 |(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
556 Operation setting
557 )))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
558 immediately Effective
559 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
560 0: pulse instruction
561
562 1: internal position instruction
563 )))|(% style="text-align:center; vertical-align:middle" %)-
564
565 Table 6-11 Position instruction source parameter
566
567 **(1) The source of position instruction is pulse instruction (P01-06=0)**
568
569 1) Low-speed pulse instruction input
570
571 (% class="table-bordered" %)
572 |(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
573 |(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 |(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575
576 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577
578 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579
580 (% class="table-bordered" %)
581 |(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 |(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 |(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584
585 Table 6-12 Pulse input specifications
586
587 1.Differential input
588
589 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590
591 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
592
593 Figure 6-8 Differential input connection
594
595 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
596
597 2.Open collector input
598
599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600
601 [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
602
603 Figure 6-9 Open collector input connection
604
605 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/04%20Wiring/#HPositioninstructioninputsignal]]__”
606
607 2) Position pulse frequency and anti-interference level
608
609 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
610
611 (% style="text-align:center" %)
612 [[image:image-20220608163952-8.png]]
613
614 Figure 6-10 Example of filtered signal waveform
615
616 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
617
618 (% class="table-bordered" %)
619 |(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
620 **Setting method**
621 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
622 **Effective time**
623 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
624 |(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
625 Shutdown setting
626 )))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
627 Effective immediately
628 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
629 |(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
630 Operation setting
631 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
632 Power-on again
633 )))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
634 Set the anti-interference level of external pulse instruction.
635
636 0: no filtering;
637
638 1: Filtering time 128ns
639
640 2: Filtering time 256ns
641
642 3: Filtering time 512ns
643
644 4: Filtering time 1.024us
645
646 5: Filtering time 2.048us
647
648 6: Filtering time 4.096us
649
650 7: Filtering time 8.192us
651
652 8: Filtering time 16.384us
653 )))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
654 |(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
655 |VD2F: Filtering time 25.5us
656
657 Table 6-13 Position pulse frequency and anti-interference level parameters
658
659 3) Position pulse type selection
660
661 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
662
663 (% class="table-bordered" %)
664 |(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
665 **Setting method**
666 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
667 **Effective time**
668 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
669 |(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
670 Operation setting
671 )))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
672 Power-on again
673 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
674 0: direction + pulse (positive logic)
675
676 1: CW/CCW
677
678 2: A, B phase quadrature pulse (4 times frequency)
679
680 3: Direction + pulse (negative logic)
681
682 4: CW/CCW (negative logic)
683
684 5: A, B phase quadrature pulse (4 times frequency negative logic)
685 )))|(% style="text-align:center; vertical-align:middle" %)-
686
687 Table 6-14 Position pulse type selection parameter
688
689 (% class="table-bordered" %)
690 |(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
691 |(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
692 Direction + pulse
693
694 (Positive logic)
695 )))|(% style="text-align:center; vertical-align:middle" %)(((
696 PULSE
697
698 SIGN
699 )))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_da702cd5792c6189.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_da702cd5792c6189.gif"]]
700 |(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
701 PULSE (CW)
702
703 SIGN (CCW)
704 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a59bd612219726ff.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a59bd612219726ff.gif"]]
705 |(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
706 AB phase orthogonal
707
708 pulse (4 times frequency)
709 )))|(% style="text-align:center; vertical-align:middle" %)(((
710 PULSE (Phase A)
711
712 SIGN (Phase B)
713 )))|(% style="text-align:center; vertical-align:middle" %)(((
714 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f35bccfc547cf59c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f35bccfc547cf59c.gif"]]
715
716 Phase A is 90° ahead of Phase B
717 )))|(% style="text-align:center; vertical-align:middle" %)(((
718 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_41687fb2387833e7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_41687fb2387833e7.gif"]]
719
720 Phase B is 90° ahead of Phase A
721 )))
722 |(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
723 Direction + pulse
724
725 (Negative logic)
726 )))|(% style="text-align:center; vertical-align:middle" %)(((
727 PULSE
728
729 SIGN
730 )))|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_7d2b03d0fb959ea6.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_7d2b03d0fb959ea6.gif"]]|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_42312f2433c2ebf8.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_42312f2433c2ebf8.gif"]]
731 |(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
732 CW/CCW
733
734 (Negative logic)
735 )))|(% style="text-align:center; vertical-align:middle" %)(((
736 PULSE (CW)
737
738 SIGN (CCW)
739 )))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_8218481384864bcd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_8218481384864bcd.gif"]]
740 |(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
741 AB phase orthogonal
742
743 pulse (4 times frequency negative logic)
744 )))|(% style="text-align:center; vertical-align:middle" %)(((
745 PULSE (Phase A)
746
747 SIGN (Phase B)
748 )))|(% style="text-align:center; vertical-align:middle" %)(((
749 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_552d434eda0cc25a.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_552d434eda0cc25a.gif"]]
750
751 B phase is ahead of A phase by 90°
752 )))|(% style="text-align:center; vertical-align:middle" %)(((
753 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d1de574238d8caf9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_d1de574238d8caf9.gif"]]
754
755 A phase is ahead of B phase by 90°
756 )))
757
758 Table 6-15 Pulse description
759
760 **(2) The source of position instruction is internal position instruction (P01-06=1)**
761
762 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __[[Figure 6-11>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6173c39e1ccf532e.gif?rev=1.1]]__.
