Wiki source code of 06 Operation

Version 74.2 by Mora Zhou on 2024/07/17 11:23

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|(((
87 Forward rotation: Face the motor shaft to watch
88
89 * 0: standard setting (CW is forward rotation)
90 * 1: reverse mode (CCW is forward rotation)
91 )))|-
92
93 Table 6-3 Rotation direction parameters** **
94
95 == **Braking resistor** ==
96
97 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
98
99 The basis for judging whether the braking resistor is built-in or external.
100
101 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
103
104 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
105 **Setting method**
106 )))|=(% style="width: 126px;" %)(((
107 **Effective time**
108 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
109 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
110 Operation setting
111 )))|(% style="width:126px" %)(((
112 Effective immediately
113 )))|0|0 to 3|(((
114 * 0: use built-in braking resistor
115 * 1: use external braking resistor and natural cooling
116 * 2: use external braking resistor and forced air cooling; (cannot be set)
117 * 3: No braking resistor is used, it is all absorbed by capacitor.
118 )))|-
119 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
120 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
121 Operation setting
122 )))|(% style="width:126px" %)(((
123 Effective immediately
124 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
125 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
126 Operation setting
127 )))|(% style="width:126px" %)(((
128 Effective immediately
129 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
130
131 Table 6-4 Braking resistor parameters
132
133 == **Servo operation** ==
134
135 **Set the servo enable (S-ON) to valid (ON)**
136
137 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
138
139 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
140
141 **Input the instruction and the motor rotates**
142
143 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
144
145 **Timing diagram of power on**
146
147 (% style="text-align:center" %)
148 (((
149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
150 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
151 )))
152
153 == Servo shutdown ==
154
155 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
156
157 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
158 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
159 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
160
161 Table 6-5 Comparison of two shutdown modes
162
163 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
164 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
165
166 Table 6-6 Comparison of two shutdown status
167
168 **Servo enable (S-ON) OFF shutdown**
169
170 The related parameters of the servo OFF shutdown mode are shown in the table below.
171
172 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
173 **Setting method**
174 )))|=(% style="width: 134px;" %)(((
175 **Effective time**
176 )))|=(% style="width: 86px;" %)(((
177 **Default value**
178 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
179 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
180 Shutdown
181
182 setting
183 )))|(% style="width:134px" %)(((
184 Effective
185
186 immediately
187 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
188 * 0: Free shutdown, and the motor shaft remains free status.
189 * 1: Zero-speed shutdown, and the motor shaft remains free status.
190 )))|-
191
192 Table 6-7 Servo OFF shutdown mode parameters details
193
194 **Emergency shutdown**
195
196 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
197
198 Estop mode 1 (deceleration stop):
199
200 ~1. Configurate DI function code: 8 [ESTOP]
201
202 2. Set P1-5 shutdown deceleration time.
203
204 3. Trigger DI emergency shutdown.
205
206 4. Servo emergency shutdown and deceleration to zero speed.
207
208 Estop mode 2:
209
210 ~1. Configurate DI function code: 1 [Servo enable SON]
211
212 2. Set P1-05 shutdown deceleration time.
213
214 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
215
216 4. Trigger DI to turn off servo enable SON.
217
218 |Function code|Name|(((
219 Setting
220
221 method
222 )))|(((
223 Effective
224
225 time
226 )))|Default|Range|Definition|Unit
227 |P01-05|Shutdown deceleration time|(((
228 Shutdown
229
230 setting
231 )))|(((
232 immediately
233
234 Effective
235 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
236
237 **Overtravel shutdown**
238
239 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
240
241 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
242
243 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
244
245 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
246 **Setting method**
247 )))|=(% style="width: 114px;" %)(((
248 **Effective time**
249 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
250 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
251 * 0: OFF (not used)
252 * 01: S-ON servo enable
253 * 02: A-CLR fault and Warning Clear
254 * 03: POT forward drive prohibition
255 * 04: NOT Reverse drive prohibition
256 * 05: ZCLAMP Zero speed
257 * 06: CL Clear deviation counter
258 * 07: C-SIGN Inverted instruction
259 * 08: E-STOP Emergency stop
260 * 09: GEAR-SEL Electronic Gear Switch 1
261 * 10: GAIN-SEL gain switch
262 * 11: INH Instruction pulse prohibited input
263 * 12: VSSEL Vibration control switch input
264 * 13: INSPD1 Internal speed instruction selection 1
265 * 14: INSPD2 Internal speed instruction selection 2
266 * 15: INSPD3 Internal speedinstruction selection 3
267 * 16: J-SEL inertia ratio switch (not implemented yet)
