Wiki source code of 06 Operation

Last modified by xingzhi lin on 2025/05/26 14:10

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|Forward: facing the motor axis.
87 0: Standard setting (CW is forward);
88 1: Reverse mode (CCW is forward);
89 2: Reverse mode (CCW is forward), set P1-12,
90 P1-17 to limit the CCW direction speed; set
91 P1-13, P1-18 to limit the CW direction speed.
92 **Note:VD2L driver P0-04 setting range: 0~~1, not support P00-4=2!**|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 |Function code|Name|(((
224 Setting
225
226 method
227 )))|(((
228 Effective
229
230 time
231 )))|Default|Range|Definition|Unit
232 |P01-05|Shutdown deceleration time|(((
233 Shutdown
234
235 setting
236 )))|(((
237 immediately
238
239 Effective
240 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
241
242 **Overtravel shutdown**
243
244 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
245
246 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
247
248 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
249
250 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
251 **Setting method**
252 )))|=(% style="width: 114px;" %)(((
253 **Effective time**
254 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
255 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
256 0: OFF (not used)
257
258 01: S-ON servo enable
259
260 02: A-CLR fault and Warning Clear
261
262 03: POT forward drive prohibition
263
264 04: NOT Reverse drive prohibition
265
266 05: ZCLAMP Zero speed
267
268 06: CL Clear deviation counter
269
270 07: C-SIGN Inverted instruction
271
272 08: E-STOP Emergency stop
273
274 09: GEAR-SEL Electronic Gear Switch 1
275
276 10: GAIN-SEL gain switch
277
278 11: INH Instruction pulse prohibited input
279
280 12: VSSEL Vibration control switch input
281
282 13: INSPD1 Internal speed instruction selection 1
283
284 14: INSPD2 Internal speed instruction selection 2
285
286 15: INSPD3 Internal speedinstruction selection 3
287
288 16: J-SEL inertia ratio switch (not implemented yet)
289
290 17: MixModesel mixed mode selection
291
292 20: Internal multi-segment position enable signal
293
294 21: Internal multi-segment position selection 1
295
296 22: Internal multi-segment position selection 2
297
298 23: Internal multi-segment position selection 3
299
300 24: Internal multi-segment position selection 4
301
302 25: HOME_START Homing start
303 26: HOME ORG Homing signal
304 27: JOGU DI Forward jog
305 28: JOGD DI Reverse jog
306
307 Others: reserved
308 )))|-
309 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
310 Effective immediately
311 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
312 DI port input logic validity function selection.
313
314 0: Normally open input. Low level valid (switch on);
315
316 1: Normally closed input. High level valid (switch off);
317 )))|-
318 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
319 Effective immediately
320 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
321 Select the DI_3 port type to enable
322
323 0: Hardware DI_3 input terminal
324
325 1: Virtual VDI_3 input terminal
326 )))|-
327 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
328 Operation setting
329 )))|(% style="width:114px" %)(((
330 again Power-on
331 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
332 0: OFF (not used)
333
334 01: SON Servo enable
335
336 02: A-CLR Fault and Warning Clear
337
338 03: POT Forward drive prohibition
339
340 04: NOT Reverse drive prohibition
341
342 05: ZCLAMP Zero speed
343
344 06: CL Clear deviation counter
345
346 07: C-SIGN Inverted instruction
347
348 08: E-STOP Emergency shutdown
349
350 09: GEAR-SEL Electronic Gear Switch 1
351
352 10: GAIN-SEL gain switch
353
354 11: INH Instruction pulse prohibited input
355
356 12: VSSEL Vibration control switch input
357
358 13: INSPD1 Internal speed instruction selection 1
359
360 14: INSPD2 Internal speed instruction selection 2
361
362 15: INSPD3 Internal speed instruction selection 3
363
364 16: J-SEL inertia ratio switch (not implemented yet)
365
366 17: MixModesel mixed mode selection
367
368 20: Internal multi-segment position enable signal
369
370 21: Internal multi-segment position selection 1
371
372 22: Internal multi-segment position selection 2
373
374 23: Internal multi-segment position selection 3
375
376 24: Internal multi-segment position selection 4
377
378 25: HOME_START Homing start
379 26: HOME ORG Homing signal
380 27: JOGU DI Forward jog
381 28: JOGD DI Reverse jog
382
383 Others: reserved
384 )))|-
385 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
386 Effective immediately
387 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
388 DI port input logic validity function selection.
389
390 0: Normally open input. Low level valid (switch on);
391
392 1: Normally closed input. High level valid (switch off);
393 )))|-
394 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
395 Effective immediately
396 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
397 Select the DI_4 port type to enable
398
399 0: Hardware DI_4 input terminal
400
401 1: Virtual VDI_4 input terminal
402 )))|-
403
404 Table 6-8 DI3 and DI4 channel parameters
405
406 **(4) Malfunction shutdown**
407
408 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
409
410 == Brake device ==
411
412 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
413
414 (% class="warning" %)|(((
415 (% style="text-align:center" %)
416 [[image:image-20220611151617-1.png]]
417 )))
418 |(((
419 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
420
421 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
422
423 ✎The brake coil has no polarity;
424
425 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
426
427 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
428 )))
429
430 **Wiring of brake device**
431
432 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
433
434
435 (% style="text-align:center" %)
436 (((
437 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
438 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
439 )))
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151642-2.png]]
444 )))
445 |(((
446 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
447
448 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
449
450 ✎It is recommended to use cables above 0.5 mm².
451 )))
452
453 **Brake software setting**
454
455 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
456
457 Related function code is as below.
458
459 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
460 **Effective time**
461 )))
462 |=141|(% style="width:241px" %)(((
463 BRK-OFF Brake output
464 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
465
466 Table 6-2 Relevant function codes for brake setting
467
468 |=(% scope="row" %)**Function code**|=**Name**|=(((
469 **Setting method**
470 )))|=(((
471 **Effective time**
472 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
473 |=P1-30|Delay from brake output to instruction reception|(((
474 Operation setting
475 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
476 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
477 Operation setting
478 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
479 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
480 Operation setting
481 )))|Effective immediately|30|0 to 3000|(((
482 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
483
484 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
485 )))|rpm
486 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
487 Operation setting
488 )))|Effective immediately|500|1 to 1000|(((
489 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
490
491 When brake output (BRK-OFF) is not allocated, this function code has no effect.
492 )))|ms
493
494 Table 6-9 Brake setting function codes
495
496 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
497
498 **Servo drive brake timing in normal state**
499
500 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
501
502 * Brake timing when servo motor is stationary
503
504 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
505
506 (% class="warning" %)|(((
507 (% style="text-align:center" %)
508 [[image:image-20220611151705-3.png]]
509 )))
510 |(((
511 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
512
513 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
514 )))
515
516 (% style="text-align:center" %)
517 (((
518 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
519 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
520 )))
521
522 (% class="box infomessage" %)
523 (((
524 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
525 )))
526
527 * The brake timing when servo motor rotates
528
529 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
530
531 (% class="warning" %)|(((
532 (% style="text-align:center" %)
533 [[image:image-20220611151719-4.png]]
534 )))
535 |(((
536 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
537
538 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
539
540 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
541
542 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
543
544 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
545 )))
546
547 (% style="text-align:center" %)
548 (((
549 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
550 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
551 )))
552
553 **Brake timing when the servo drive fails**
554
555 The brake timing (free shutdown) in the fault status is as follows.
556
557 (% style="text-align:center" %)
558 (((
559 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
560 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
561 )))
562
563 = **Position control mode** =
564
565 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
566
567 (% style="text-align:center" %)
568 (((
569 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
570 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
571 )))
572
573 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
574
575 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
576 **Setting method**
577 )))|=(((
578 **Effective time**
579 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
580 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
581 Operation setting
582 )))|(((
583 immediately Effective
584 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
585 1: position control
586
587 2: speed control
588
589 3: torque control
590
591 4: position/speed mix control
592
593 5: position/torque mix control
594
595 6: speed /torque mix control
596
597 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
598 )))|(% style="width:151px" %)-
599
600 Table 6-10 Control mode parameters
601
602 == Position instruction input setting ==
603
604 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
605
606 |=(% scope="row" %)**Function code**|=**Name**|=(((
607 **Setting method**
608 )))|=(((
609 **Effective time**
610 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
611 |=P01-06|Position instruction source|(((
612 Operation setting
613 )))|(((
614 immediately Effective
615 )))|0|0 to 1|(((
616 0: pulse instruction
617
618 1: internal position instruction
619 )))|-
620
621 Table 6-12 Position instruction source parameter
622
623 **The source of position instruction is pulse instruction (P01-06=0)**
624
625 Low-speed pulse instruction input
626
627 |(% style="text-align:center" %)(((
628 (% class="wikigeneratedid" %)
629 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
630 )))|(% style="text-align:center" %)(((
631 (% class="wikigeneratedid" %)
632 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
633 )))
634 |(% colspan="2" %)Figure 6-7 Position instruction input setting
635
636 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
637
638 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
639
640 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
641 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
642 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
643
644 Table 6-13 Pulse input specifications
645
646 * Differential input
647
648 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
649
650 (% style="text-align:center" %)
651 (((
652 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
653 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
654 )))
655
656 (% class="box infomessage" %)
657 (((
658 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
659 )))
660
661 * Open collector input
662
663 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
664
665 (% style="text-align:center" %)
666 (((
667 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
668 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
669 )))
670
671
672 (% class="box infomessage" %)
673 (((
674 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
675 )))
676
677 * Position pulse frequency and anti-interference level
678
679 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
680
681 (% style="text-align:center" %)
682 (((
683 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
684 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
685 )))
686
687 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
688
689 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
690 **Setting method**
691 )))|=(((
692 **Effective time**
693 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
694 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
695 Operation setting
696 )))|(% rowspan="3" %)(((
697 Power-on again
698 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
699 Set the anti-interference level of external pulse instruction.
700
701 0: no filtering;
702
703 1: Filtering time 128ns
704
705 2: Filtering time 256ns
706
707 3: Filtering time 512ns
708
709 4: Filtering time 1.024us
710
711 5: Filtering time 2.048us
712
713 6: Filtering time 4.096us
714
715 7: Filtering time 8.192us
716
717 8: Filtering time 16.384us
718
719 9:
720
721 VD2: Filtering time 32.768us
722
723 VD2F: Filtering time 25.5us
724 )))|(% rowspan="3" %)-
725
726 Table 6-14 Position pulse frequency and anti-interference level parameters
727
728 |**Function code**|**Name**|(((
729 **Setting**
730
731 **method**
732 )))|(((
733 **Effective**
734
735 **time**
736 )))|**Default value**|**Range**|**Definition**|**Unit**
737 |P00-14|Position pulse anti-interference level|(((
738 Operation
739
740 setting
741 )))|(((
742 Power-on
743
744 again
745 )))|2|0 to 8|(((
746 VD2L drive set the anti-interference level of external pulse instruction.
747
748 0: no filtering;
749
750 1: Filtering time 111.1ns
751
752 2: Filtering time 222.2ns
753
754 3: Filtering time 444.4ns
755
756 4: Filtering time 888.8ns
757
758 5: Filtering time 1777.7ns
759
760 6: Filtering time 3555.5ns
761
762 7: Filtering time 7111.7ns
763
764 8: Filtering time 14222.2ns
765
766
767 )))|-
768
769 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
770
771
772 * Position pulse type selection
773
774 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
775
776 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
777 **Setting method**
778 )))|=(% style="width: 109px;" %)(((
779 **Effective time**
780 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
781 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
782 Operation setting
783 )))|(% style="width:109px" %)(((
784 Power-on again
785 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
786 0: direction + pulse (positive logic)
787
788 1: CW/CCW
789
790 2: A, B phase quadrature pulse (4 times frequency)
791
792 3: Direction + pulse (negative logic)
793
794 4: CW/CCW (negative logic)
795
796 5: A, B phase quadrature pulse (4 times frequency negative logic)
797
798 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
799 )))|-
800
801 Table 6-15 Position pulse type selection parameter
802
803 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
804 |=0|(% style="width:200px" %)(((
805 Direction + pulse
806
807 (Positive logic)
808 )))|(% style="width:161px" %)(((
809 PULSE
810
811 SIGN
812 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
813 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
814 PULSE (CW)
815
816 SIGN (CCW)
817 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
818 |=2|(% style="width:200px" %)(((
819 AB phase orthogonal
820
821 pulse (4 times frequency)
822 )))|(% style="width:161px" %)(((
823 PULSE (Phase A)
824
825 SIGN (Phase B)
826 )))|(((
827
828
829 [[image:image-20220707094358-9.jpeg]]
830
831 Phase A is 90° ahead of Phase B
832 )))|(((
833
834
835 [[image:image-20220707094407-10.jpeg]]
836
837 Phase B is 90° ahead of Phase A
838 )))
839 |=3|(% style="width:200px" %)(((
840 Direction + pulse
841
842 (Negative logic)
843 )))|(% style="width:161px" %)(((
844 PULSE
845
846 SIGN
847 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
848 |=4|(% style="width:200px" %)(((
849 CW/CCW
850
851 (Negative logic)
852 )))|(% style="width:161px" %)(((
853 PULSE (CW)
854
855 SIGN (CCW)
856 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
857 |=5|(% style="width:200px" %)(((
858 AB phase orthogonal
859
860 pulse (4 times frequency negative logic)
861 )))|(% style="width:161px" %)(((
862 PULSE (Phase A)
863
864 SIGN (Phase B)
865 )))|(((
866
867
868 [[image:image-20220707094429-14.jpeg]]
869
870 Phase B is ahead of A phase by 90°
871 )))|(((
872
873
874 [[image:image-20220707094437-15.jpeg]]
875
876 Phase A is ahead of B phase by 90°
877 )))
878
879 Table 6-16 Pulse description
880
881 **The source of position instruction is internal position instruction (P01-06=1)**
882
883 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
884
885 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
886
887 (% style="text-align:center" %)
888 (((
889 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
890 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
891 )))
892
893
894 * Set multi-segment position running mode
895
896 |=(% scope="row" %)**Function code**|=**Name**|=(((
897 **Setting method**
898 )))|=(((
899 **Effective time**
900 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
901 |=P07-01|Multi-segment position running mode|(((
902 Shutdown setting
903 )))|(((
904 Effective immediately
905 )))|0|0 to 2|(((
906 0: Single running
907
908 1: Cycle running
909
910 2: DI switching running
911 )))|-
912 |=P07-02|Start segment number|(((
913 Shutdown setting
914 )))|(((
915 Effective immediately
916 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
917 |=P07-03|End segment number|(((
918 Shutdown setting
919 )))|(((
920 Effective immediately
921 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
922 |=P07-04|Margin processing method|(((
923 Shutdown setting
924 )))|(((
925 Effective immediately
926 )))|0|0 to 1|(((
927 0: Run the remaining segments
928
929 1: Run again from the start segment
930 )))|-
931 |=P07-05|Displacement instruction type|(((
932 Shutdown setting
933 )))|(((
934 Effective immediately
935 )))|0|0 to 1|(((
936 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
937
938 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
939 )))|-
940
941 Table 6-17 multi-segment position running mode parameters
942
943 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
944
945 1. Single running
946
947 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
948
949 (% style="text-align:center" %)
950 (((
951 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
952 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
953 )))
954
955 * 2. Cycle running
956
957 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
958
959 (% style="text-align:center" %)
960 (((
961 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
962 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
963 )))
964
965 (% class="warning" %)|(((
966 (% style="text-align:center" %)
967 [[image:image-20220611151917-5.png]]
968 )))
969 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
970
971 (% start="3" %)
972 1. DI switching running
973
974 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
975
976 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
977 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
978 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
979 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
980 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
981
982 Table 6-18 DI function code
983
984 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
985
986 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
987 |=0|0|0|0|1
988 |=0|0|0|1|2
989 |=0|0|1|0|3
990 |=0|0|1|1|4
991 |=0|1|0|0|5
992 |=0|1|0|1|6
993 |=0|1|1|0|7
994 |=0|1|1|1|8
995 |=1|0|0|0|9
996 |=1|0|0|1|10
997 |=1|0|1|0|11
998 |=1|0|1|1|12
999 |=1|1|0|0|13
1000 |=1|1|0|1|14
1001 |=1|1|1|0|15
1002 |=1|1|1|1|16
1003
1004 Table 6-20 INPOS corresponds to running segment number
1005
1006 The operating curve in this running mode is shown in __Figure 6-14__.
1007
1008 (% style="text-align:center" %)
1009 (((
1010 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1011 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
1012 )))
1013
1014 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
1015
1016 **Run the remaining segments**
1017
1018 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
1019
1020 (% style="text-align:center" %)
1021 (((
1022 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1023 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1024 )))
1025
1026 (% style="text-align:center" %)
1027 (((
1028 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1029 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1030 )))
1031
1032 **Run again from the start segment**
1033
1034 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1035
1036 (% style="text-align:center" %)
1037 (((
1038 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1039 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1040 )))
1041
1042 (% style="text-align:center" %)
1043 (((
1044 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1045 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1046 )))
1047
1048 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1049
1050 * Relative position instruction
1051
1052 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1053
1054 |(((
1055 (% style="text-align:center" %)
1056 (((
1057 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1058 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1059 )))
1060 )))|(((
1061 (% style="text-align:center" %)
1062 (((
1063 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1064 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1065 )))
1066 )))
1067
1068 * Absolute position instruction
1069
1070 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1071
1072 |(((
1073 (% style="text-align:center" %)
1074 (((
1075 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1076 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1077 )))
1078 )))|(((
1079 (% style="text-align:center" %)
1080 (((
1081 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1082 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1083 )))
1084 )))
1085
1086 * Multi-segment position running curve setting
1087
1088 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1089
1090 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1091 |=P07-09|(((
1092 1st segment
1093
1094 displacement
1095 )))|(((
1096 Operation setting
1097 )))|(((
1098 Effective immediately
1099 )))|10000|(((
1100 -2147483647 to
1101
1102 2147483646
1103 )))|Position instruction, positive and negative values could be set|-
1104 |=P07-10|Maximum speed of the 1st displacement|(((
1105 Operation setting
1106 )))|(((
1107 Effective immediately
1108 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1109 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1110 Operation setting
1111 )))|(((
1112 Effective immediately
1113 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1114 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1115 Operation setting
1116 )))|(((
1117 Effective immediately
1118 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1119
1120 Table 6-21 The 1st position operation curve parameters table
1121
1122 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1123
1124 (% style="text-align:center" %)
1125 (((
1126 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1127 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1128 )))
1129
1130
1131 * multi-segment position instruction enable
1132
1133 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1134
1135 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1136 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1137 DI port logic invalid: Does not affect the current operation of the servo motor.
1138
1139 DI port logic valid: Motor runs multi-segment position
1140 )))
1141
1142 (% style="text-align:center" %)
1143 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1144
1145 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1146
1147 == Electronic gear ratio ==
1148
1149 **Definition of electronic gear ratio**
1150
1151 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1152
1153 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1154
1155 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1156
1157 (% style="text-align:center" %)
1158 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1159
1160 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1161
1162 **Setting steps of electronic gear ratio**
1163
1164 (% style="text-align:center" %)
1165 (((
1166 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1167 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1168 )))
1169
1170 **lectronic gear ratio switch setting**
1171
1172 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1173
1174 |=(% scope="row" %)**Function code**|=**Name**|=(((
1175 **Setting method**
1176 )))|=(((
1177 **Effective time**
1178 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1179 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1180 Shutdown setting
1181 )))|(((
1182 Effective immediately
1183 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1184 Instruction pulse
1185
1186 unit
1187 )))
1188 |=P00-17|(((
1189 Electronic gear 1
1190
1191 numerator
1192 )))|Operation setting|(((
1193 Effective immediately
1194 )))|1|1 to 4294967294|(((
1195 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1196
1197 **VD2L: 1-2147483647**
1198 )))|-
1199 |=P00-18|(((
1200 Electronic gear 1
1201
1202 denominator
1203 )))|(((
1204 Operation setting
1205 )))|(((
1206 Effective immediately
1207 )))|1|1 to 4294967294|(((
1208 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1209
1210 **VD2L: 1-2147483647**
1211 )))|-
1212 |=P00-19|(((
1213 Electronic gear 2
1214
1215 numerator
1216 )))|Operation setting|(((
1217 Effective immediately
1218 )))|1|1 to 4294967294|(((
1219 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1220
1221 **VD2L: 1-2147483647**
1222 )))|-
1223 |=P00-20|(((
1224 Electronic gear 2
1225
1226 denominator
1227 )))|Operation setting|(((
1228 Effective immediately
1229 )))|1|1 to 4294967294|(((
1230 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1231
1232 **VD2L: 1-2147483647**
1233 )))|-
1234
1235 Table 6-20 Electronic gear ratio function code
1236
1237 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1238
1239 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1240 |=09|GEAR-SEL electronic gear switch 1|(((
1241 DI port logic invalid: electronic gear ratio 1
1242
1243 DI port logic valid: electronic gear ratio 2
1244 )))
1245
1246 Table 6-21 Switching conditions of electronic gear ratio group
1247
1248 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1249 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1250 (% style="text-align:center" %)
1251 [[image:image-20220707101328-21.png]]
1252 )))
1253 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1254 (% style="text-align:center" %)
1255 [[image:image-20220707101336-22.png]]
1256 )))
1257 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1258 (% style="text-align:center" %)
1259 [[image:image-20220707101341-23.png]]
1260 )))
1261
1262 Table 6-22 Application of electronic gear ratio
1263
1264 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1265
1266 == Position instruction filtering ==
1267
1268 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1269
1270 In the following situations, position instruction filtering should be added.
1271
1272 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1273 1. The pulse instruction frequency is low;
1274 1. When the electronic gear ratio is 10 times or more.