763
764 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
765
766 (% style="text-align:center" %)
767 [[image:image-20220608164116-9.png]]
768
769 Figure 6-11 The setting process of multi-segment position
770
771 1) Set multi-segment position running mode
772
773 (% class="table-bordered" %)
774 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
775 **Setting method**
776 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
777 **Effective time**
778 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
779 |(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
780 Shutdown setting
781 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
782 Effective immediately
783 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
784 0: Single running
785
786 1: Cycle running
787
788 2: DI switching running
789 )))|(% style="text-align:center; vertical-align:middle" %)-
790 |(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
791 Shutdown setting
792 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
793 Effective immediately
794 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
795 |(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
796 Shutdown setting
797 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
798 Effective immediately
799 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
800 |(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
801 Shutdown setting
802 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
803 Effective immediately
804 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
805 0: Run the remaining segments
806
807 1: Run again from the start segment
808 )))|(% style="text-align:center; vertical-align:middle" %)-
809 |(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
810 Shutdown setting
811 )))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
812 Effective immediately
813 )))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
814 0: Relative position instruction
815
816 1: Absolute position instruction
817 )))|(% style="text-align:center; vertical-align:middle" %)-
818
819 Table 6-16 multi-segment position running mode parameters
820
821 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
822
823 ~1. Single running
824
825 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_b3223c0806f5c6c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_b3223c0806f5c6c.gif"]] are the displacements of the 1st segment and the 2nd segment respectively
826
827 (% style="text-align:center" %)
828 [[image:image-20220608164226-10.png]]
829
830 Figure 6-12 Single running curve (P07-02=1, P07-03=2)
831
832 2. Cycle running
833
834 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_a2646a1ce199bcaa.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_a2646a1ce199bcaa.gif"]] are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
835
836 (% style="text-align:center" %)
837 [[image:image-20220608164327-11.png]]
838
839 Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
840
841 |(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
842 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
843
844 3. DI switching running
845
846 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
847
848 (% class="table-bordered" %)
849 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
850 |(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
851 |(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
852 |(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
853 |(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
854
855 Table 6-17 DI function code
856
857 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
858
859 (% class="table-bordered" %)
860 |(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
861 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
862 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
863 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
864 |(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
865 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
866
867 Table 6-18 INPOS corresponds to running segment number
868
869 The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
870
871 (% style="text-align:center" %)
872 [[image:image-20220608164545-12.png]]
873
874 Figure 6-14 DI switching running curve
875
876 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
877
878 **A. Run the remaining segments**
879
880 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
881
882 (% style="text-align:center" %)
883 [[image:image-20220608164847-13.png]]
884
885 Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
886
887 (% style="text-align:center" %)
888 [[image:image-20220608165032-14.png]]
889
890 Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
891
892 **B. Run again from the start segment**
893
894 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
895
896 (% style="text-align:center" %)
897 [[image:image-20220608165343-15.png]]
898
899 Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
900
901 (% style="text-align:center" %)
902 [[image:image-20220608165558-16.png]]
903
904 Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
905
906 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
907
908 A. Relative position instruction
909
910 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
911
912 |(((
913 (% style="text-align:center" %)
914 [[image:image-20220608165710-17.png]]
915 )))|(((
916 (% style="text-align:center" %)
917 [[image:image-20220608165749-18.png]]
918 )))
919 |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
920
921 B. Absolute position instruction
922
923 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
924
925 |(((
926 (% style="text-align:center" %)
927 [[image:image-20220608165848-19.png]]
928 )))|(((
929 (% style="text-align:center" %)
930 [[image:image-20220608170005-20.png]]
931 )))
932 |Figure 6-21 Absolute indication|Figure 6-22 Displacement
933
934 2) Multi-segment position running curve setting
935
936 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
937
938 (% class="table-bordered" %)
939 |(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
940 **Setting method**
941 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
942 **Effective time**
943 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
944 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
945 1st segment
946
947 displacement
948 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
949 Operation setting
950 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
951 Effective immediately
952 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
953 -2147483647 to
954
955 2147483646
956 )))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
957 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
958 Operation setting
959 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
960 Effective immediately
961 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
962 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
963 Operation setting
964 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
965 Effective immediately
966 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
967 |(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
968 Operation setting
969 )))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
970 Effective immediately
971 )))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
972
973 Table 6-19 The 1st position operation curve parameters table
974
975 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
976
977 (% style="text-align:center" %)
978 [[image:image-20220608170149-21.png]]
979
980 Figure 6-23 The 1st segment running curve of motor
981
982 3) multi-segment position instruction enable
983
984 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
985
986 (% class="table-bordered" %)
987 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
988 |(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
989 DI port logic invalid: Does not affect the current operation of the servo motor.
990
991 DI port logic valid: Motor runs multi-segment position
992 )))
993
994 (% style="text-align:center" %)
995 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
996
997 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
998
999 == **Electronic gear ratio** ==
1000
1001 **(1) Definition of electronic gear ratio**
1002
1003 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1004
1005 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1006
1007 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1008
1009 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_36eea050640062e9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_36eea050640062e9.gif"]] (6-1)
1010
1011 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2cd5305a8be2e1f2.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2cd5305a8be2e1f2.gif"]] (6-2)
1012
1013 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_5e7b8108abd1a9ed.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_5e7b8108abd1a9ed.gif"]] (6-3)
1014
1015 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1016
1017 **(2) Setting steps of electronic gear ratio**
1018
1019 (% style="text-align:center" %)
1020 [[image:image-20220608170320-22.png]]
1021
1022 Figure 6-24 Setting steps of electronic gear ratio
1023
1024 Step1: Confirm the mechanical parameters including the reduction ratio, the ball screw lead, gear diameter in the gear drive, and pulley diameter in the pulley drive.