268 * 17: MixModesel mixed mode selection
269 * 20: Internal multi-segment position enable signal
270 * 21: Internal multi-segment position selection 1
271 * 22: Internal multi-segment position selection 2
272 * 23: Internal multi-segment position selection 3
273 * 24: Internal multi-segment position selection 4
274 * Others: reserved
275 )))|-
276 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
277 Effective immediately
278 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
279 DI port input logic validity function selection.
280
281 * 0: Normally open input. Active low level (switch on);
282 * 1: Normally closed input. Active high level (switch off);
283 )))|-
284 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
285 Effective immediately
286 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
287 Select the DI_3 port type to enable
288
289 * 0: Hardware DI_3 input terminal
290 * 1: virtual VDI_3 input terminal
291 )))|-
292 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
293 Operation setting
294 )))|(% style="width:114px" %)(((
295 again Power-on
296 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
297 * 0: OFF (not used)
298 * 01: SON Servo enable
299 * 02: A-CLR Fault and Warning Clear
300 * 03: POT Forward drive prohibition
301 * 04: NOT Reverse drive prohibition
302 * 05: ZCLAMP Zero speed
303 * 06: CL Clear deviation counter
304 * 07: C-SIGN Inverted instruction
305 * 08: E-STOP Emergency shutdown
306 * 09: GEAR-SEL Electronic Gear Switch 1
307 * 10: GAIN-SEL gain switch
308 * 11: INH Instruction pulse prohibited input
309 * 12: VSSEL Vibration control switch input
310 * 13: INSPD1 Internal speed instruction selection 1
311 * 14: INSPD2 Internal speed instruction selection 2
312 * 15: INSPD3 Internal speed instruction selection 3
313 * 16: J-SEL inertia ratio switch (not implemented yet)
314 * 17: MixModesel mixed mode selection
315 * 20: Internal multi-segment position enable signal
316 * 21: Internal multi-segment position selection 1
317 * 22: Internal multi-segment position selection 2
318 * 23: Internal multi-segment position selection 3
319 * 24: Internal multi-segment position selection 4
320 * Others: reserved
321 )))|-
322 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
323 Effective immediately
324 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
325 DI port input logic validity function selection.
326
327 * 0: Normally open input. Active low level (switch on);
328 * 1: Normally closed input. Active high level (switch off);
329 )))|-
330 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
331 Effective immediately
332 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
333 Select the DI_4 port type to enable
334
335 * 0: Hardware DI_4 input terminal
336 * 1: virtual VDI_4 input terminal
337 )))|-
338
339 Table 6-8 DI3 and DI4 channel parameters
340
341 **(4) Malfunction shutdown**
342
343 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
344
345 == Brake device ==
346
347 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
348
349 (% class="warning" %)|(((
350 (% style="text-align:center" %)
351 [[image:image-20220611151617-1.png]]
352 )))
353 |(((
354 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
355
356 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
357
358 ✎The brake coil has no polarity;
359
360 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
361
362 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
363 )))
364
365 **Wiring of brake device**
366
367 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
368
369
370 (% style="text-align:center" %)
371 (((
372 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
373 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
374 )))
375
376 (% class="warning" %)|(((
377 (% style="text-align:center" %)
378 [[image:image-20220611151642-2.png]]
379 )))
380 |(((
381 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
382
383 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
384
385 ✎It is recommended to use cables above 0.5 mm².
386 )))
387
388 **Brake software setting**
389
390 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
391
392 Related function code is as below.
393
394 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
395 **Effective time**
396 )))
397 |=141|(% style="width:241px" %)(((
398 BRK-OFF Brake output
399 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
400
401 Table 6-2 Relevant function codes for brake setting
402
403 |=(% scope="row" %)**Function code**|=**Name**|=(((
404 **Setting method**
405 )))|=(((
406 **Effective time**
407 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
408 |=P1-30|Delay from brake output to instruction reception|(((
409 Operation setting
410 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
411 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
412 Operation setting
413 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
414 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
415 Operation setting
416 )))|Effective immediately|30|0 to 3000|(((
417 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
418
419 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
420 )))|rpm
421 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
422 Operation setting
423 )))|Effective immediately|500|1 to 1000|(((
424 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
425
426 When brake output (BRK-OFF) is not allocated, this function code has no effect.
427 )))|ms
428
429 Table 6-9 Brake setting function codes
430
431 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
432
433 **Servo drive brake timing in normal state**
434
435 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
436
437 * Brake timing when servo motor is stationary
438
439 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
440
441 (% class="warning" %)|(((
442 (% style="text-align:center" %)
443 [[image:image-20220611151705-3.png]]
444 )))
445 |(((
446 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
447
448 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
449 )))
450
451 (% style="text-align:center" %)
452 (((
453 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
454 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
460 )))
461
462 * The brake timing when servo motor rotates
463
464 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
465
466 (% class="warning" %)|(((
467 (% style="text-align:center" %)
468 [[image:image-20220611151719-4.png]]
469 )))
470 |(((
471 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
472
473 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
474
475 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
476
477 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
478
479 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
480 )))
481
482 (% style="text-align:center" %)
483 (((
484 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
485 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
486 )))
487
488 **Brake timing when the servo drive fails**
489
490 The brake timing (free shutdown) in the fault status is as follows.
491
492 (% style="text-align:center" %)
493 (((
494 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
495 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
496 )))
497
498 = **Position control mode** =
499
500 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
501
502 (% style="text-align:center" %)
503 (((
504 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
505 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
506 )))
507
508 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
509
510 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
511 **Setting method**
512 )))|=(((
513 **Effective time**
514 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
515 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
516 Operation setting
517 )))|(((
518 immediately Effective
519 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
520 1: position control
521
522 2: speed control
523
524 3: torque control
525
526 4: position/speed mix control
527
528 5: position/torque mix control
529
530 6: speed /torque mix control
531
532 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
533 )))|(% style="width:151px" %)-
534
535 Table 6-10 Control mode parameters
536
537 == Position instruction input setting ==
538
539 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
540
541 |=(% scope="row" %)**Function code**|=**Name**|=(((
542 **Setting method**
543 )))|=(((
544 **Effective time**
545 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
546 |=P01-06|Position instruction source|(((
547 Operation setting
548 )))|(((
549 immediately Effective
550 )))|0|0 to 1|(((
551 0: pulse instruction
552
553 1: internal position instruction
554 )))|-
555
556 Table 6-12 Position instruction source parameter
557
558 **The source of position instruction is pulse instruction (P01-06=0)**
559
560 Low-speed pulse instruction input
561
562 |(% style="text-align:center" %)(((
563 (% class="wikigeneratedid" %)
564 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
565 )))|(% style="text-align:center" %)(((
566 (% class="wikigeneratedid" %)
567 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
568 )))
569 |(% colspan="2" %)Figure 6-7 Position instruction input setting
570
571 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
572
573 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
574
575 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
576 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
577 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
578
579 Table 6-13 Pulse input specifications
580
581 * Differential input
582
583 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
584
585 (% style="text-align:center" %)
586 (((
587 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
588 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
589 )))
590
591 (% class="box infomessage" %)
592 (((
593 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
594 )))
595
596 * Open collector input
597
598 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
599
600 (% style="text-align:center" %)
601 (((
602 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
603 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
604 )))
605
606
607 (% class="box infomessage" %)
608 (((
609 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
610 )))
611
612 * Position pulse frequency and anti-interference level
613
614 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
615
616 (% style="text-align:center" %)
617 (((
618 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
619 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
620 )))