1275
1276 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1277
1278 (% style="text-align:center" %)
1279 (((
1280 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1281 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1282 )))
1283
1284 |=(% scope="row" %)**Function code**|=**Name**|=(((
1285 **Setting method**
1286 )))|=(((
1287 **Effective time**
1288 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1289 |=P04-01|Pulse instruction filtering method|(((
1290 Shutdown setting
1291 )))|(((
1292 Effective immediately
1293 )))|0|0 to 1|(((
1294 0: 1st-order low-pass filtering
1295
1296 1: average filtering
1297 )))|-
1298 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1299 Effective immediately
1300 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1301 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1302 Effective immediately
1303 )))|0|0 to 128|Position instruction average filtering time constant|ms
1304
1305 Table 6-25 Position instruction filter function code
1306
1307 == Clearance of position deviation ==
1308
1309 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1310
1311 Position deviation = (position instruction-position feedback) (encoder unit)
1312
1313 == Position-related DO output function ==
1314
1315 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1316
1317 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1318 **Positioning completion/positioning approach output**
1319
1320 (% class="wikigeneratedid" %)
1321 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1322
1323 (% style="text-align:center" %)
1324 (((
1325 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1326 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1327 )))
1328
1329 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1330
1331 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1332
1333 (% style="text-align:center" %)
1334 (((
1335 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1336 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1337 )))
1338
1339 |=(% scope="row" %)**Function code**|=**Name**|=(((
1340 **Setting method**
1341 )))|=(% style="width: 129px;" %)(((
1342 **Effective time**
1343 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1344 |=P05-12|Positioning completion threshold|(((
1345 Operation setting
1346 )))|(% style="width:129px" %)(((
1347 Effective immediately
1348 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1349 |=P05-13|Positioning approach threshold|(((
1350 Operation setting
1351 )))|(% style="width:129px" %)(((
1352 Effective immediately
1353 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1354 |=P05-14|Position detection window time|(((
1355 Operation setting
1356 )))|(% style="width:129px" %)(((
1357 Effective immediately
1358 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1359 |=P05-15|Positioning signal hold time|(((
1360 Operation setting
1361 )))|(% style="width:129px" %)(((
1362 Effective immediately
1363 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1364
1365 Table 6-26 Function code parameters of positioning completion
1366
1367 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1368 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1369 |=135|(((
1370 P-NEAR positioning close
1371 )))|(((
1372 Output this signal indicates that the servo drive position is close.
1373 )))
1374
1375 Table 6-27 Description of DO rotation detection function code
1376
1377 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1378
1379 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1380
1381 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1382
1383 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1384
1385 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1386
1387 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1388
1389 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1390
1391 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1392
1393
1394 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1395 |DO_2 channel function selection|Operation setting|Effective immediately|130|128-149|DI/DO|-
1396 |(% colspan="8" %)(((
1397 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1398
1399 |Setting value|DO channel function| |Setting value|DO channel function
1400 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1401 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1402 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1403 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1404 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1405 |133|ZSP (zero speed signal)| |144|N/A
1406 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1407 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1408 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1409 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1410 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1411
1412 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1413
1414 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1415
1416 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1417
1418 Note 2:
1419
1420 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1421
1422 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1423
1424 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1425
1426 ④VD2L does not support function code 149.
1427 )))
1428
1429 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1430 |DO_3 channel function selection|Operation setting|Effective immediately|129|128-149|DI/DO|-
1431 |(% colspan="8" %)(((
1432 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1433
1434 |Setting value|DO channel function| |Setting value|DO channel function
1435 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1436 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1437 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1438 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1439 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1440 |133|ZSP (zero speed signal)| |144|None
1441 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1442 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1443 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1444 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1445 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1446
1447 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1448
1449 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1450
1451 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1452
1453 **Note 2:**
1454
1455 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1456
1457 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1458
1459 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1460
1461 ④VD2L does not support function code 149.
1462 )))
1463
1464 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1465 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1466 |(% colspan="8" %)(((
1467 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1468
1469 |Setting value|DO channel function| |Setting value|DO channel function
1470 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1471 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1472 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1473 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1474 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1475 |133|ZSP (zero speed signal)| |144|None
1476 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1477 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1478 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1479 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1480 |138|T-COIN (torque arrival)| |149|HOME_ATTAIN (Homing arrived)
1481
1482 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1483
1484 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1485
1486 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1487
1488 **Note 2:**
1489
1490 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1491
1492 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1493
1494 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1495
1496 ④VD2L does not support function code 149.
1497 )))
1498
1499 = **Speed control mode** =
1500
1501 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1502
1503 (% style="text-align:center" %)
1504 (((
1505 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1506 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1507 )))
1508
1509 == Speed instruction input setting ==
1510
1511 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1512
1513 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1514 **Setting method**
1515 )))|=(% style="width: 125px;" %)(((
1516 **Effective time**
1517 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1518 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1519 Shutdown setting
1520 )))|(% style="width:125px" %)(((
1521 Effective immediately
1522 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1523 0: internal speed instruction
1524
1525 1: AI_1 analog input (not supported by **VD2F and VD2L**)
1526 )))|-
1527
1528 Table 6-26 Speed instruction source parameter
1529
1530 **Speed instruction source is internal speed instruction (P01-01=0)**
1531
1532 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1533
1534 (% style="width:1141px" %)
1535 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1536 **Setting**
1537
1538 **method**
1539 )))|=(% colspan="2" %)(((
1540 **Effective**
1541
1542 **time**
1543 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1544 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1545 Internal speed
1546
1547 Instruction 0
1548 )))|(% colspan="2" %)(((
1549 Operation
1550
1551 setting
1552 )))|(% colspan="2" %)(((
1553 Effective
1554
1555 immediately
1556 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1557 Internal speed instruction 0
1558
1559 When DI input port:
1560
1561 15-INSPD3: 0
1562
1563 14-INSPD2: 0
1564
1565 13-INSPD1: 0,
1566
1567 select this speed instruction to be effective.
1568 )))|(% colspan="2" %)rpm
1569 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1570 Internal speed
1571
1572 Instruction 1
1573 )))|(% colspan="2" %)(((
1574 Operation
1575
1576 setting
1577 )))|(% colspan="2" %)(((
1578 Effective
1579
1580 immediately
1581 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1582 Internal speed instruction 1
1583
1584 When DI input port:
1585
1586 15-INSPD3: 0
1587
1588 14-INSPD2: 0
1589
1590 13-INSPD1: 1,
1591
1592 Select this speed instruction to be effective.
1593 )))|(% colspan="2" %)rpm
1594 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1595 Internal speed
1596
1597 Instruction 2
1598 )))|(% colspan="2" %)(((
1599 Operation
1600
1601 setting
1602 )))|(% colspan="2" %)(((
1603 Effective
1604
1605 immediately
1606 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1607 Internal speed instruction 2
1608
1609 When DI input port:
1610
1611 15-INSPD3: 0
1612
1613 14-INSPD2: 1
1614
1615 13-INSPD1: 0,
1616
1617 Select this speed instruction to be effective.
1618 )))|(% colspan="2" %)rpm
1619 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1620 Internal speed
1621
1622 Instruction 3
1623 )))|(% colspan="2" %)(((
1624 Operation
1625
1626 setting
1627 )))|(% colspan="2" %)(((
1628 Effective
1629
1630 immediately
1631 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1632 Internal speed instruction 3
1633
1634 When DI input port:
1635
1636 15-INSPD3: 0
1637
1638 14-INSPD2: 1
1639
1640 13-INSPD1: 1,
1641
1642 Select this speed instruction to be effective.
1643 )))|(% colspan="2" %)rpm
1644 |=P01-26|(% colspan="2" %)(((
1645 Internal speed
1646
1647 Instruction 4
1648 )))|(% colspan="2" %)(((
1649 Operation
1650
1651 setting
1652 )))|(% colspan="2" %)(((
1653 Effective
1654
1655 immediately
1656 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1657 Internal speed instruction 4
1658
1659 When DI input port:
1660
1661 15-INSPD3: 1
1662
1663 14-INSPD2: 0
1664
1665 13-INSPD1: 0,
1666
1667 Select this speed instruction to be effective.
1668 )))|(% colspan="1" %)rpm
1669 |=P01-27|(% colspan="2" %)(((
1670 Internal speed
1671
1672 Instruction 5
1673 )))|(% colspan="2" %)(((
1674 Operation
1675
1676 setting
1677 )))|(% colspan="2" %)(((
1678 Effective
1679
1680 immediately
1681 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1682 Internal speed instruction 5
1683
1684 When DI input port:
1685
1686 15-INSPD3: 1
1687
1688 14-INSPD2: 0
1689
1690 13-INSPD1: 1,
1691
1692 Select this speed instruction to be effective.
1693 )))|(% colspan="1" %)rpm
1694 |=P01-28|(% colspan="2" %)(((
1695 Internal speed
1696
1697 Instruction 6
1698 )))|(% colspan="2" %)(((
1699 Operation
1700
1701 setting
1702 )))|(% colspan="2" %)(((
1703 Effective
1704
1705 immediately
1706 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1707 Internal speed instruction 6
1708
1709 When DI input port:
1710
1711 15-INSPD3: 1
1712
1713 14-INSPD2: 1
1714
1715 13-INSPD1: 0,
1716
1717 Select this speed instruction to be effective.
1718 )))|(% colspan="1" %)rpm
1719 |=P01-29|(% colspan="2" %)(((
1720 Internal speed
1721
1722 Instruction 7
1723 )))|(% colspan="2" %)(((
1724 Operation
1725
1726 setting
1727 )))|(% colspan="2" %)(((
1728 Effective
1729
1730 immediately
1731 )))|(% colspan="2" %)0|(% colspan="2" %)-6000 to 6000|(% colspan="2" %)(((
1732 Internal speed instruction 7
1733
1734 When DI input port:
1735
1736 15-INSPD3: 1
1737
1738 14-INSPD2: 1
1739
1740 13-INSPD1: 1,
1741
1742 Select this speed instruction to be effective.
1743 )))|(% colspan="1" %)rpm
1744
1745 Table 6-27 Internal speed instruction parameters
1746
1747 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1748 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1749 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1750 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1751
1752 Table 6-28 DI multi-speed function code description
1753
1754 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1755
1756
1757 (% style="margin-left:auto; margin-right:auto" %)
1758 |=(% style="text-align: center; vertical-align: middle;" %)**INSPD3**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD2**|=(% style="text-align: center; vertical-align: middle;" %)**INSPD1**|=(% style="text-align: center; vertical-align: middle;" %)**Running segment number**|=(% style="text-align: center; vertical-align: middle;" %)**Internal speed instruction number**
1759 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1760 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1761 |(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1762 |(% colspan="5" style="text-align:center; vertical-align:middle" %)......