1025
1026 Step2: Confirm the resolution of servo motor encoder.
1027
1028 Step3: Confirm the parameters such as mechanical specifications, positioning accuracy, etc, and determine the load displacement corresponding to one position instruction output by the host computer.
1029
1030 Step4: Combine the mechanical parameters and the load displacement corresponding to one position instruction, calculate the position instruction value required for one rotation of the load shaft.
1031
1032 Step5: Calculate the value of electronic gear ratio according to formula below.
1033
1034 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_783be3e5149faf1e.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_783be3e5149faf1e.gif"]]
1035
1036 **(3) lectronic gear ratio switch setting**
1037
1038
1039 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1040
1041 (% class="table-bordered" %)
1042 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1043 **Setting method**
1044 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1045 **Effective time**
1046 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1047 |(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1048 Shutdown setting
1049 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1050 Effective immediately
1051 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1052 Instruction pulse
1053
1054 unit
1055 )))
1056 |(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1057 Electronic gear 1
1058
1059 numerator
1060 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1061 Effective immediately
1062 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1063 |(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1064 Electronic gear 1
1065
1066 denominator
1067 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1068 Operation setting
1069 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1070 Effective immediately
1071 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1072 |(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1073 Electronic gear 2
1074
1075 numerator
1076 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1077 Effective immediately
1078 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1079 |(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1080 Electronic gear 2
1081
1082 denominator
1083 )))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1084 Effective immediately
1085 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1086
1087 Table 6-20 Electronic gear ratio function code
1088
1089 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1090
1091 (% class="table-bordered" %)
1092 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1093 |(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1094 DI port logic invalid: electronic gear ratio 1
1095
1096 DI port logic valid: electronic gear ratio 2
1097 )))
1098
1099 Table 6-21 Switching conditions of electronic gear ratio group
1100
1101 |(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]]
1102 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_936c435aaa56afe9.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_936c435aaa56afe9.gif"]]
1103 |(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f7cc7443de5ae1fd.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f7cc7443de5ae1fd.gif"]]
1104 |(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3b79819a4d341e9c.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3b79819a4d341e9c.gif"]]
1105
1106 Table 6-22 Application of electronic gear ratio
1107
1108 When the function code P00-16 is not 0, the electronic gear ratio [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_3c885bb1dd9f482d.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_3c885bb1dd9f482d.gif"]] is invalid.
1109
1110 == **Position instruction filtering** ==
1111
1112 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1113
1114 In the following situations, position instruction filtering should be added.
1115
1116 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1117 1. The pulse instruction frequency is low;
1118 1. When the electronic gear ratio is 10 times or more.
1119
1120 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1121
1122 (% style="text-align:center" %)
1123 [[image:image-20220608170455-23.png]]
1124
1125 Figure 6-25 Position instruction filtering diagram
1126
1127 (% class="table-bordered" %)
1128 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1129 **Setting method**
1130 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1131 **Effective time**
1132 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1133 |(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1134 Shutdown setting
1135 )))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1136 Effective immediately
1137 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1138 0: 1st-order low-pass filtering
1139
1140 1: average filtering
1141 )))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1142 |(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1143 Effective immediately
1144 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1145 |(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1146 Effective immediately
1147 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1148
1149 Table 6-23 Position instruction filter function code
1150
1151 == **Clearance of position deviation** ==
1152
1153 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1154
1155 Position deviation = (position instruction-position feedback) (encoder unit)
1156
1157 == **Position-related DO output function** ==
1158
1159 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1160
1161 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1162 **Positioning completion/positioning approach output**
1163
1164 (% class="wikigeneratedid" %)
1165 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1166
1167 (% style="text-align:center" %)
1168 [[image:image-20220608170550-24.png]]
1169
1170 Figure 6-26 Positioning completion signal output diagram
1171
1172 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1173
1174 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1175
1176 (% style="text-align:center" %)
1177 [[image:image-20220608170650-25.png]]
1178
1179 Figure 6-27 Positioning completion signal output with increased window filter time diagram
1180
1181 (% class="table-bordered" %)
1182 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1183 **Setting method**
1184 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1185 **Effective time**
1186 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1187 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1188 Operation setting
1189 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1190 Effective immediately
1191 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1192 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1193 Operation setting
1194 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1195 Effective immediately
1196 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1197 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1198 Operation setting
1199 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1200 Effective immediately
1201 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1202 |(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1203 Operation setting
1204 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1205 Effective immediately
1206 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1207
1208 Table 6-24 Function code parameters of positioning completion
1209
1210 (% class="table-bordered" %)
1211 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1212 |(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1213 |(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1214 P-NEAR positioning close