621
622 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
623
624 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
625 **Setting method**
626 )))|=(((
627 **Effective time**
628 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
629 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
630 Operation setting
631 )))|(% rowspan="3" %)(((
632 Power-on again
633 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
634 Set the anti-interference level of external pulse instruction.
635
636 * 0: no filtering;
637 * 1: Filtering time 128ns
638 * 2: Filtering time 256ns
639 * 3: Filtering time 512ns
640 * 4: Filtering time 1.024us
641 * 5: Filtering time 2.048us
642 * 6: Filtering time 4.096us
643 * 7: Filtering time 8.192us
644 * 8: Filtering time 16.384us
645 * 9:
646 ** VD2: Filtering time 25.5us
647 ** VD2F: Filtering time 25.5us
648 )))|(% rowspan="3" %)-
649
650 Table 6-14 Position pulse frequency and anti-interference level parameters
651
652 |**Function code**|**Name**|(((
653 **Setting**
654
655 **method**
656 )))|(((
657 **Effective**
658
659 **time**
660 )))|**Default value**|**Range**|**Definition**|**Unit**
661 |P00-14|Position pulse anti-interference level|(((
662 Operation
663
664 setting
665 )))|(((
666 Power-on
667
668 again
669 )))|2|0 to 8|(((
670 VD2L drive set the anti-interference level of external pulse instruction.
671
672 0: no filtering;
673
674 1: Filtering time 111.1ns
675
676 2: Filtering time 222.2ns
677
678 3: Filtering time 444.4ns
679
680 4: Filtering time 888.8ns
681
682 5: Filtering time 1777.7ns
683
684 6: Filtering time 3555.5ns
685
686 7: Filtering time 7111.7ns
687
688 8: Filtering time 14222.2ns
689
690
691 )))|-
692
693 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
694
695
696 * Position pulse type selection
697
698 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
699
700 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
701 **Setting method**
702 )))|=(% style="width: 109px;" %)(((
703 **Effective time**
704 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
705 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
706 Operation setting
707 )))|(% style="width:109px" %)(((
708 Power-on again
709 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
710 * 0: direction + pulse (positive logic)
711 * 1: CW/CCW
712 * 2: A, B phase quadrature pulse (4 times frequency)
713 * 3: Direction + pulse (negative logic)
714 * 4: CW/CCW (negative logic)
715 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
716
717 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
718 )))|-
719
720 Table 6-15 Position pulse type selection parameter
721
722 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
723 |=0|(% style="width:200px" %)(((
724 Direction + pulse
725
726 (Positive logic)
727 )))|(% style="width:161px" %)(((
728 PULSE
729
730 SIGN
731 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
732 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
733 PULSE (CW)
734
735 SIGN (CCW)
736 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
737 |=2|(% style="width:200px" %)(((
738 AB phase orthogonal
739
740 pulse (4 times frequency)
741 )))|(% style="width:161px" %)(((
742 PULSE (Phase A)
743
744 SIGN (Phase B)
745 )))|(((
746
747
748 [[image:image-20220707094358-9.jpeg]]
749
750 Phase A is 90° ahead of Phase B
751 )))|(((
752
753
754 [[image:image-20220707094407-10.jpeg]]
755
756 Phase B is 90° ahead of Phase A
757 )))
758 |=3|(% style="width:200px" %)(((
759 Direction + pulse
760
761 (Negative logic)
762 )))|(% style="width:161px" %)(((
763 PULSE
764
765 SIGN
766 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
767 |=4|(% style="width:200px" %)(((
768 CW/CCW
769
770 (Negative logic)
771 )))|(% style="width:161px" %)(((
772 PULSE (CW)
773
774 SIGN (CCW)
775 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
776 |=5|(% style="width:200px" %)(((
777 AB phase orthogonal
778
779 pulse (4 times frequency negative logic)
780 )))|(% style="width:161px" %)(((
781 PULSE (Phase A)
782
783 SIGN (Phase B)
784 )))|(((
785
786
787 [[image:image-20220707094429-14.jpeg]]
788
789 Phase B is ahead of A phase by 90°
790 )))|(((
791
792
793 [[image:image-20220707094437-15.jpeg]]
794
795 Phase A is ahead of B phase by 90°
796 )))
797
798 Table 6-16 Pulse description
799
800 **The source of position instruction is internal position instruction (P01-06=1)**
801
802 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
803
804 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
805
806 (% style="text-align:center" %)
807 (((
808 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
809 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
810 )))
811
812
813 * Set multi-segment position running mode
814
815 |=(% scope="row" %)**Function code**|=**Name**|=(((
816 **Setting method**
817 )))|=(((
818 **Effective time**
819 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
820 |=P07-01|Multi-segment position running mode|(((
821 Shutdown setting
822 )))|(((
823 Effective immediately
824 )))|0|0 to 2|(((
825 0: Single running
826
827 1: Cycle running
828
829 2: DI switching running
830 )))|-
831 |=P07-02|Start segment number|(((
832 Shutdown setting
833 )))|(((
834 Effective immediately
835 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
836 |=P07-03|End segment number|(((
837 Shutdown setting
838 )))|(((
839 Effective immediately
840 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
841 |=P07-04|Margin processing method|(((
842 Shutdown setting
843 )))|(((
844 Effective immediately
845 )))|0|0 to 1|(((
846 0: Run the remaining segments
847
848 1: Run again from the start segment
849 )))|-
850 |=P07-05|Displacement instruction type|(((
851 Shutdown setting
852 )))|(((