1763 |(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1764
1765 Table 6-29 Correspondence between INSPD bits and segment numbers
1766
1767 (% style="text-align:center" %)
1768 (((
1769 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1770 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1771 )))
1772
1773 **Speed instruction source is internal speed instruction (P01-01=1)**
1774
1775 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1776
1777 (% style="text-align:center" %)
1778 (((
1779 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1780 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1781 )))
1782
1783 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1784
1785 (% style="text-align:center" %)
1786 (((
1787 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1788 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1789 )))
1790
1791 Explanation of related terms:
1792
1793 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1794 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1795 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1796
1797 (% style="text-align:center" %)
1798 (((
1799 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1800 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1801 )))
1802
1803 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1804 |=P05-01(((
1805
1806 )))|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1807 |=P05-02(((
1808
1809 )))|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1810 |=P05-03(((
1811
1812 )))|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1813 |=P05-04(((
1814
1815 )))|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1816
1817 (% class="box infomessage" %)
1818 (((
1819 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
1820 )))
1821
1822 == Acceleration and deceleration time setting ==
1823
1824 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1825
1826 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1827
1828 (% style="text-align:center" %)
1829 (((
1830 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1831 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1832 )))
1833
1834 (% style="text-align:center" %)
1835 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1836
1837 |=(% scope="row" %)**Function code**|=**Name**|=(((
1838 **Setting method**
1839 )))|=(((
1840 **Effective time**
1841 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1842 |=P01-03|Acceleration time|(((
1843 Operation setting
1844 )))|(((
1845 Effective immediately
1846 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1847 |=P01-04|Deceleration time|(((
1848 Operation setting
1849 )))|(((
1850 Effective immediately
1851 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1852
1853 Table 6-31 Acceleration and deceleration time parameters
1854
1855 == Speed instruction limit ==
1856
1857 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1858
1859 1. P01-10: Set the maximum speed limit value
1860 1. P01-12: Set forward speed limit value
1861 1. P01-13: Set reverse speed limit value
1862 1. The maximum speed of the motor: determined by motor model
1863
1864 The actual motor speed limit interval satisfies the following relationship:
1865
1866 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1867
1868 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1869
1870 |=(% scope="row" %)**Function code**|=**Name**|=(((
1871 **Setting method**
1872 )))|=(((
1873 **Effective time**
1874 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1875 |=P01-10|Maximum speed threshold|(((
1876 Operation setting
1877 )))|(((
1878 Effective immediately
1879 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1880 |=P01-12|Forward speed threshold|(((
1881 Operation setting
1882 )))|(((
1883 Effective immediately
1884 )))|3000|0 to 5000|Set forward speed limit value|rpm
1885 |=P01-13|Reverse speed threshold|(((
1886 Operation setting
1887 )))|(((
1888 Effective immediately
1889 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1890
1891 Table 6-32 Rotation speed related function codes
1892
1893 == Zero-speed clamp function ==
1894
1895 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1896
1897 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1898
1899 |=(% scope="row" %)**Function code**|=**Name**|=(((
1900 **Setting method**
1901 )))|=(((
1902 **Effective time**
1903 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1904 |=P01-21|(((
1905 Zero-speed clamp function selection
1906 )))|(((
1907 Operation setting
1908 )))|(((
1909 Effective immediately
1910 )))|0|0 to 3|(((
1911 Set the zero-speed clamp function. In speed mode:
1912
1913 0: Force the speed to 0;
1914
1915 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1916
1917 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1918
1919 3: Invalid, ignore zero-speed clamp input
1920 )))|-
1921 |=P01-22|(((
1922 Zero-speed clamp speed threshold
1923 )))|(((
1924 Operation setting
1925 )))|(((
1926 Effective immediately
1927 )))|20|0 to 6000|Set the speed threshold of zero-speed clamp function|rpm
1928
1929 Table 6-33 Zero-speed clamp related parameters
1930
1931 (% style="text-align:center" %)
1932 (((
1933 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1934 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1935 )))
1936
1937 == Speed-related DO output function ==
1938
1939 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1940
1941 **Rotation detection signal**
1942
1943 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1944
1945 (% style="text-align:center" %)
1946 (((
1947 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1948 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1949 )))
1950
1951 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1952
1953 |=(% scope="row" %)**Function code**|=**Name**|=(((
1954 **Setting method**
1955 )))|=(((
1956 **Effective time**
1957 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1958 |=P05-16|(((
1959 Rotation detection
1960
1961 speed threshold
1962 )))|(((
1963 Operation setting
1964 )))|(((
1965 Effective immediately
1966 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1967
1968 Table 6-34 Rotation detection speed threshold parameters
1969
1970 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1971 |=132|(% style="width:247px" %)(((
1972 TGON rotation detection
1973 )))|(% style="width:695px" %)(((
1974 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1975
1976 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1977 )))
1978
1979 Table 6-35 DO rotation detection function code
1980
1981 **Zero-speed signal**
1982
1983 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1984
1985 (% style="text-align:center" %)
1986 (((
1987 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1988 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1989 )))
1990
1991 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1992
1993 |=(% scope="row" %)**Function code**|=**Name**|=(((
1994 **Setting method**
1995 )))|=(((
1996 **Effective time**
1997 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1998 |=P05-19|Zero speed output signal threshold|(((
1999 Operation setting
2000 )))|(((
2001 Effective immediately
2002 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
2003
2004 Table 6-36 Zero-speed output signal threshold parameter
2005
2006 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2007 |=133|(((
2008 ZSP zero speed signal
2009 )))|Output this signal indicates that the servo motor is stopping rotation
2010
2011 Table 6-37 DO zero-speed signal function code
2012
2013 **Speed consistent signal**
2014
2015 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
2016
2017 (% style="text-align:center" %)
2018 (((
2019 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2020 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
2021 )))
2022
2023 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
2024
2025 |=(% scope="row" %)**Function code**|=**Name**|=(((
2026 **Setting method**
2027 )))|=(((
2028 **Effective time**
2029 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2030 |=P05-17|Speed consistent signal threshold|(((
2031 Operationsetting
2032 )))|(((
2033 Effective immediately
2034 )))|10|0 to 100|Set speed consistent signal threshold|rpm
2035
2036 Table 6-38 Speed consistent signal threshold parameters
2037
2038 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
2039 |=136|(% style="width:262px" %)(((
2040 V-COIN consistent speed
2041 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
2042
2043 Table 6-39 DO speed consistent function code
2044
2045 **Speed approach signal**
2046
2047 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
2048
2049 (% style="text-align:center" %)
2050 (((
2051 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2052 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
2053 )))
2054
2055 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2056
2057 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2058 **Setting method**
2059 )))|=(((
2060 **Effective time**
2061 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2062 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2063 Operation setting
2064 )))|(((
2065 Effective immediately
2066 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2067
2068 Table 6-40 Speed approaching signal threshold parameters
2069
2070 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2071 |=137|(((
2072 V-NEAR speed approach
2073 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2074
2075 Table 6-41 DO speed approach function code
2076
2077 = **Torque control mode** =
2078
2079 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2080
2081 (% style="text-align:center" %)
2082 (((
2083 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2084 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2085 )))
2086
2087 == **Torque instruction input setting** ==
2088
2089 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2090
2091 |=(% scope="row" %)**Function code**|=**Name**|=(((
2092 **Setting method**
2093 )))|=(((
2094 **Effective time**
2095 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2096 |=P01-07|Torque instruction source|(((
2097 Shutdown setting
2098 )))|(((
2099 Effective immediately
2100 )))|0|0 to 1|(((
2101 0: internal torque instruction
2102
2103 1: AI_1 analog input(not supported by VD2F and VD2L)
2104 )))|-
2105
2106 Table 6-42 Torque instruction source parameter
2107
2108 **Torque instruction source is internal torque instruction (P01-07=0)**
2109
2110 Torque instruction source is from inside, the value is set by function code P01-08.
2111
2112 |=(% scope="row" %)**Function code**|=**Name**|=(((
2113 **Setting method**
2114 )))|=(((
2115 **Effective time**
2116 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2117 |=P01-08|Torque instruction keyboard set value|(((
2118 Operation setting
2119 )))|(((
2120 Effective immediately
2121 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2122
2123 Table 6-43 Torque instruction keyboard set value
2124
2125 **Torque instruction source is AI_1 analog input (P01-07=1)**
2126
2127 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2128
2129 (% style="text-align:center" %)
2130 (((
2131 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2132 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2133 )))
2134
2135 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2136
2137 (% style="text-align:center" %)
2138 (((
2139 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2140 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2141 )))
2142
2143 Explanation of related terms:
2144
2145 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2146 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2147 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2148
2149 (% style="text-align:center" %)
2150 (((
2151 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2152 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2153 )))
2154
2155 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2156 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2157 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2158 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2159 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2160
2161 Table 6-44 AI_1 parameters
2162
2163 (% class="box infomessage" %)
2164 (((
2165 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2166 )))
2167
2168 == Torque instruction filtering ==
2169
2170 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2171
2172 |=(% scope="row" %)**Function code**|=**Name**|=(((
2173 **Setting method**
2174 )))|=(((
2175 **Effective time**
2176 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2177 |=P04-04|Torque filtering time constant|(((
2178 Operation setting
2179 )))|(((
2180 Effective immediately
2181 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2182
2183 Table 6-45 Torque filtering time constant parameter details
2184
2185 (% class="box infomessage" %)
2186 (((
2187 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2188 )))
2189
2190 (% style="text-align:center" %)
2191 (((
2192 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2193 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2194 )))
2195
2196 == Torque instruction limit ==
2197
2198 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2199
2200 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2201
2202 (% style="text-align:center" %)
2203 (((
2204 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2205 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2206 )))
2207
2208 **Set torque limit source**
2209
2210 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2211
2212 |=(% scope="row" %)**Function code**|=**Name**|=(((
2213 **Setting method**
2214 )))|=(((
2215 **Effective time**
2216 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2217 |=P01-14|(((
2218 Torque limit source
2219 )))|(((
2220 Shutdown setting
2221 )))|(((
2222 Effective immediately
2223 )))|0|0 to 1|(((
2224 0: internal value
2225
2226 1: AI_1 analog input (not supported by VD2F and VD2L)
2227 )))|-
2228
2229 * Torque limit source is internal torque instruction (P01-14=0)
2230
2231 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2232
2233 |=(% scope="row" %)**Function code**|=**Name**|=(((
2234 **Setting method**
2235 )))|=(((
2236 **Effective time**
2237 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2238 |=P01-15|(((
2239 Forward torque limit
2240 )))|(((
2241 Operation setting
2242 )))|(((
2243 Effective immediately
2244 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2245 |=P01-16|(((
2246 Reverse torque limit
2247 )))|(((
2248 Operation setting
2249 )))|(((
2250 Effective immediately
2251 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2252
2253 Table 6-46 Torque limit parameter details
2254
2255 * Torque limit source is external (P01-14=1)
2256
2257 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2258
2259 **Set torque limit DO signal output**
2260
2261 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2262
2263 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2264 |=139|(((
2265 T-LIMIT in torque limit
2266 )))|Output of this signal indicates that the servo motor torque is limited
2267
2268 Table 6-47 DO torque limit function codes
2269
2270 == **Speed limit in torque mode** ==
2271
2272 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2273
2274 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2275
2276 |(((
2277 (% style="text-align:center" %)
2278 (((
2279 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2280 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2281 )))
2282 )))|(((
2283 (% style="text-align:center" %)
2284 (((
2285 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2286 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2287 )))
2288 )))
2289
2290 |=(% scope="row" %)**Function code**|=**Name**|=(((
2291 **Setting method**
2292 )))|=(((
2293 **Effective time**
2294 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2295 |=P01-17|(((
2296 Forward speed
2297
2298 limit in torque mode
2299 )))|(((
2300 Operation setting
2301 )))|(((
2302 Effective immediately
2303 )))|3000|0 to 6000|(((
2304 Forward torque
2305