1215 )))|(% style="text-align:center; vertical-align:middle" %)(((
1216 Output this signal indicates that the servo drive position is close.
1217 )))
1218
1219 Table 6-25 Description of DO rotation detection function code
1220
1221 = **Speed control mode** =
1222
1223 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1224
1225 (% style="text-align:center" %)
1226 [[image:6.28.jpg||height="260" width="806"]]
1227
1228 Figure 6-28 Speed control block diagram
1229
1230 == **Speed instruction input setting** ==
1231
1232 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1233
1234 (% class="table-bordered" %)
1235 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1236 **Setting method**
1237 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1238 **Effective time**
1239 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1240 |(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1241 Shutdown setting
1242 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1243 Effective immediately
1244 )))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1245 0: internal speed instruction
1246
1247 1: AI_1 analog input (not supported by VD2F)
1248 )))|(% style="text-align:center; vertical-align:middle" %)-
1249
1250 Table 6-26 Speed instruction source parameter
1251
1252 **(1) Speed instruction source is internal speed instruction (P01-01=0)**
1253
1254 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1255
1256 (% class="table-bordered" %)
1257 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1258 **Setting method**
1259 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1260 **Effective time**
1261 )))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1262 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1263 Internal speed Instruction 0
1264 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1265 Operation setting
1266 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1267 Effective immediately
1268 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1269 Internal speed instruction 0
1270
1271 When DI input port:
1272
1273 15-INSPD3: 0
1274
1275 14-INSPD2: 0
1276
1277 13-INSPD1: 0,
1278
1279 select this speed instruction to be effective.
1280 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1281 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1282 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1283 Internal speed Instruction 1
1284 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1285 Operation setting
1286 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1287 Effective immediately
1288 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1289 Internal speed instruction 1
1290
1291 When DI input port:
1292
1293 15-INSPD3: 0
1294
1295 14-INSPD2: 0
1296
1297 13-INSPD1: 1,
1298
1299 Select this speed instruction to be effective.
1300 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1301 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1302 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1303 Internal speed Instruction 2
1304 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1305 Operation setting
1306 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1307 Effective immediately
1308 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1309 Internal speed instruction 2
1310
1311 When DI input port:
1312
1313 15-INSPD3: 0
1314
1315 14-INSPD2: 1
1316
1317 13-INSPD1: 0,
1318
1319 Select this speed instruction to be effective.
1320 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1321 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1322 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1323 Internal speed Instruction 3
1324 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1325 Operation setting
1326 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1327 Effective immediately
1328 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1329 Internal speed instruction 3
1330
1331 When DI input port:
1332
1333 15-INSPD3: 0
1334
1335 14-INSPD2: 1
1336
1337 13-INSPD1: 1,
1338
1339 Select this speed instruction to be effective.
1340 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1341 |(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1342
1343 (% class="table-bordered" %)
1344 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1345 Internal speed Instruction 4
1346 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1347 Operation setting
1348 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1349 Effective immediately
1350 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1351 Internal speed instruction 4
1352
1353 When DI input port:
1354
1355 15-INSPD3: 1
1356
1357 14-INSPD2: 0
1358
1359 13-INSPD1: 0,
1360
1361 Select this speed instruction to be effective.
1362 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1363 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1364 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1365 Internal speed Instruction 5
1366 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1367 Operation setting
1368 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1369 Effective immediately
1370 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1371 Internal speed instruction 5
1372
1373 When DI input port:
1374
1375 15-INSPD3: 1
1376
1377 14-INSPD2: 0
1378
1379 13-INSPD1: 1,
1380
1381 Select this speed instruction to be effective.
1382 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1383 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1384 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1385 Internal speed Instruction 6
1386 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1387 Operation setting
1388 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1389 Effective immediately
1390 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1391 Internal speed instruction 6
1392
1393 When DI input port:
1394
1395 15-INSPD3: 1
1396
1397 14-INSPD2: 1
1398
1399 13-INSPD1: 0,
1400
1401 Select this speed instruction to be effective.
1402 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1403 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1404 |(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1405 Internal speed Instruction 7
1406 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1407 Operation setting
1408 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1409 Effective immediately
1410 )))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1411 Internal speed instruction 7
1412
1413 When DI input port:
1414
1415 15-INSPD3: 1
1416
1417 14-INSPD2: 1
1418
1419 13-INSPD1: 1,
1420
1421 Select this speed instruction to be effective.
1422 )))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1423 |(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1424
1425 Table 6-27 Internal speed instruction parameters
1426
1427 ✎**Note: **“*” means the set range of VD2F servo drive.
1428
1429 (% class="table-bordered" %)
1430 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1431 |(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1432 |(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1433 |(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1434
1435 Table 6-28 DI multi-speed function code description
1436
1437 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1438
1439 (% class="table-bordered" %)
1440 |(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1441 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1442 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1443 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1444 |(% colspan="5" %)......