853 Effective immediately
854 )))|0|0 to 1|(((
855 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
856
857 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
858 )))|-
859
860 Table 6-17 multi-segment position running mode parameters
861
862 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
863
864 1. Single running
865
866 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
867
868 (% style="text-align:center" %)
869 (((
870 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
871 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
872 )))
873
874 * 2. Cycle running
875
876 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
877
878 (% style="text-align:center" %)
879 (((
880 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
881 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
882 )))
883
884 (% class="warning" %)|(((
885 (% style="text-align:center" %)
886 [[image:image-20220611151917-5.png]]
887 )))
888 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
889
890 (% start="3" %)
891 1. DI switching running
892
893 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
894
895 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
896 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
897 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
898 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
899 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
900
901 Table 6-18 DI function code
902
903 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
904
905 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
906 |=0|0|0|0|1
907 |=0|0|0|1|2
908 |=0|0|1|0|3
909 |=0|0|1|1|4
910 |=0|1|0|0|5
911 |=0|1|0|1|6
912 |=0|1|1|0|7
913 |=0|1|1|1|8
914 |=1|0|0|0|9
915 |=1|0|0|1|10
916 |=1|0|1|0|11
917 |=1|0|1|1|12
918 |=1|1|0|0|13
919 |=1|1|0|1|14
920 |=1|1|1|0|15
921 |=1|1|1|1|16
922
923 Table 6-20 INPOS corresponds to running segment number
924
925 The operating curve in this running mode is shown in __Figure 6-14__.
926
927 (% style="text-align:center" %)
928 (((
929 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
930 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
931 )))
932
933 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
934
935 **Run the remaining segments**
936
937 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
938
939 (% style="text-align:center" %)
940 (((
941 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
942 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
943 )))
944
945 (% style="text-align:center" %)
946 (((
947 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
948 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
949 )))
950
951 **Run again from the start segment**
952
953 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
954
955 (% style="text-align:center" %)
956 (((
957 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
958 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
959 )))
960
961 (% style="text-align:center" %)
962 (((
963 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
964 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
965 )))
966
967 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
968
969 * Relative position instruction
970
971 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
972
973 |(((
974 (% style="text-align:center" %)
975 (((
976 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
977 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
978 )))
979 )))|(((
980 (% style="text-align:center" %)
981 (((
982 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
983 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
984 )))
985 )))
986
987 * Absolute position instruction
988
989 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
990
991 |(((
992 (% style="text-align:center" %)
993 (((
994 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
995 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
996 )))
997 )))|(((
998 (% style="text-align:center" %)
999 (((
1000 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1001 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1002 )))
1003 )))
1004
1005 * Multi-segment position running curve setting
1006
1007 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1008
1009 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1010 |=P07-09|(((
1011 1st segment
1012
1013 displacement
1014 )))|(((
1015 Operation setting
1016 )))|(((
1017 Effective immediately
1018 )))|10000|(((
1019 -2147483647 to
1020
1021 2147483646
1022 )))|Position instruction, positive and negative values could be set|-
1023 |=P07-10|Maximum speed of the 1st displacement|(((
1024 Operation setting
1025 )))|(((
1026 Effective immediately
1027 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1028 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1029 Operation setting
1030 )))|(((
1031 Effective immediately
1032 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1033 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1034 Operation setting
1035 )))|(((
1036 Effective immediately
1037 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1038
1039 Table 6-21 The 1st position operation curve parameters table
1040
1041 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1042
1043 (% style="text-align:center" %)
1044 (((
1045 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1046 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1047 )))
1048
1049
1050 * multi-segment position instruction enable
1051
1052 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1053
1054 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1055 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1056 DI port logic invalid: Does not affect the current operation of the servo motor.