2306 limit in torque mode
2307 )))|rpm
2308 |=P01-18|(((
2309 Reverse speed
2310
2311 limit in torque mode
2312 )))|(((
2313 Operation setting
2314 )))|(((
2315 Effective immediately
2316 )))|3000|0 to 6000|(((
2317 Reverse torque
2318
2319 limit in torque mode
2320 )))|rpm
2321
2322 Table 6-48 Speed limit parameters in torque mode
2323
2324 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2325
2326 == Torque-related DO output functions ==
2327
2328 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2329
2330 **Torque arrival**
2331
2332 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2333
2334 (% style="text-align:center" %)
2335 (((
2336 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2337 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2338 )))
2339
2340 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2341
2342 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2343 **Setting method**
2344 )))|=(% style="width: 124px;" %)(((
2345 **Effective time**
2346 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2347 |=P05-20|(% style="width:113px" %)(((
2348 Torque arrival
2349
2350 threshold
2351 )))|(% style="width:100px" %)(((
2352 Operation setting
2353 )))|(% style="width:124px" %)(((
2354 Effective immediately
2355 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2356 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2357
2358 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2359
2360 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2361 )))|%
2362 |=P05-21|(% style="width:113px" %)(((
2363 Torque arrival
2364
2365 hysteresis
2366 )))|(% style="width:100px" %)(((
2367 Operation setting
2368 )))|(% style="width:124px" %)(((
2369 Effective immediately
2370 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2371
2372 Table 6-49 Torque arrival parameters
2373
2374 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2375 |=138|(((
2376 T-COIN torque arrival
2377 )))|Used to determine whether the actual torque instruction has reached the set range
2378
2379 Table 6-50 DO Torque Arrival Function Code
2380
2381 = **Mixed control mode** =
2382
2383 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2384
2385 * Position mode⇔ Speed mode
2386 * Position mode ⇔Torque mode
2387 * Speed mode ⇔Torque mode
2388
2389 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2390
2391 |=(% scope="row" %)**Function code**|=**Name**|=(((
2392 **Setting method**
2393 )))|=(((
2394 **Effective time**
2395 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2396 |=P00-01|Control mode|(((
2397 Shutdown setting
2398 )))|(((
2399 Shutdown setting
2400 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2401 1: Position control
2402
2403 2: Speed control
2404
2405 3: Torque control
2406
2407 4: Position/speed mixed control
2408
2409 5: Position/torque mixed control
2410
2411 6: Speed/torque mixed control
2412
2413 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2414 )))|-
2415
2416 Table 6-51 Mixed control mode parameters
2417
2418 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2419
2420 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2421 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2422 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2423 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2424 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2425 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2426 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2427 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2428 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2429 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2430 )))
2431
2432 Table 6-52 Description of DI function codes in control mode
2433
2434 (% class="box infomessage" %)
2435 (((
2436 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2437 )))
2438
2439 = **Absolute system** =
2440
2441 == Overview ==
2442
2443 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2444
2445 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2446
2447 == Single-turn absolute value system ==
2448
2449 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2450
2451 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2452 |A1 (single-turn magnetic encoder)|17|0 to 131071
2453
2454 Table 6-53 Single-turn absolute encoder information
2455
2456 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2457
2458 (% style="text-align:center" %)
2459 (((
2460 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2461 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2462 )))
2463
2464 == Multi-turn absolute value system ==
2465
2466 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2467
2468 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2469 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2470 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2471
2472 Table 6-54 Multi-turn absolute encoder information
2473
2474 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2475
2476 (% style="text-align:center" %)
2477 (((
2478 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2479 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2480 )))
2481
2482 (% class="wikigeneratedid" %)
2483 (((
2484 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2485 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2486 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2487 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2488
2489 |**Function code**|**Name**|(((
2490 **Setting**
2491
2492 **method**
2493 )))|(((
2494 **Effective**
2495
2496 **time**
2497 )))|**Default**|**Range**|**Definition**|**Unit**
2498 |P10-06|Multi-turn absolute encoder reset|(((
2499 Shutdown
2500
2501 setting
2502 )))|Effective immediately|0|0 to 1|(((
2503 0: No operation
2504
2505 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2506
2507 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2508 )))|-
2509
2510 (% style="background-color:#ffffff" %)
2511 |**Function code**|**Name**|(((
2512 **Setting**
2513
2514 **method**
2515 )))|(((
2516 **Effective**
2517
2518 **time**
2519 )))|**Default**|**Range**|**Definition**|**Unit**
2520 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2521 Operation
2522
2523 setting
2524 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2525 )))
2526
2527 == Related functions and parameters ==
2528
2529 **Encoder feedback data**
2530
2531 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2532
2533 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2534 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2535 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2536 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2537
2538 Table 6-55 Encoder feedback data
2539
2540 **Shield multi-turn absolute encoder battery fault**
2541
2542 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2543
2544 |=(% scope="row" %)**Function code**|=**Name**|=(((
2545 **Setting**
2546
2547 **method**
2548 )))|=(((
2549 **Effective**
2550
2551 **time**
2552 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2553 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2554 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2555
2556 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2557 )))|-
2558
2559 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2560
2561 **A93 warning solution**
2562
2563 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2564 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2565
2566 |**Function code**|**Name**|(((
2567 **Setting**
2568
2569 **method**
2570 )))|(((
2571 **Effective**
2572
2573 **time**
2574 )))|**Default**|**Range**|**Definition**|**Unit**
2575 |P00-31|Encoder read-write check abnormal frequency|(((
2576 Operation
2577
2578 setting
2579 )))|(((
2580 immediately
2581
2582 Effective
2583 )))|20|0 to100|(((
2584 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2585
2586 0: no alarm
2587
2588 Others: When this setting value is exceeded, report A93.
2589 )))|-
2590
2591 (% class="box infomessage" %)
2592 (((
2593 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2594 )))
2595
2596 == Absolute value system encoder battery box use precautions. ==
2597
2598 **Cautions**
2599
2600 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2601
2602 (% style="text-align:center" %)
2603 (((
2604 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2605 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2606 )))
2607
2608 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2609
2610 **Replace the battery**
2611
2612 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2613
2614 The specific replacement method is as follows:
2615
2616 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2617 * Step2 Remove the old battery.
2618 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2619 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2620
2621 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2622
2623 |=(% scope="row" %)**Function code**|=**Name**|=(((
2624 **Setting method**
2625 )))|=(((
2626 **Effective time**
2627 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2628 |=P10-06|Multi-turn absolute encoder reset|(((
2629 Shutdown setting
2630 )))|(((
2631 Effective immediately
2632 )))|0|0 to 1|(((
2633 * 0: No operation
2634 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2635
2636 (% class="box infomessage" %)
2637 (((
2638 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2639 )))
2640 )))|-
2641
2642 Table 6-56 Absolute encoder reset enable parameter
2643
2644 **Battery selection**
2645
2646 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2647 |(% rowspan="4" style="width:361px" %)(((
2648 Nominal Voltage: 3.6V
2649
2650 Nominal capacity: 2700mAh
2651 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2652 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2653 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2654 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2655
2656 Table 6-57 Absolute value encoder battery information
2657
2658 **✎Note: **
2659
2660 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2661
2662 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2663
2664 Correct placement of batteries +, - direction
2665
2666 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2667 1. This battery cannot be charged.
2668 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2669 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2670 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2671
2672 = **Other functions** =
2673
2674 == VDI ==
2675
2676 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2677
2678 (% class="box infomessage" %)
2679 (((
2680 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2681 )))
2682
2683 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2684
2685 (% style="text-align:center" %)
2686 (((
2687 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2688 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2689 )))
2690
2691 |=(% scope="row" %)**Function code**|=**Name**|=(((
2692 **Setting method**
2693 )))|=(((
2694 **Effective time**
2695 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2696 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2697 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2698
2699 VDI_1 input level:
2700
2701 0: Low level
2702
2703 1: High level
2704 )))|-
2705 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2706 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2707
2708 VDI_2 input level:
2709
2710 0: Low level
2711
2712 1: High level
2713 )))|-
2714 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2715 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2716
2717 VDI_3 input level:
2718
2719 0: Low level
2720
2721 1: High level
2722 )))|-
2723 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2724 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2725
2726 VDI_4 input level:
2727
2728 0: Low level
2729
2730 1: High level
2731 )))|-
2732 |=P13-05(((
2733
2734 )))|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2735 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2736
2737 VDI_5 input level:
2738
2739 0: Low level
2740
2741 1: High level
2742 )))|-
2743 |=P13-06(((
2744
2745 )))|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2746 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2747
2748 VDI_6 input level:
2749
2750 0: Low level
2751
2752 1: High level
2753 )))|-
2754 |=P13-07(((
2755
2756 )))|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2757 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2758
2759 VDI_7 input level:
2760
2761 0: Low level
2762
2763 1: High level
2764 )))|-
2765 |=P13-08(((
2766
2767 )))|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2768 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2769
2770 VDI_8 input level:
2771
2772 0: Low level
2773
2774 1: High level
2775 )))|-
2776
2777 Table 6-57 Virtual VDI parameters
2778
2779 (% class="box infomessage" %)
2780 (((
2781 ✎**Note: **“★” means VD2F and VD2L servo drive does not support the function code .
2782 )))
2783
2784 == Port filtering time ==
2785
2786 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2787
2788 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2789 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2790 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2791
2792 Table 6-58 DI terminal channel logic selection
2793
2794 == **VDO** ==
2795
2796 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2797
2798 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2799
2800 (% style="text-align:center" %)
2801 (((
2802 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2803 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2804 )))
2805
2806
2807 |=(% scope="row" %)**Function code**|=**Name**|=(((
2808 **Setting method**
2809 )))|=(((
2810 **Effective time**
2811 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2812 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2813 VDO_1 output level:
2814
2815 0: Low level
2816
2817 1: High level
2818 )))|-
2819 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2820 VDO_2 output level:
2821
2822 0: Low level
2823
2824 1: High level
2825 )))|-
2826 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2827 VDO_3 output level:
2828
2829 0: Low level
2830
2831 1: High level
2832 )))|-
2833 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2834 VDO_4 output level:
2835
2836 0: Low level
2837
2838 1: High level
2839 )))|-
2840
2841 Table 6-59 Communication control DO function parameters
2842
2843 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2844 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2845 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2846 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2847 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2848
2849 Table 6-60 VDO function number
2850
2851 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2852
2853 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2854
2855 == Motor overload protection ==
2856
2857 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2858
2859 |=(% scope="row" %)**Function code**|=**Name**|=(((
2860 **Setting method**
2861 )))|=(((
2862 **Effective time**
2863 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2864 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2865 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2866
2867 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2868 )))|%
2869
2870 In the following cases, it could be modified according to the actual heat generation of the motor
2871
2872 1. The motor works in a place with high ambient temperature
2873 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2874
2875 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2876
2877 (% class="box infomessage" %)
2878 (((
2879 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2880 )))
2881
2882
2883 = Homing mode =
2884
2885 The homing mode is used to find the mechanical origin and locate the positional relationship between the mechanical origin and the mechanical zero.
2886
2887 Mechanical homing: A mechanically fixed position may correspond to a certain defined homing switch, or may correspond to the motor Z signal.