1445 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1446
1447 Table 6-29 Correspondence between INSPD bits and segment numbers
1448
1449 (% style="text-align:center" %)
1450 [[image:image-20220608170845-26.png]]
1451
1452 Figure 6-29 Multi-segment speed running curve
1453
1454 **(2) Speed instruction source is internal speed instruction (P01-01=0)**
1455
1456 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1457
1458 (% style="text-align:center" %)
1459 [[image:image-20220608153341-5.png]]
1460
1461 Figure 6-30 Analog input circuit
1462
1463 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1464
1465 (% style="text-align:center" %)
1466 [[image:image-20220608170955-27.png]]
1467
1468 Figure 6-31 Analog voltage speed instruction setting steps
1469
1470 Explanation of related terms:
1471
1472 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1473
1474 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1475
1476 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1477
1478 (% style="text-align:center" %)
1479 [[image:image-20220608171124-28.png]]
1480
1481 Figure 6-32 AI_1 diagram before and after bias
1482
1483 (% class="table-bordered" %)
1484 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1485 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1486 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1487 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1488 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1489
1490 Table 6-30 AI_1 parameters
1491
1492 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1493
1494 == **Acceleration and deceleration time setting** ==
1495
1496 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1497
1498 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1499
1500 (% style="text-align:center" %)
1501 [[image:image-20220608171314-29.png]]
1502
1503 Figure 6-33 of acceleration and deceleration time diagram
1504
1505 Actual acceleration time T1 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f534257c8134eb35.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f534257c8134eb35.gif?rev=1.1]],,
1506
1507 Actual deceleration time T2 =[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_f696c4e8005b5d7.gif"]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]][[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1||alt="http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1"]],,[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_f696c4e8005b5d7.gif?rev=1.1]],,
1508
1509 (% class="table-bordered" %)
1510 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1511 **Setting method**
1512 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1513 **Effective time**
1514 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1515 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1516 Operation setting
1517 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1518 Effective immediately
1519 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1520 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1521 Operation setting
1522 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1523 Effective immediately
1524 )))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525
1526 Table 6-31 Acceleration and deceleration time parameters
1527
1528 == **Speed instruction limit** ==
1529
1530 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1531
1532 1. P01-10: Set the maximum speed limit value
1533 1. P01-12: Set forward speed limit value
1534 1. P01-13: Set reverse speed limit value
1535 1. The maximum speed of the motor: determined by motor model
1536
1537 The actual motor speed limit interval satisfies the following relationship:
1538
1539 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1540
1541 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1542
1543 (% class="table-bordered" %)
1544 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1545 **Setting method**
1546 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1547 **Effective time**
1548 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1549 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1550 Operation setting
1551 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1552 Effective immediately
1553 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1554 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1555 Operation setting
1556 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1557 Effective immediately
1558 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1560 Operation setting
1561 )))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1562 Effective immediately
1563 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564
1565 Table 6-32 Rotation speed related function codes
1566
1567 == **Zero-speed clamp function** ==
1568
1569 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1570
1571 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1572
1573 (% class="table-bordered" %)
1574 |(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1575 **Setting method**
1576 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1577 **Effective time**
1578 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1579 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1580 Zero-speed clamp function selection
1581 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1582 Operation setting
1583 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1584 Effective immediately
1585 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1586 Set the zero-speed clamp function. In speed mode:
1587
1588 0: Force the speed to 0;
1589
1590 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1591
1592 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1593
1594 3: Invalid, ignore zero-speed clamp input
1595 )))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1596 |(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1597 Zero-speed clamp speed threshold
1598 )))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1599 Operation setting
1600 )))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1601 Effective immediately
1602 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1603
1604 Table 6-33 Zero-speed clamp related parameters
1605
1606 (% style="text-align:center" %)
1607 [[image:image-20220608171549-30.png]]
1608
1609 Figure 6-34 Zero-speed clamp diagram
1610
1611 == **Speed-related DO output function** ==
1612
1613 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1614
1615 **(1) Rotation detection signal**
1616
1617 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1618
1619 (% style="text-align:center" %)
1620 [[image:image-20220608171625-31.png]]
1621
1622 Figure 6-35 Rotation detection signal diagram
1623
1624 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1625
1626 (% class="table-bordered" %)
1627 |(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1628 **Setting method**
1629 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1630 **Effective time**
1631 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1632 |(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1633 Rotation detection
1634
1635 speed threshold
1636 )))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1637 Operation setting
1638 )))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1639 Effective immediately
1640 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1641
1642 Table 6-34 Rotation detection speed threshold parameters
1643
1644 (% class="table-bordered" %)
1645 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1646 |(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1647 T-COIN
1648
1649 rotation detection
1650 )))|(((
1651 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1652
1653 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1654 )))
1655
1656 Table 6-35 DO rotation detection function code
1657
1658 **(2) Zero-speed signal**
1659
1660 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1661
1662 (% style="text-align:center" %)
1663 [[image:image-20220608171904-32.png]]
1664
1665 Figure 6-36 Zero-speed signal diagram
1666
1667 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1668
1669 (% class="table-bordered" %)
1670 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1671 **Setting method**
1672 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1673 **Effective time**
1674 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1675 |(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1676 Operation setting
1677 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1678 Effective immediately
1679 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1680
1681 Table 6-36 Zero-speed output signal threshold parameter
1682
1683 (% class="table-bordered" %)