1057
1058 DI port logic valid: Motor runs multi-segment position
1059 )))
1060
1061 (% style="text-align:center" %)
1062 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1063
1064 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1065
1066 == Electronic gear ratio ==
1067
1068 **Definition of electronic gear ratio**
1069
1070 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1071
1072 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1073
1074 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1075
1076 (% style="text-align:center" %)
1077 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1078
1079 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1080
1081 **Setting steps of electronic gear ratio**
1082
1083 (% style="text-align:center" %)
1084 (((
1085 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1086 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1087 )))
1088
1089 **lectronic gear ratio switch setting**
1090
1091 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1092
1093 |=(% scope="row" %)**Function code**|=**Name**|=(((
1094 **Setting method**
1095 )))|=(((
1096 **Effective time**
1097 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1098 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1099 Shutdown setting
1100 )))|(((
1101 Effective immediately
1102 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1103 Instruction pulse
1104
1105 unit
1106 )))
1107 |=P00-17|(((
1108 Electronic gear 1
1109
1110 numerator
1111 )))|Operation setting|(((
1112 Effective immediately
1113 )))|1|1 to 4294967294|(((
1114 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1115
1116 **VD2L: 1-2147483647**
1117 )))|-
1118 |=P00-18|(((
1119 Electronic gear 1
1120
1121 denominator
1122 )))|(((
1123 Operation setting
1124 )))|(((
1125 Effective immediately
1126 )))|1|1 to 4294967294|(((
1127 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1128
1129 **VD2L: 1-2147483647**
1130 )))|-
1131 |=P00-19|(((
1132 Electronic gear 2
1133
1134 numerator
1135 )))|Operation setting|(((
1136 Effective immediately
1137 )))|1|1 to 4294967294|(((
1138 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1139
1140 **VD2L: 1-2147483647**
1141 )))|-
1142 |=P00-20|(((
1143 Electronic gear 2
1144
1145 denominator
1146 )))|Operation setting|(((
1147 Effective immediately
1148 )))|1|1 to 4294967294|(((
1149 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1150
1151 **VD2L: 1-2147483647**
1152 )))|-
1153
1154 Table 6-20 Electronic gear ratio function code
1155
1156 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1157
1158 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1159 |=09|GEAR-SEL electronic gear switch 1|(((
1160 DI port logic invalid: electronic gear ratio 1
1161
1162 DI port logic valid: electronic gear ratio 2
1163 )))
1164
1165 Table 6-21 Switching conditions of electronic gear ratio group
1166
1167 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1168 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1169 (% style="text-align:center" %)
1170 [[image:image-20220707101328-21.png]]
1171 )))
1172 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1173 (% style="text-align:center" %)
1174 [[image:image-20220707101336-22.png]]
1175 )))
1176 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1177 (% style="text-align:center" %)
1178 [[image:image-20220707101341-23.png]]
1179 )))
1180
1181 Table 6-22 Application of electronic gear ratio
1182
1183 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1184
1185 == Position instruction filtering ==
1186
1187 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1188
1189 In the following situations, position instruction filtering should be added.
1190
1191 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1192 1. The pulse instruction frequency is low;
1193 1. When the electronic gear ratio is 10 times or more.
1194
1195 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1196
1197 (% style="text-align:center" %)
1198 (((
1199 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1200 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1201 )))
1202
1203 |=(% scope="row" %)**Function code**|=**Name**|=(((
1204 **Setting method**
1205 )))|=(((
1206 **Effective time**
1207 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1208 |=P04-01|Pulse instruction filtering method|(((
1209 Shutdown setting
1210 )))|(((
1211 Effective immediately
1212 )))|0|0 to 1|(((
1213 * 0: 1st-order low-pass filtering
1214 * 1: average filtering
1215 )))|-
1216 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1217 Effective immediately
1218 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1219 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1220 Effective immediately
1221 )))|0|0 to 128|Position instruction average filtering time constant|ms
1222
1223 Table 6-25 Position instruction filter function code
1224
1225 == Clearance of position deviation ==
1226
1227 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1228
1229 Position deviation = (position instruction-position feedback) (encoder unit)
1230
1231 == Position-related DO output function ==
1232
1233 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1234
1235 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1236 **Positioning completion/positioning approach output**
1237
1238 (% class="wikigeneratedid" %)
1239 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1240
1241 (% style="text-align:center" %)
1242 (((
1243 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1244 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1245 )))
1246
1247 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1248
1249 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1250
1251 (% style="text-align:center" %)
1252 (((
1253 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1254 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1255 )))
1256
1257 |=(% scope="row" %)**Function code**|=**Name**|=(((
1258 **Setting method**
1259 )))|=(% style="width: 129px;" %)(((
1260 **Effective time**
1261 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1262 |=P05-12|Positioning completion threshold|(((
1263 Operation setting
1264 )))|(% style="width:129px" %)(((
1265 Effective immediately
1266 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1267 |=P05-13|Positioning approach threshold|(((
1268 Operation setting
1269 )))|(% style="width:129px" %)(((
1270 Effective immediately
1271 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1272 |=P05-14|Position detection window time|(((
1273 Operation setting
1274 )))|(% style="width:129px" %)(((
1275 Effective immediately
1276 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1277 |=P05-15|Positioning signal hold time|(((
1278 Operation setting
1279 )))|(% style="width:129px" %)(((
1280 Effective immediately
1281 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1282
1283 Table 6-26 Function code parameters of positioning completion
1284
1285 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1286 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1287 |=135|(((
1288 P-NEAR positioning close
1289 )))|(((
1290 Output this signal indicates that the servo drive position is close.
1291 )))
1292
1293 Table 6-27 Description of DO rotation detection function code
1294
1295 = **Speed control mode** =
1296
1297 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1298
1299 (% style="text-align:center" %)
1300 (((
1301 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1302 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1303 )))
1304
1305 == Speed instruction input setting ==
1306
1307 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1308
1309 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1310 **Setting method**
1311 )))|=(% style="width: 125px;" %)(((
1312 **Effective time**
1313 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1314 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1315 Shutdown setting
1316 )))|(% style="width:125px" %)(((
1317 Effective immediately
1318 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1319 * 0: internal speed instruction
1320 * 1: AI_1 analog input (not supported by VD2F)
1321 )))|-
1322
1323 Table 6-26 Speed instruction source parameter
1324
1325 **Speed instruction source is internal speed instruction (P01-01=0)**
1326
1327 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1328
1329 (% style="width:1141px" %)
1330 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1331 **Setting**
1332
1333 **method**
1334 )))|=(% colspan="2" %)(((
1335 **Effective**
1336
1337 **time**
1338 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1339 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1340 Internal speed
1341
1342 Instruction 0
1343 )))|(% colspan="2" %)(((
1344 Operation
1345
1346 setting
1347 )))|(% colspan="2" %)(((
1348 Effective
1349
1350 immediately
1351 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1352 Internal speed instruction 0
1353
1354 When DI input port:
1355
1356 * 15-INSPD3: 0
1357 * 14-INSPD2: 0
1358 * 13-INSPD1: 0,
1359
1360 select this speed instruction to be effective.