2888
2889 Mechanical zero point: Mechanically absolute 0 position.
2890
2891 After the homing, the stop position of the motor is the mechanical homing. By setting P10-08, the relationship between the mechanical homing and the mechanical zero can be set:
2892
2893 Mechanical homing = Mechanical zero +P10-08 (homing offset)
2894
2895 When P10-08=0, the mechanical homing coincides with the mechanical zero.
2896
2897 == Control block diagram ==
2898
2899
2900 === Homing mode related function codes ===
2901
2902 |Function code|Name|(((
2903 Setting
2904
2905 method
2906 )))|(((
2907 Effective
2908
2909 time
2910 )))|Default|Range|Definition|Unit
2911 |P01-39|Homing start mode|(((
2912 Stop
2913
2914 settings
2915 )))|(((
2916 Immediately
2917
2918 effective
2919 )))|0|0 to 2|(((
2920 0: Close
2921
2922 1: The servo is powered ON and started after the first ON
2923
2924 2: DI enable
2925 )))|-
2926
2927 |Function code|Name|(((
2928 Setting
2929
2930 method
2931 )))|(((
2932 Effective
2933
2934 time
2935 )))|Default|Range|Definition|Unit
2936 |P01-40|Homing mode|(((
2937 Stop
2938
2939 settings
2940 )))|(((
2941 Immediately
2942
2943 effective
2944 )))|0|0 to 35|(((
2945 0 ~~ 35 Homing mode;
2946
2947 ✎Note: VD2 currently does not support 15, 16, 31, 32 modes
2948 )))|-
2949
2950 |Function code|Name|(((
2951 Setting
2952
2953 method
2954 )))|(((
2955 Effective
2956
2957 time
2958 )))|Default|Range|Definition|Unit
2959 |P01-41|High-speed search deceleration point signal velocity|(((
2960 Running
2961
2962 settings
2963 )))|(((
2964 Immediately
2965
2966 effective
2967 )))|300|1 to 3000|High-speed search deceleration point signal velocity in homing mode|rpm
2968
2969 |Function code|Name|(((
2970 Setting
2971
2972 method
2973 )))|(((
2974 Effective
2975
2976 time
2977 )))|Default|Range|Definition|Unit
2978 |P01-42〇|Low speed search homing signal speed|(((
2979 Running
2980
2981 settings
2982 )))|(((
2983 Immediately
2984
2985 effective
2986 )))|60|1 to 300|Low-speed search origin signal velocity in homing mode|rpm
2987
2988 |Function code|Name|(((
2989 Setting
2990
2991 method
2992 )))|(((
2993 Effective
2994
2995 time
2996 )))|Default|Range|Definition|Unit
2997 |P01-43〇|Homing acceleration and deceleration|(((
2998 Running
2999
3000 settings
3001 )))|(((
3002 Immediately
3003
3004 effective
3005 )))|50|1to1000|(((
3006 Acceleration and deceleration in homing mode
3007
3008 Time for speed acceleration from 0 to 1000rpm
3009 )))|ms
3010
3011 |Function code|Name|(((
3012 Setting
3013
3014 method
3015 )))|(((
3016 Effective
3017
3018 time
3019 )))|Default|Range|Definition|Unit
3020 |P01-44〇|Homing timeout limited time|(((
3021 Running
3022
3023 settings
3024 )))|(((
3025 Immediately
3026
3027 effective
3028 )))|65535|100 to 65535|Homing timeout limited time|ms
3029
3030 |Function code|Name|(((
3031 Setting
3032
3033 method
3034 )))|(((
3035 Effective
3036
3037 time
3038 )))|Default|Range|Definition|Unit
3039 |P10-08〇|Multi-turn absolute encoder homing offset compensation|(((
3040 Running
3041
3042 settings
3043 )))|(((
3044 Immediately
3045
3046 effective
3047 )))|0|(((
3048 -2147483647~~
3049
3050 2147483646
3051 )))|(((
3052 P10-08 multi-turn absolute encoder homing offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position.
3053
3054 When P10-6 is set to 1, the value of U0-56 is updated to P10-8.
3055 )))|-
3056
3057 == Introduction to homing mode ==
3058
3059 In the following figure, "H" represents P01-41 (high-speed search deceleration point signal speed), and "L" represents P01-42 (low-speed search homing signal speed).
3060
3061
3062 (1) P01-40 =1
3063
3064 Mechanical homing: Motor Z signal
3065
3066 Deceleration point: Reverse limit switch (NOT)
3067
3068 ① The deceleration point signal is invalid when starting homing
3069
3070 (% style="text-align:center" %)
3071 [[image:1748221916083-747.jpg||height="347" width="600"]]
3072
3073 When it starts to homing, NOT=0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops at the first Z signal after encountering the falling edge of NOT.
3074
3075
3076 ② The deceleration point signal is valid when starting homing
3077
3078 (% style="text-align:center" %)
3079 [[image:1748222134730-241.jpg||height="341" width="600"]]
3080
3081 When starting to homing, NOT=1, it starts to homing at a direct forward low speed, and stops at the first Z signal after encountering the falling edge of NOT.
3082
3083
3084
3085
3086
3087
3088 (2) P01-40=2
3089
3090 Mechanical homing: Motor Z signal
3091
3092 Deceleration point: Positive Limit Switch (POT)
3093
3094 ① The deceleration point signal is invalid when starting homing
3095
3096 (% style="text-align:center" %)
3097 [[image:1748222168627-745.jpg||height="334" width="600"]]
3098
3099
3100 When it starts to homing, POT = 0, and it starts to homing at a forward high speed. After encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops at the first Z signal after encountering the falling edge of POT.
3101
3102
3103 ② The deceleration point signal is valid when starting homing
3104
3105 (% style="text-align:center" %)
3106 [[image:1748222190794-857.jpg||height="337" width="600"]]
3107
3108 POT=1 when start homing, run at low speed directly in the reverse direction, and stops at the first Z signal after the falling edge of POT.
3109
3110
3111
3112 (3) P01-40=3
3113
3114 Mechanical homing: Motor Z signal
3115
3116 Deceleration point: Home switch (HW)
3117
3118 ① The deceleration point signal is invalid when starting homing
3119
3120 (% style="text-align:center" %)
3121 [[image:1748226127686-390.jpg||height="337" width="600"]]
3122
3123
3124 When it starts to homing, HW=0. It starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction. It runs at a reverse low speed. After encountering the falling edge of HW, it continues to run, and then stops when encountering the first Z signal.
3125
3126
3127 ② The deceleration point signal is valid when starting homing
3128
3129 (% style="text-align:center" %)
3130 [[image:1748226169150-834.jpg||height="337" width="600"]]
3131
3132 When starting homing, HW=1, start homing at low speed in reverse directly, and stop at the first Z signal after encountering the falling edge of HW;
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146 (4) P01-40=4
3147
3148 Mechanical homing: Motor Z signal
3149
3150 Deceleration point: Home switch (HW)
3151
3152 ① The deceleration point signal is invalid when starting homing
3153
3154 (% style="text-align:center" %)
3155 [[image:1748226182842-731.jpg||height="337" width="600"]]
3156
3157 HW=0 when starting to homing, directly start to homing at low speed, and stop at the first Z signal after encountering the rising edge of HW;
3158
3159
3160 ② The deceleration point signal is valid when starting homing
3161
3162 (% style="text-align:center" %)
3163 [[image:1748226201716-810.jpg||height="338" width="600"]]
3164
3165
3166 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, decelerate and reverse, run at a low speed in the forward direction, and stop at the first Z signal after encountering the rising edge of HW.
3167
3168
3169
3170
3171
3172 (5) P01-40=5
3173
3174 Mechanical homing: Motor Z signal
3175
3176 Deceleration point: Home switch (HW)
3177
3178 ① The deceleration point signal is invalid when starting homing
3179
3180 (% style="text-align:center" %)
3181 [[image:1748226251451-548.jpg||height="337" width="600"]]
3182
3183 When it starts to homing, HW = 0, and it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3184
3185
3186 ② The deceleration point signal is valid when starting homing
3187
3188 (% style="text-align:center" %)
3189 [[image:1748226264724-999.jpg||height="337" width="600"]]
3190
3191 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3192
3193
3194
3195
3196
3197 (6) P01-40=6
3198
3199 Mechanical homing: Motor Z signal
3200
3201 Deceleration point: Home switch (HW)
3202
3203 ① The deceleration point signal is invalid when starting homing
3204
3205 (% style="text-align:center" %)
3206 [[image:1748226277996-278.jpg||height="337" width="600"]]
3207
3208 When starting to homing, HW=0, directly reverse low speed starts to homing, and the first Z signal stops after encountering the rising edge of HW;
3209
3210
3211 ② The deceleration point signal is valid when starting homing
3212
3213 (% style="text-align:center" %)
3214 [[image:1748226309059-457.jpg||height="337" width="600"]]
3215
3216 When starting to homing, HW = 1, start to homing at a forward high speed, after encountering the falling edge of HW, decelerate and reverse, run at a reverse low speed, and stop at the first Z signal after encountering the rising edge of HW.
3217
3218
3219
3220
3221
3222 (7) P01-40=7
3223
3224 Mechanical homing: Motor Z signal
3225
3226 Deceleration point: Home switch (HW)
3227
3228 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3229
3230 (% style="text-align:center" %)
3231 [[image:1748226329690-925.jpg||height="405" width="600"]]
3232
3233 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, and runs at a reverse low speed. The first Z signal after encountering the falling edge of HW stops.
3234
3235
3236 ②When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3237
3238 (% style="text-align:center" %)
3239 [[image:1748226347085-250.jpg||height="482" width="600"]]
3240
3241 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and continue to run at a reverse low speed. The first Z signal after the falling edge of HW will stop.
3242
3243
3244 ③ The deceleration point signal is valid when starting homing
3245
3246 (% style="text-align:center" %)
3247 [[image:1748226362415-253.jpg||height="406" width="600"]]
3248
3249 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3250
3251
3252 (8) P01-40=8
3253
3254 Mechanical homing: Motor Z signal
3255
3256 Deceleration point: Home switch (HW)
3257
3258 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3259
3260 (% style="text-align:center" %)
3261 [[image:1748226377919-294.jpg||height="425" width="600"]]
3262
3263 When it starts to homing, HM-0 starts to homing at a forward high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and reverse, and run at a reverse low speed. After encountering the falling edge of HW, reverse, run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3264
3265
3266 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3267
3268 (% style="text-align:center" %)
3269 [[image:1748226441814-616.jpg||height="460" width="600"]]
3270
3271 When it starts to homing, HW = 0, and it starts to homing at forward high speed. If it encounters a limit switch, it will automatically reverse and run at reverse high speed; After encountering the rising edge of HW, slow down and run at a reverse low speed; After encountering the falling edge of HW, reverse the direction, run at a forward low speed, and stop the first Z signal after encountering the rising edge of HW.
3272
3273
3274 ③ The deceleration point signal is valid when starting homing
3275
3276 (% style="text-align:center" %)
3277 [[image:1748226458987-236.jpg||height="403" width="600"]]
3278
3279 When starting to homing, HM-1 will directly reverse and start to return to zero at low speed. After encountering the falling edge of HW, it will reverse and run at forward low speed. The first Z signal after encountering the rising edge of HW will stop.