1684 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1685 |(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1686 ZSP zero speed signal
1687 )))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1688
1689 Table 6-37 DO zero-speed signal function code
1690
1691 **(3) Speed consistent signal**
1692
1693 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1694
1695 (% style="text-align:center" %)
1696 [[image:image-20220608172053-33.png]]
1697
1698 Figure 6-37 Speed consistent signal diagram
1699
1700 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1701
1702 (% class="table-bordered" %)
1703 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1704 **Setting method**
1705 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1706 **Effective time**
1707 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1708 |(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1709 Operationsetting
1710 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1711 Effective immediately
1712 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1713
1714 Table 6-38 Speed consistent signal threshold parameters
1715
1716 (% class="table-bordered" %)
1717 |(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1718 |(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1719 U-COIN consistent speed
1720 )))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1721
1722 Table 6-39 DO speed consistent function code
1723
1724 **(4) Speed approach signal**
1725
1726 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1727
1728 (% style="text-align:center" %)
1729 [[image:image-20220608172207-34.png]]
1730
1731 Figure 6-38 Speed approaching signal diagram
1732
1733 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1734
1735 (% class="table-bordered" %)
1736 |(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1737 **Setting method**
1738 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1739 **Effective time**
1740 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1741 |(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1742 Operation setting
1743 )))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1744 Effective immediately
1745 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1746
1747 Table 6-40 Speed approaching signal threshold parameters
1748
1749 (% class="table-bordered" %)
1750 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1751 |(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1752 V-NEAR speed approach
1753 )))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1754
1755 Table 6-41 DO speed approach function code
1756
1757 = **Torque control mode** =
1758
1759 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1760
1761 (% style="text-align:center" %)
1762 [[image:image-20220608172405-35.png]]
1763
1764 Figure 6-39 Torque mode diagram
1765
1766 == **Torque instruction input setting** ==
1767
1768 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1769
1770 (% class="table-bordered" %)
1771 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1772 **Setting method**
1773 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1774 **Effective time**
1775 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1776 |(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1777 Shutdown setting
1778 )))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1779 Effective immediately
1780 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1781 0: internal torque instruction
1782
1783 1: AI_1 analog input(not supported by VD2F)
1784 )))|(% style="text-align:center; vertical-align:middle" %)-
1785
1786 Table 6-42 Torque instruction source parameter
1787
1788 **(1) Torque instruction source is internal torque instruction (P01-07=0)**
1789
1790 Torque instruction source is from inside, the value is set by function code P01-08.
1791
1792 (% class="table-bordered" %)
1793 |(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1794 **Setting method**
1795 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1796 **Effective time**
1797 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1798 |(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1799 Operation setting
1800 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1801 Effective immediately
1802 )))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1803
1804 Table 6-43 Torque instruction keyboard set value
1805
1806 **(2) Torque instruction source is internal torque instruction (P01-07=1)**
1807
1808 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1809
1810 (% style="text-align:center" %)
1811 [[image:image-20220608153646-7.png||height="213" width="408"]]
1812
1813 Figure 6-40 Analog input circuit
1814
1815 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1816
1817 (% style="text-align:center" %)
1818 [[image:image-20220608172502-36.png]]
1819
1820 Figure 6-41 Analog voltage torque instruction setting steps
1821
1822 Explanation of related terms:
1823
1824 Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1825
1826 Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1827
1828 Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1829
1830 (% style="text-align:center" %)
1831 [[image:image-20220608172611-37.png]]
1832
1833 Figure 6-42 AI_1 diagram before and after bias
1834
1835 (% class="table-bordered" %)
1836 |(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1837 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1838 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1839 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1840 |(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1841
1842 Table 6-44 AI_1 parameters
1843
1844 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1845
1846 == **Torque instruction filtering** ==
1847
1848 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1849
1850 (% class="table-bordered" %)
1851 |(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1852 **Setting method**
1853 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1854 **Effective time**
1855 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1856 |(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1857 Operation setting
1858 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1859 Effective immediately
1860 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1861
1862 Table 6-45 Torque filtering time constant parameter details
1863
1864 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1865
1866 (% style="text-align:center" %)
1867 [[image:image-20220608172646-38.png]]
1868
1869 Figure 6-43 Torque instruction-first-order filtering diagram
1870
1871 == **Torque instruction limit** ==
1872
1873 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1874
1875 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1876
1877 (% style="text-align:center" %)
1878 [[image:image-20220608172806-39.png]]
1879
1880 Figure 6-44 Torque instruction limit diagram
1881
1882 **(1) Set torque limit source**
1883
1884 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1885
1886 (% class="table-bordered" %)
1887 |(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1888 **Setting method**
1889 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1890 **Effective time**
1891 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1892 |(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1893 Torque limit source
1894 )))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1895 Shutdown setting
1896 )))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1897 Effective immediately
1898 )))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1899 0: internal value
1900
1901 1: AI_1 analog input
1902
1903 (not supported by VD2F)
1904 )))|(% style="text-align:center; vertical-align:middle" %)-
1905
1906 1) Torque limit source is internal torque instruction (P01-14=0)
1907
1908 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1909
1910 (% class="table-bordered" %)
1911 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1912 **Setting method**
1913 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1914 **Effective time**
1915 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1916 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1917 Forward torque limit
1918 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1919 Operation setting
1920 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1921 Effective immediately
1922 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1923 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1924 Reverse torque limit
1925 )))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1926 Operation setting
1927 )))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1928 Effective immediately