1361 )))|(% colspan="2" %)rpm
1362 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1363 Internal speed
1364
1365 Instruction 1
1366 )))|(% colspan="2" %)(((
1367 Operation
1368
1369 setting
1370 )))|(% colspan="2" %)(((
1371 Effective
1372
1373 immediately
1374 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1375 Internal speed instruction 1
1376
1377 When DI input port:
1378
1379 * 15-INSPD3: 0
1380 * 14-INSPD2: 0
1381 * 13-INSPD1: 1,
1382
1383 Select this speed instruction to be effective.
1384 )))|(% colspan="2" %)rpm
1385 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1386 Internal speed
1387
1388 Instruction 2
1389 )))|(% colspan="2" %)(((
1390 Operation
1391
1392 setting
1393 )))|(% colspan="2" %)(((
1394 Effective
1395
1396 immediately
1397 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1398 Internal speed instruction 2
1399
1400 When DI input port:
1401
1402 * 15-INSPD3: 0
1403 * 14-INSPD2: 1
1404 * 13-INSPD1: 0,
1405
1406 Select this speed instruction to be effective.
1407 )))|(% colspan="2" %)rpm
1408 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1409 Internal speed
1410
1411 Instruction 3
1412 )))|(% colspan="2" %)(((
1413 Operation
1414
1415 setting
1416 )))|(% colspan="2" %)(((
1417 Effective
1418
1419 immediately
1420 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1421 Internal speed instruction 3
1422
1423 When DI input port:
1424
1425 * 15-INSPD3: 0
1426 * 14-INSPD2: 1
1427 * 13-INSPD1: 1,
1428
1429 Select this speed instruction to be effective.
1430 )))|(% colspan="2" %)rpm
1431 |=P01-26|(% colspan="2" %)(((
1432 Internal speed
1433
1434 Instruction 4
1435 )))|(% colspan="2" %)(((
1436 Operation
1437
1438 setting
1439 )))|(% colspan="2" %)(((
1440 Effective
1441
1442 immediately
1443 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1444 Internal speed instruction 4
1445
1446 When DI input port:
1447
1448 * 15-INSPD3: 1
1449 * 14-INSPD2: 0
1450 * 13-INSPD1: 0,
1451
1452 Select this speed instruction to be effective.
1453 )))|(% colspan="1" %)rpm
1454 |=P01-27|(% colspan="2" %)(((
1455 Internal speed
1456
1457 Instruction 5
1458 )))|(% colspan="2" %)(((
1459 Operation
1460
1461 setting
1462 )))|(% colspan="2" %)(((
1463 Effective
1464
1465 immediately
1466 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1467 Internal speed instruction 5
1468
1469 When DI input port:
1470
1471 * 15-INSPD3: 1
1472 * 14-INSPD2: 0
1473 * 13-INSPD1: 1,
1474
1475 Select this speed instruction to be effective.
1476 )))|(% colspan="1" %)rpm
1477 |=P01-28|(% colspan="2" %)(((
1478 Internal speed
1479
1480 Instruction 6
1481 )))|(% colspan="2" %)(((
1482 Operation
1483
1484 setting
1485 )))|(% colspan="2" %)(((
1486 Effective
1487
1488 immediately
1489 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1490 Internal speed instruction 6
1491
1492 When DI input port:
1493
1494 * 15-INSPD3: 1
1495 * 14-INSPD2: 1
1496 * 13-INSPD1: 0,
1497
1498 Select this speed instruction to be effective.
1499 )))|(% colspan="1" %)rpm
1500 |=P01-29|(% colspan="2" %)(((
1501 Internal speed
1502
1503 Instruction 7
1504 )))|(% colspan="2" %)(((
1505 Operation
1506
1507 setting
1508 )))|(% colspan="2" %)(((
1509 Effective
1510
1511 immediately
1512 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1513 Internal speed instruction 7
1514
1515 When DI input port:
1516
1517 * 15-INSPD3: 1
1518 * 14-INSPD2: 1
1519 * 13-INSPD1: 1,
1520
1521 Select this speed instruction to be effective.
1522 )))|(% colspan="1" %)rpm
1523
1524 Table 6-27 Internal speed instruction parameters
1525
1526 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1527 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1528 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1529 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1530
1531 Table 6-28 DI multi-speed function code description
1532
1533 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1534
1535
1536 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1537 |0|0|0|1|0
1538 |0|0|1|2|1
1539 |0|1|0|3|2
1540 |(% colspan="5" %)......