3280
3281
3282
3283 (9) P01-40=9
3284
3285 Mechanical homing: Motor Z signal
3286
3287 Deceleration point: Home switch (HW)
3288
3289 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3290
3291 (% style="text-align:center" %)
3292 [[image:1748226475073-462.jpg||height="407" width="600"]]
3293
3294 When it starts to homing, HW=0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and runs at a forward low speed; After encountering the falling edge of HW, reverse, run at a low speed in the reverse direction, and stop at the first Z signal after encountering the rising edge of HW.
3295
3296
3297 ② The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3298
3299 (% style="text-align:center" %)
3300 [[image:1748226491294-972.jpg||height="473" width="600"]]
3301
3302 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering a rising edge of HW, it will slow down and reverse to resume forward operation. Running at a forward low speed, after encountering a falling edge of HW, it will reverse. During reverse low speed operation, the first Z signal after encountering a rising edge of HW will stop.
3303
3304 ③ The deceleration point signal is valid when starting homing
3305
3306 (% style="text-align:center" %)
3307 [[image:1748226509824-146.jpg||height="406" width="600"]]
3308
3309 When starting homing, HW=1 starts homing directly at forward low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and reverse low speed operation;
3310
3311
3312 (10) P01-40=10
3313
3314 Mechanical homing: Motor Z signal
3315
3316 Deceleration point: Home switch (HW)
3317
3318 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3319
3320 (% style="text-align:center" %)
3321 [[image:1748226583138-561.jpg||height="403" width="600"]]
3322
3323 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If the limit switch is not encountered, after encountering the rising edge of HW, slow down and run at a forward low speed. After encountering the falling edge of HW, continue to run at a forward low speed, and then the first Z signal encountered stops.
3324
3325 ② When homing, the deceleration point signal is invalid and the forward limit switch is encountered
3326
3327 (% style="text-align:center" %)
3328 [[image:1748226640407-712.jpg||height="474" width="600"]]
3329
3330 When it starts to homing, HW = 0, and it starts to homing at a forward high speed. If it encounters a limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, it will slow down and reverse to resume forward operation. The first Z signal after the low speed encounters the falling edge of HW will stop.
3331
3332
3333 ③ The deceleration point signal is valid when starting homing
3334
3335 (% style="text-align:center" %)
3336 [[image:1748226662455-861.jpg||height="392" width="600"]]
3337
3338 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3339
3340
3341 (11) P01-40=11
3342
3343 Mechanical homing: Motor Z signal
3344
3345 Deceleration point: Home switch (HW)
3346
3347 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3348
3349 (% style="text-align:center" %)
3350 [[image:1748226681272-116.jpg||height="406" width="600"]]
3351
3352 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If the limit switch is not encountered, after encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops at the first Z signal after encountering the falling edge of HW.
3353
3354
3355 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3356
3357 (% style="text-align:center" %)
3358 [[image:1748226729793-833.jpg||height="484" width="600"]]
3359
3360 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it encounters a limit switch, it will automatically reverse and run at a forward high speed. After encountering a rising edge of HW, slow down and continue to run at a forward low speed. When encountering a falling edge of HW, the first Z signal after the edge stops.
3361
3362 ③ The deceleration point signal is valid when starting homing
3363
3364 (% style="text-align:center" %)
3365 [[image:1748226803530-631.jpg||height="414" width="600"]]
3366
3367 When starting homing, HW=1, it will start homing directly at low speed, and the first Z signal after encountering the falling edge of HW will stop;
3368
3369
3370 (12) P01-40=12
3371
3372 Mechanical homing: Motor Z signal
3373
3374 Deceleration point: Home switch (HW)
3375
3376 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3377
3378 (% style="text-align:center" %)
3379 [[image:1748226829420-255.jpg||height="406" width="600"]]
3380
3381
3382 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops at the first Z signal after encountering the rising edge of HW.
3383
3384
3385
3386 ② The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3387
3388 (% style="text-align:center" %)
3389 [[image:1748226863974-673.jpg||height="484" width="600"]]
3390
3391 When it starts to homing, HW=0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates, runs at a forward low speed, encounters a falling edge of HW, reverses, runs at a reverse low speed, and stops at the first Z signal after encountering a rising edge of HW.
3392
3393
3394
3395 ③ The deceleration point signal is valid when starting homing
3396
3397 (% style="text-align:center" %)
3398 [[image:1748226879060-830.jpg||height="414" width="600"]]
3399
3400 When starting to homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. The first Z signal after encountering the rising edge of HW will stop.
3401
3402 (13) P01-40=13
3403
3404 Mechanical homing: Motor Z signal
3405
3406 Deceleration point: Home switch (HW)
3407
3408 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3409
3410 [[image:1748226908598-664.jpg]]
3411
3412 (% style="text-align:center" %)
3413 [[image:1748227007116-603.jpg||height="443" width="600"]]
3414
3415 When it starts to homing, HW=0, and it starts to homing at a reverse high speed. If it does not encounter the limit switch, after encountering the rising edge of HW, slow down and run at a reverse low speed. After encountering the falling edge of HW, reverse and run at a forward low speed, and stop at the first Z signal after encountering the rising edge of HW.
3416
3417
3418 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3419
3420 (% style="text-align:center" %)
3421 [[image:1748227023585-740.jpg||height="472" width="600"]]
3422
3423 When it starts to homing, HW=0, it starts to homing at reverse high speed, encounters the limit switch, automatically reverses, runs at forward high speed, after encountering the rising edge of HW, decelerates and runs in reverse low speed, and encounters the falling edge of HW when running at reverse low speed, the first Z signal after encountering the rising edge of HW stops.
3424
3425 ③ The deceleration point signal is valid when starting homing
3426
3427 (% style="text-align:center" %)
3428 [[image:1748227043041-279.jpg||height="414" width="600"]]
3429
3430 When starting homing, HW=1 starts homing directly at reverse low speed. After encountering the falling edge of HW, the first Z signal after encountering the rising edge of HW stops in reverse and forward low speed operation;
3431
3432
3433 (14) P01-40=14
3434
3435 Mechanical homing: Motor Z signal
3436
3437 Deceleration point: Home switch (HW)
3438
3439 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3440
3441 (% style="text-align:center" %)
3442 [[image:1748227060842-543.jpg||height="416" width="600"]]
3443
3444 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates and runs at reverse low speed. After encountering the falling edge of HW, it continues to run at reverse low speed, and then the first Z signal encountered stops.
3445
3446
3447 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3448
3449 (% style="text-align:center" %)
3450 [[image:1748227079908-302.jpg||height="445" width="600"]]
3451
3452 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, encounters a limit switch, automatically reverses, runs at a forward high speed, encounters a rising edge of HW, decelerates and runs in a reverse direction, and stops the first Z signal after encountering a falling edge of HW at a reverse low speed.
3453
3454
3455 ③ The deceleration point signal is valid when starting homing
3456
3457 (% style="text-align:center" %)
3458 [[image:1748227101511-101.jpg||height="414" width="600"]]
3459
3460 When starting homing, HW=1, then directly reverse the low speed to start homing, and stop the first Z signal after encountering the falling edge of HW;
3461
3462
3463 (15) P01-40=17
3464
3465 Mechanical homing: Negative overrun switch (NOT)
3466
3467 Deceleration point: Negative overrun switch (NOT)
3468
3469 ① The deceleration point signal is invalid when starting homing
3470
3471 (% style="text-align:center" %)
3472 [[image:1748227125161-655.jpg||height="295" width="600"]]
3473
3474 When it starts to homing, NOT = 0, it starts to homing at a high speed in the reverse direction. After encountering the rising edge of NOT, it decelerates and reverses the direction, runs at a low speed in the forward direction, and stops after encountering the falling edge of NOT.
3475
3476
3477 ② The deceleration point signal is valid when starting homing
3478
3479 (% style="text-align:center" %)
3480 [[image:1748227138852-942.jpg||height="324" width="600"]]
3481
3482 When starting homing, NOT=1, start homing directly at low speed, and stop after encountering the falling edge of NOT.
3483
3484
3485 (16) P01-40=18
3486
3487 Mechanical homing: Positive overrun switch (POT)
3488
3489 Deceleration point: Positive overrun switch (POT)
3490
3491 ① The deceleration point signal is invalid when starting homing
3492
3493 (% style="text-align:center" %)
3494 [[image:1748227153999-626.jpg||height="300" width="600"]]
3495
3496 When it starts to return to zero, POT=0, it starts to homing at a forward high speed, after encountering the rising edge of POT, it decelerates and reverses, runs at a reverse low speed, and stops after encountering the falling edge of POT.
3497
3498
3499 ② The deceleration point signal is valid when starting homing
3500
3501 (% style="text-align:center" %)
3502 [[image:1748227169369-310.jpg||height="267" width="600"]]
3503
3504 When starting homing, POT=1, start homing at low speed in reverse directly, and stop when encountering POT falling edge;
3505
3506
3507
3508 (17) P01-40=19
3509
3510 Mechanical homing: Home switch (HW)
3511
3512 Deceleration point: Home switch (HW)
3513
3514 ① The deceleration point signal is invalid when starting homing
3515
3516 (% style="text-align:center" %)
3517 [[image:1748227186962-656.jpg||height="313" width="600"]]
3518
3519 When it starts to homing, HW=0, and it starts to homing at a forward high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3520
3521
3522 ② The deceleration point signal is valid when starting homing
3523
3524 (% style="text-align:center" %)
3525 [[image:1748227202174-768.jpg||height="313" width="600"]]
3526
3527 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3528
3529
3530 (18) P01-40=20
3531
3532 Mechanical homing: Home switch (HW)
3533
3534 Deceleration point: Home switch (HW)
3535
3536 ① The deceleration point signal is invalid when starting homing
3537
3538 (% style="text-align:center" %)
3539 [[image:1748227247408-755.jpg||height="314" width="600"]]
3540
3541 When starting to homing, HW=0, directly start to homing at low speed, and stop after encountering the rising edge of HW;
3542
3543
3544 ② The deceleration point signal is valid when starting homing
3545
3546 (% style="text-align:center" %)
3547 [[image:1748227263354-495.jpg||height="313" width="600"]]
3548
3549 When starting to homing, HW = 1, start to homing at a high speed in the reverse direction. After encountering the falling edge of HW, slow down and reverse the direction, run at a low speed in the forward direction, and stop when encountering the rising edge of HW.