1929 )))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1930
1931 Table 6-46 Torque limit parameter details
1932
1933 2) Torque limit source is external (P01-14=1)
1934
1935 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
1936
1937 **(2) Set torque limit DO signal output**
1938
1939 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1940
1941 (% class="table-bordered" %)
1942 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1943 |(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1944 T-LIMIT in torque limit
1945 )))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1946
1947 Table 6-47 DO torque limit function codes
1948
1949 == **Speed limit in torque mode** ==
1950
1951 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
1952
1953 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1954
1955 |(((
1956 (% style="text-align:center" %)
1957 [[image:image-20220608172910-40.png]]
1958 )))|(((
1959 (% style="text-align:center" %)
1960 [[image:image-20220608173155-41.png]]
1961 )))
1962 |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1963
1964 (% class="table-bordered" %)
1965 |(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1966 **Setting method**
1967 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1968 **Effective time**
1969 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1970 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1971 Forward torque
1972
1973 limit in torque mode
1974 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1975 Operation setting
1976 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1977 Effective immediately
1978 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1979 Forward torque
1980
1981 limit in torque mode
1982 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1983 |(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1984 Reverse torque
1985
1986 limit in torque mode
1987 )))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1988 Operation setting
1989 )))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1990 Effective immediately
1991 )))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1992 Reverse torque
1993
1994 limit in torque mode
1995 )))|(% style="text-align:center; vertical-align:middle" %)0.1%
1996
1997 Table 6-48 Speed limit parameters in torque mode
1998
1999 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HSpeedinstructionlimit]]__.
2000
2001 == **Torque-related DO output functions** ==
2002
2003 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2004
2005 **Torque arrival**
2006
2007 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2008
2009 (% style="text-align:center" %)
2010 [[image:image-20220608173541-42.png]]
2011
2012 Figure 6-47 Torque arrival output diagram
2013
2014 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2015
2016 (% class="table-bordered" %)
2017 |(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2018 **Setting method**
2019 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2020 **Effective time**
2021 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2022 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2023 Torque arrival
2024
2025 threshold
2026 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2027 Operation setting
2028 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2029 Effective immediately
2030 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2031 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2032
2033 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2034
2035 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2036 )))|(% style="text-align:center; vertical-align:middle" %)%
2037 |(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2038 Torque arrival
2039
2040 hysteresis
2041 )))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2042 Operation setting
2043 )))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2044 Effective immediately
2045 )))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2046
2047 Table 6-49 Torque arrival parameters
2048
2049 (% class="table-bordered" %)
2050 |(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2051 |(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2052 T-COIN torque arrival
2053 )))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2054
2055 Table 6-50 DO Torque Arrival Function Code
2056
2057 = **Mixed control mode** =
2058
2059 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2060
2061 Position mode  Speed mode
2062
2063 Position mode  Torque mode
2064
2065 Speed mode  Torque mode
2066
2067 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2068
2069 (% class="table-bordered" %)
2070 |(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2071 **Setting method**
2072 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2073 **Effective time**
2074 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2075 |(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2076 Shutdown setting
2077 )))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2078 Shutdown setting
2079 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2080 1: Position control
2081
2082 2: Speed control
2083
2084 3: Torque control
2085
2086 4: Position/speed mixed control
2087
2088 5: Position/torque mixed control
2089
2090 6: Speed/torque mixed control
2091 )))|(% style="text-align:center; vertical-align:middle" %)-
2092
2093 Table 6-51 Mixed control mode parameters
2094
2095 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2096
2097 (% class="table-bordered" %)
2098 |(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2099 |(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2100 (% class="table-bordered" %)
2101 |(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2102 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2103 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2104 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2105 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2106 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2107 |(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2108 )))
2109
2110 Table 6-52 Description of DI function codes in control mode
2111
2112 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2113
2114 = **Absolute system** =
2115
2116 == **Overview** ==
2117
2118 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2119
2120 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2121
2122 == **Single-turn absolute value system** ==
2123
2124 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2125
2126 (% class="table-bordered" %)
2127 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2128 |(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2129
2130 Table 6-53 Single-turn absolute encoder information
2131
2132 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2133
2134 (% style="text-align:center" %)
2135 [[image:image-20220608173618-43.png]]
2136
2137 Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
2138
2139 == **Multi-turn absolute value system** ==
2140
2141 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2142
2143 (% class="table-bordered" %)
2144 |(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2145 |(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2146 |(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2147
2148 Table 6-54 Multi-turn absolute encoder information
2149
2150 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2151
2152 (% style="text-align:center" %)
2153 [[image:image-20220608173701-44.png]]
2154
2155 Figure 6-49 The relationship between encoder feedback position and rotating load position
2156
2157 == **Encoder feedback data** ==
2158
2159 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2160
2161 (% class="table-bordered" %)
2162 |(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2163 |(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2164 |(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2165 |(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2166
2167 Table 6-55 Encoder feedback data
2168
2169 == **Absolute value system encoder battery box use precautions** ==
2170
2171 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2172
2173 (% style="text-align:center" %)
2174 [[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e9fac7759607dce6.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_e9fac7759607dce6.png"]]
2175
2176 Figure 6-50 the encoder battery box
2177
2178 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time. The specific replacement method is as follows:
2179
2180 1. Step1 The servo drive is powered on and is in a non-operational state;
2181 1. Step2 Replace the battery;
2182 1. Step3 Set P10-03 to 1, and the drive will release A-92. It will run normally without other abnormal warnings.