1541 |1|1|1|8|7
1542
1543 Table 6-29 Correspondence between INSPD bits and segment numbers
1544
1545 (% style="text-align:center" %)
1546 (((
1547 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1548 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1549 )))
1550
1551 **Speed instruction source is internal speed instruction (P01-01=1)**
1552
1553 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1554
1555 (% style="text-align:center" %)
1556 (((
1557 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1558 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1559 )))
1560
1561 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1562
1563 (% style="text-align:center" %)
1564 (((
1565 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1566 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1567 )))
1568
1569 Explanation of related terms:
1570
1571 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1572 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1573 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1574
1575 (% style="text-align:center" %)
1576 (((
1577 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1578 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1579 )))
1580
1581 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1582 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1583 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1584 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1585 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1586
1587 Table 6-30 AI_1 parameters
1588
1589 (% class="box infomessage" %)
1590 (((
1591 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1592 )))
1593
1594 == Acceleration and deceleration time setting ==
1595
1596 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1597
1598 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1599
1600 (% style="text-align:center" %)
1601 (((
1602 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1603 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1604 )))
1605
1606 (% style="text-align:center" %)
1607 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1608
1609 |=(% scope="row" %)**Function code**|=**Name**|=(((
1610 **Setting method**
1611 )))|=(((
1612 **Effective time**
1613 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1614 |=P01-03|Acceleration time|(((
1615 Operation setting
1616 )))|(((
1617 Effective immediately
1618 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1619 |=P01-04|Deceleration time|(((
1620 Operation setting
1621 )))|(((
1622 Effective immediately
1623 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1624
1625 Table 6-31 Acceleration and deceleration time parameters
1626
1627 == Speed instruction limit ==
1628
1629 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1630
1631 1. P01-10: Set the maximum speed limit value
1632 1. P01-12: Set forward speed limit value
1633 1. P01-13: Set reverse speed limit value
1634 1. The maximum speed of the motor: determined by motor model
1635
1636 The actual motor speed limit interval satisfies the following relationship:
1637
1638 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1639
1640 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1641
1642 |=(% scope="row" %)**Function code**|=**Name**|=(((
1643 **Setting method**
1644 )))|=(((
1645 **Effective time**
1646 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1647 |=P01-10|Maximum speed threshold|(((
1648 Operation setting
1649 )))|(((
1650 Effective immediately
1651 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1652 |=P01-12|Forward speed threshold|(((
1653 Operation setting
1654 )))|(((
1655 Effective immediately
1656 )))|3000|0 to 5000|Set forward speed limit value|rpm
1657 |=P01-13|Reverse speed threshold|(((
1658 Operation setting
1659 )))|(((
1660 Effective immediately
1661 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1662
1663 Table 6-32 Rotation speed related function codes
1664
1665 == Zero-speed clamp function ==
1666
1667 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1668
1669 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1670
1671 |=(% scope="row" %)**Function code**|=**Name**|=(((
1672 **Setting method**
1673 )))|=(((
1674 **Effective time**
1675 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1676 |=P01-21|(((
1677 Zero-speed clamp function selection
1678 )))|(((
1679 Operation setting
1680 )))|(((
1681 Effective immediately
1682 )))|0|0 to 3|(((
1683 Set the zero-speed clamp function. In speed mode:
1684
1685 * 0: Force the speed to 0;
1686 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1687 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1688 * 3: Invalid, ignore zero-speed clamp input
1689 )))|-
1690 |=P01-22|(((
1691 Zero-speed clamp speed threshold
1692 )))|(((
1693 Operation setting
1694 )))|(((
1695 Effective immediately
1696 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1697
1698 Table 6-33 Zero-speed clamp related parameters
1699
1700 (% style="text-align:center" %)
1701 (((
1702 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1703 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1704 )))
1705
1706 == Speed-related DO output function ==
1707
1708 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1709
1710 **Rotation detection signal**
1711
1712 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1713
1714 (% style="text-align:center" %)
1715 (((
1716 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1717 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1718 )))
1719
1720 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1721
1722 |=(% scope="row" %)**Function code**|=**Name**|=(((
1723 **Setting method**
1724 )))|=(((
1725 **Effective time**
1726 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1727 |=P05-16|(((
1728 Rotation detection
1729
1730 speed threshold
1731 )))|(((
1732 Operation setting
1733 )))|(((
1734 Effective immediately
1735 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1736
1737 Table 6-34 Rotation detection speed threshold parameters
1738
1739 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1740 |=132|(% style="width:247px" %)(((
1741 T-COIN rotation detection
1742 )))|(% style="width:695px" %)(((
1743 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1744
1745 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1746 )))
1747
1748 Table 6-35 DO rotation detection function code
1749
1750 **Zero-speed signal**
1751
1752 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1753
1754 (% style="text-align:center" %)
1755 (((
1756 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1757 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1758 )))
1759
1760 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1761
1762 |=(% scope="row" %)**Function code**|=**Name**|=(((
1763 **Setting method**
1764 )))|=(((
1765 **Effective time**
1766 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1767 |=P05-19|Zero speed output signal threshold|(((
1768 Operation setting
1769 )))|(((
1770 Effective immediately
1771 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1772
1773 Table 6-36 Zero-speed output signal threshold parameter
1774
1775 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1776 |=133|(((
1777 ZSP zero speed signal
1778 )))|Output this signal indicates that the servo motor is stopping rotation
1779
1780 Table 6-37 DO zero-speed signal function code
1781
1782 **Speed consistent signal**
1783
1784 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1785
1786 (% style="text-align:center" %)
1787 (((
1788 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1789 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1790 )))
1791
1792 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1793
1794 |=(% scope="row" %)**Function code**|=**Name**|=(((
1795 **Setting method**
1796 )))|=(((
1797 **Effective time**
1798 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1799 |=P05-17|Speed consistent signal threshold|(((
1800 Operationsetting
1801 )))|(((
1802 Effective immediately
1803 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1804
1805 Table 6-38 Speed consistent signal threshold parameters
1806
1807 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1808 |=136|(% style="width:262px" %)(((
1809 U-COIN consistent speed
1810 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1811
1812 Table 6-39 DO speed consistent function code
1813
1814 **Speed approach signal**
1815
1816 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1817
1818 (% style="text-align:center" %)
1819 (((
1820 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1821 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1822 )))
1823
1824 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1825
1826 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1827 **Setting method**
1828 )))|=(((
1829 **Effective time**
1830 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1831 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1832 Operation setting
1833 )))|(((
1834 Effective immediately
1835 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1836
1837 Table 6-40 Speed approaching signal threshold parameters
1838
1839 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1840 |=137|(((
1841 V-NEAR speed approach
1842 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1843
1844 Table 6-41 DO speed approach function code
1845
1846 = **Torque control mode** =
1847
1848 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1849
1850 (% style="text-align:center" %)
1851 (((
1852 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1853 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1854 )))
1855
1856 == **Torque instruction input setting** ==
1857
1858 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1859
1860 |=(% scope="row" %)**Function code**|=**Name**|=(((
1861 **Setting method**
1862 )))|=(((
1863 **Effective time**
1864 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1865 |=P01-07|Torque instruction source|(((
1866 Shutdown setting
1867 )))|(((
1868 Effective immediately
1869 )))|0|0 to 1|(((
1870 0: internal torque instruction
1871
1872 1: AI_1 analog input(not supported by VD2F)