3550
3551
3552 (19) P01-40=21
3553
3554 Mechanical homing: Home switch (HW)
3555
3556 Deceleration point: Home switch (HW)
3557
3558 ① The deceleration point signal is invalid when starting homing
3559
3560 (% style="text-align:center" %)
3561 [[image:1748227279599-847.jpg||height="314" width="600"]]
3562
3563 When it starts to homing, HW=0, it starts to homing at a reverse high speed. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3564
3565
3566 ② The deceleration point signal is valid when starting homing
3567
3568 (% style="text-align:center" %)
3569 [[image:1748227292762-413.jpg||height="313" width="600"]]
3570
3571 When starting back to zero, HW=1, it will start homing directly at low speed, and stop after encountering the falling edge of HW;
3572
3573
3574 (20) P01-40=22
3575
3576 Mechanical homing: Home switch (HW)
3577
3578 Deceleration point: Home switch (HW)
3579
3580 ① The deceleration point signal is invalid when starting homing
3581
3582 (% style="text-align:center" %)
3583 [[image:1748227358104-464.jpg||height="314" width="600"]]
3584
3585 When starting to homing, HW=0, directly reverse low speed starts to homing, and stops when encountering HW rising edge;
3586
3587
3588 Deceleration point signal is valid when homing start
3589
3590 (% style="text-align:center" %)
3591 [[image:1748227380961-172.jpg||height="343" width="600"]]
3592
3593 When starting to homing, HW=1, start to homing at a forward high speed, after encountering the falling edge of HW, slow down and reverse, run at a reverse low speed, and stop when encountering the rising edge of HW.
3594
3595
3596 (21) P01-40=23
3597
3598 Mechanical homing: Home switch (HW)
3599
3600 Deceleration point: Home switch (HW)
3601
3602 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3603
3604 (% style="text-align:center" %)
3605 [[image:1748227395851-339.jpg||height="387" width="600"]]
3606
3607 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, runs at a reverse low speed, and stops when encountering the falling edge of HW.
3608
3609
3610 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3611
3612 (% style="text-align:center" %)
3613 [[image:1748227414217-295.jpg||height="385" width="600"]]
3614
3615 When you start homing, HW = 0, start homing at a forward high speed. When encountering the limit switch, it will automatically reverse and run at a reverse high speed. After encountering the rising edge of HW, slow down, continue to run at reverse low speed, and stop when encountering the HW falling edge.
3616
3617
3618
3619 ③ The deceleration point signal is valid when starting homing
3620
3621 (% style="text-align:center" %)
3622 [[image:1748227429391-234.jpg||height="385" width="600"]]
3623
3624 When it starts to homing, HW=1, it starts to homing at a reverse low speed, and stops when it encounters the falling edge of HW.
3625
3626
3627 (22) P01-40=24
3628
3629 Mechanical homing: Home switch (HW)
3630
3631 Deceleration point: Home switch (HW)
3632
3633 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3634
3635 (% style="text-align:center" %)
3636 [[image:1748227484547-328.jpg||height="385" width="600"]]
3637
3638 When it starts to homing, HW = 0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3639
3640
3641 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3642
3643 (% style="text-align:center" %)
3644 [[image:1748227532124-334.jpg||height="385" width="600"]]
3645
3646 When it starts to homing, HW = 0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, runs at reverse high speed, encounters the rising edge of HW, decelerates and runs at reverse low speed, encounters the falling edge of HW, reverses, runs at forward low speed, and stops when encountering the rising edge of HW.
3647
3648
3649 ③ The deceleration point signal is valid when starting homing
3650
3651 (% style="text-align:center" %)
3652 [[image:1748227548455-494.jpg||height="387" width="600"]]
3653
3654 When starting with homing, HW = 1, it will directly reverse the low speed and start to homing. After encountering the falling edge of HW, it will reverse the direction and run at a forward low speed, and stop when encountering the rising edge of HW.
3655
3656
3657 (23) P01-40=25
3658
3659 Mechanical homing: Home switch (HW)
3660
3661 Deceleration point: Home switch (HW)
3662
3663 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3664
3665 (% style="text-align:center" %)
3666 [[image:1748227564603-199.jpg||height="385" width="600"]]
3667
3668 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3669
3670
3671 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3672
3673 (% style="text-align:center" %)
3674 [[image:1748227581797-586.jpg||height="385" width="600"]]
3675
3676 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerate and reverse to resume forward operation. After encountering the falling edge of HW at forward low speed, reverse. When running at reverse low speed, stop when encountering the rising edge of HW.
3677
3678
3679 ③ The deceleration point signal is valid when starting homing
3680
3681 (% style="text-align:center" %)
3682 [[image:1748227596969-949.jpg||height="385" width="600"]]
3683
3684 When starting homing, when HW=1, it starts to homing directly at low speed in the forward direction. After encountering the falling edge of HW, it stops at the rising edge of HW in the reverse low speed operation
3685
3686
3687 (24) P01-40=26
3688
3689 Mechanical homing: Home switch (HW)
3690
3691 Deceleration point: Home switch (HW)
3692
3693 ① The deceleration point signal is invalid when starting homing, the forward limit switch is not encountered
3694
3695 (% style="text-align:center" %)
3696 [[image:1748227611517-496.jpg||height="349" width="600"]]
3697
3698 When it starts to homing, HW=0, it starts to homing at a forward high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates, runs at a forward low speed, and stops when encountering the falling edge of HW.
3699
3700
3701 ① The deceleration point signal is invalid when starting homing, the forward limit switch is encountered
3702
3703 (% style="text-align:center" %)
3704 [[image:1748227628144-968.jpg||height="385" width="600"]]
3705
3706 When it starts to homing, HW=0, it starts to homing at forward high speed, encounters the limit switch, automatically reverses, and runs at reverse high speed. After encountering the rising edge of HW, decelerates and reverses to resume forward operation, and stops when encountering the falling edge of HW at forward low speed.
3707
3708
3709 ③ The deceleration point signal is valid when starting homing
3710
3711 (% style="text-align:center" %)
3712 [[image:1748227641046-963.jpg||height="343" width="600"]]
3713
3714 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3715
3716
3717 (25) P01-40=27
3718
3719 Mechanical homing: Home switch (HW)
3720
3721 Deceleration point: Home switch (HW)
3722
3723 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3724
3725 (% style="text-align:center" %)
3726 [[image:1748227660426-173.jpg||height="362" width="600"]]
3727
3728 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses the direction, runs at a forward low speed, and stops when encountering the falling edge of HW.
3729
3730
3731 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3732
3733 (% style="text-align:center" %)
3734 [[image:1748227698028-549.jpg||height="392" width="600"]]
3735
3736 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and continues to run at a forward low speed. When it encounters a falling edge of HW, it stops.
3737
3738
3739 ③ The deceleration point signal is valid when starting homing
3740
3741 (% style="text-align:center" %)
3742 [[image:1748227728238-666.jpg||height="394" width="600"]]
3743
3744 When starting homing, HW=1, it will start homing directly at low speed, and stop when encountering HW falling edge;
3745
3746
3747 (26) P01-40=28
3748
3749 Mechanical homing: Home switch (HW)
3750
3751 Deceleration point: Home switch (HW)
3752
3753 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3754
3755 (% style="text-align:center" %)
3756 [[image:1748227742531-619.jpg||height="437" width="600"]]
3757
3758 When it starts to homing, HW=0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and reverses, and runs at a forward low speed. After encountering the falling edge of HW, it reverses and runs at a reverse low speed, and stops when encountering the rising edge of HW.
3759
3760
3761 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3762
3763 (% style="text-align:center" %)
3764 [[image:1748227761818-990.jpg||height="394" width="600"]]
3765
3766 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When encountering a limit switch, it automatically reverses and runs at a forward high speed. When encountering a rising edge of HW, it decelerates and runs at a forward low speed. When encountering a falling edge of HW, it reverses and runs at a reverse low speed. When encountering a rising edge of HW, it stops.
3767
3768
3769 ③ The deceleration point signal is valid when starting homing
3770
3771 (% style="text-align:center" %)
3772 [[image:1748227779034-947.jpg||height="394" width="600"]]
3773
3774 When starting with homing, HW = 1, it will directly start to homing at a forward low speed. After encountering the falling edge of HW, it will reverse and run at a reverse low speed. When encountering the rising edge of HW, it will stop.
3775
3776
3777 (27) P01-40=29
3778
3779 Mechanical homing: Home switch (HW)
3780
3781 Deceleration point: Home switch (HW)
3782
3783 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3784
3785 (% style="text-align:center" %)
3786 [[image:1748227795620-564.jpg||height="432" width="600"]]
3787
3788 When it starts to homing, HW = 0, it starts to homing at a reverse high speed, and does not encounter a limit switch. After encountering the rising edge of HW, it decelerates and runs at a reverse low speed. After encountering the falling edge of HW, it reverses and runs at a forward low speed, and stops when encountering the rising edge of HW.
3789
3790
3791 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3792
3793 (% style="text-align:center" %)
3794 [[image:1748227810884-219.jpg||height="395" width="600"]]
3795
3796 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. After encountering a rising edge of HW, it decelerates and runs in a reverse low speed. After encountering a falling edge of HW, it reverses. When running at a forward low speed, it stops when it encounters a rising edge of HW.
3797
3798 ③ The deceleration point signal is valid when starting homing
3799
3800 (% style="text-align:center" %)
3801 [[image:1748227826652-200.jpg||height="392" width="600"]]
3802
3803 When starting homing, when HW=1, it starts to homing directly at low speed in reverse direction. After encountering the falling edge of HW, it stops when running at low speed in reverse direction and forward direction and encountering the rising edge of HW
3804
3805
3806 (28) P01-40=30
3807
3808 Mechanical homing: Home switch (HW)
3809
3810 Deceleration point: Home switch (HW)
3811
3812 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is not encountered
3813
3814 (% style="text-align:center" %)
3815 [[image:1748227844268-953.jpg||height="437" width="600"]]
3816
3817 When it starts to homing, HW=0, it starts to homing at reverse high speed, and does not encounter the limit switch. After encountering the rising edge of HW, it decelerates, runs at reverse low speed, and stops when encountering the falling edge of HW.
3818
3819
3820 ① The deceleration point signal is invalid when starting homing, the reverse limit switch is encountered
3821
3822 (% style="text-align:center" %)
3823 [[image:1748227859385-295.jpg||height="394" width="600"]]
3824
3825 When it starts to homing, HW=0, it starts to homing at a reverse high speed. When it encounters a limit switch, it automatically reverses and runs at a forward high speed. When it encounters a rising edge of HW, it decelerates and runs in a reverse low speed. When it encounters a falling edge of HW, it stops.
3826
3827
3828 ③ The deceleration point signal is valid when starting homing
3829
3830 (% style="text-align:center" %)
3831 [[image:1748227876370-835.jpg||height="395" width="600"]]
3832
3833 When starting homing, HW=1, start homing at low speed in reverse directly, and stop when encountering HW falling edge;
3834
3835
3836 (29) P01-40=33 and P01-40=34
3837
3838 Mechanical homing: Z signal.
3839
3840 Deceleration point: None
3841
3842 Homing mode 33: Reverse low speed operation, stop the first Z signal encountered
3843
3844 Homing mode 34: running at low speed in forward direction, stopping the first Z signal encountered
3845
3846 (% style="text-align:center" %)
3847 [[image:1748227893108-875.jpg||height="161" width="600"]]
3848
3849
3850 (30) P01-40=35
3851
3852 Homing mode 35, taking the current position as the mechanical homing, after triggering the homing (P01-39: 0x00→0x01/0x00 → 0x02);
3853
3854 After the homing is completed, according to the set value of P10-08 (homing bias compensation), P10-06 (encoder multi-turn reset operation) is executed.
3855
3856
3857