2183
2184 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2185
2186 (% class="table-bordered" %)
2187 |(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2188 **Setting method**
2189 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2190 **Effective time**
2191 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2192 |(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2193 Shutdown setting
2194 )))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2195 Effective immediately
2196 )))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2197 0: No operation
2198
2199 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2200
2201 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2202 )))|(% style="text-align:center; vertical-align:middle" %)-
2203
2204 Table 6-56 Absolute encoder reset enable parameter
2205
2206 ✎**Note: **If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2207
2208 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2209
2210 = **Overview** =
2211
2212 == **VDI** ==
2213
2214 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2215
2216 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2217
2218 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2219
2220 (% style="text-align:center" %)
2221 [[image:image-20220608173804-46.png]]
2222
2223 Figure 6-51 VDI_1 setting steps
2224
2225 (% class="table-bordered" %)
2226 |(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2227 **Setting method**
2228 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2229 **Effective time**
2230 )))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2231 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2232 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2233
2234 VDI_1 input level:
2235
2236 0: low level
2237
2238 1: high level
2239 )))|(% style="text-align:center; vertical-align:middle" %)-
2240 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2241 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2242
2243 VDI_2 input level:
2244
2245 0: low level
2246
2247 1: high level
2248 )))|(% style="text-align:center; vertical-align:middle" %)-
2249 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2250 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2251
2252 VDI_3 input level:
2253
2254 0: low level
2255
2256 1: high level
2257 )))|(% style="text-align:center; vertical-align:middle" %)-
2258 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2259 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2260
2261 VDI_4 input level:
2262
2263 0: low level
2264
2265 1: high level
2266 )))|(% style="text-align:center; vertical-align:middle" %)-
2267 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2268 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2269
2270 VDI_5 input level:
2271
2272 0: low level
2273
2274 1: high level
2275 )))|(% style="text-align:center; vertical-align:middle" %)-
2276 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2277 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2278
2279 VDI_6 input level:
2280
2281 0: low level
2282
2283 1: high level
2284 )))|(% style="text-align:center; vertical-align:middle" %)-
2285 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2286 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2287
2288 VDI_7 input level:
2289
2290 0: low level
2291
2292 1: high level
2293 )))|(% style="text-align:center; vertical-align:middle" %)-
2294 |(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2295 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2296
2297 VDI_8 input level:
2298
2299 0: low level
2300
2301 1: high level
2302 )))|(% style="text-align:center; vertical-align:middle" %)-
2303
2304 Table 6-57 Virtual VDI parameters
2305
2306 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2307
2308 == **Port filtering time** ==
2309
2310 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2311
2312 (% class="table-bordered" %)
2313 |(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2314 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2476a4a02e6f0760.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_2476a4a02e6f0760.gif"]]
2315 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_ad0a0d3f9b9908b1.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_ad0a0d3f9b9908b1.gif"]]
2316
2317 Table 6-58 DI terminal channel logic selection
2318
2319 == **VDO** ==
2320
2321 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2322
2323 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2324
2325 (% style="text-align:center" %)
2326 [[image:image-20220608173957-48.png]]
2327
2328 Figure 6-52 VDO_2 setting steps
2329
2330 (% class="table-bordered" %)
2331 |(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2332 **Setting method**
2333 )))|(% style="text-align:center; vertical-align:middle" %)(((
2334 **Effective time**
2335 )))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2336 |(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2337 VDO_1 output level:
2338
2339 0: low level
2340
2341 1: high level
2342 )))|(% style="text-align:center; vertical-align:middle" %)-
2343 |(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2344 VDO_2 output level:
2345
2346 0: low level
2347
2348 1: high level
2349 )))|(% style="text-align:center; vertical-align:middle" %)-
2350 |(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2351 VDO_3 output level:
2352
2353 0: low level
2354
2355 1: high level
2356 )))|(% style="text-align:center; vertical-align:middle" %)-
2357 |(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2358 VDO_4 output level:
2359
2360 0: low level
2361
2362 1: high level
2363 )))|(% style="text-align:center; vertical-align:middle" %)-
2364
2365 Table 6-59 Communication control DO function parameters
2366
2367 (% class="table-bordered" %)
2368 |(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2369 |(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2370 |(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2371 |(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2372 |(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2373
2374 Table 6-60 VDO function number
2375
2376 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2377
2378 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2379
2380 == **Motor overload protection** ==
2381
2382 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2383
2384 (% class="table-bordered" %)
2385 |(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2386 **Setting method**
2387 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2388 **Effective time**
2389 )))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2390 |(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2391 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2392
2393 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2394 )))|(% style="text-align:center; vertical-align:middle" %)%
2395
2396 In the following cases, it could be modified according to the actual heat generation of the motor
2397
2398 1. The motor works in a place with high ambient temperature
2399 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2400
2401 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2402
2403 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors
2404
2405 Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.