1873 )))|-
1874
1875 Table 6-42 Torque instruction source parameter
1876
1877 **Torque instruction source is internal torque instruction (P01-07=0)**
1878
1879 Torque instruction source is from inside, the value is set by function code P01-08.
1880
1881 |=(% scope="row" %)**Function code**|=**Name**|=(((
1882 **Setting method**
1883 )))|=(((
1884 **Effective time**
1885 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1886 |=P01-08|Torque instruction keyboard set value|(((
1887 Operation setting
1888 )))|(((
1889 Effective immediately
1890 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1891
1892 Table 6-43 Torque instruction keyboard set value
1893
1894 **Torque instruction source is AI_1 analog input (P01-07=1)**
1895
1896 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1897
1898 (% style="text-align:center" %)
1899 (((
1900 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
1901 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
1902 )))
1903
1904 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1905
1906 (% style="text-align:center" %)
1907 (((
1908 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1909 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
1910 )))
1911
1912 Explanation of related terms:
1913
1914 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1915 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1916 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1917
1918 (% style="text-align:center" %)
1919 (((
1920 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1921 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
1922 )))
1923
1924 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1925 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1926 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1927 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1928 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1929
1930 Table 6-44 AI_1 parameters
1931
1932 (% class="box infomessage" %)
1933 (((
1934 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1935 )))
1936
1937 == Torque instruction filtering ==
1938
1939 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
1940
1941 |=(% scope="row" %)**Function code**|=**Name**|=(((
1942 **Setting method**
1943 )))|=(((
1944 **Effective time**
1945 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
1946 |=P04-04|Torque filtering time constant|(((
1947 Operation setting
1948 )))|(((
1949 Effective immediately
1950 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1951
1952 Table 6-45 Torque filtering time constant parameter details
1953
1954 (% class="box infomessage" %)
1955 (((
1956 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1957 )))
1958
1959 (% style="text-align:center" %)
1960 (((
1961 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1962 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
1963 )))
1964
1965 == Torque instruction limit ==
1966
1967 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
1968
1969 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1970
1971 (% style="text-align:center" %)
1972 (((
1973 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1974 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
1975 )))
1976
1977 **Set torque limit source**
1978
1979 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1980
1981 |=(% scope="row" %)**Function code**|=**Name**|=(((
1982 **Setting method**
1983 )))|=(((
1984 **Effective time**
1985 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1986 |=P01-14|(((
1987 Torque limit source
1988 )))|(((
1989 Shutdown setting
1990 )))|(((
1991 Effective immediately
1992 )))|0|0 to 1|(((
1993 * 0: internal value
1994 * 1: AI_1 analog input (not supported by VD2F)
1995 )))|-
1996
1997 * Torque limit source is internal torque instruction (P01-14=0)
1998
1999 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2000
2001 |=(% scope="row" %)**Function code**|=**Name**|=(((
2002 **Setting method**
2003 )))|=(((
2004 **Effective time**
2005 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2006 |=P01-15|(((
2007 Forward torque limit
2008 )))|(((
2009 Operation setting
2010 )))|(((
2011 Effective immediately
2012 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2013 |=P01-16|(((
2014 Reverse torque limit
2015 )))|(((
2016 Operation setting
2017 )))|(((
2018 Effective immediately
2019 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2020
2021 Table 6-46 Torque limit parameter details
2022
2023 * Torque limit source is external (P01-14=1)
2024
2025 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2026
2027 **Set torque limit DO signal output**
2028
2029 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2030
2031 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2032 |=139|(((
2033 T-LIMIT in torque limit
2034 )))|Output of this signal indicates that the servo motor torque is limited
2035
2036 Table 6-47 DO torque limit function codes
2037
2038 == **Speed limit in torque mode** ==
2039
2040 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2041
2042 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2043
2044 |(((
2045 (% style="text-align:center" %)
2046 (((
2047 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2048 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2049 )))
2050 )))|(((
2051 (% style="text-align:center" %)
2052 (((
2053 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2054 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2055 )))
2056 )))
2057
2058 |=(% scope="row" %)**Function code**|=**Name**|=(((
2059 **Setting method**
2060 )))|=(((
2061 **Effective time**
2062 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2063 |=P01-17|(((
2064 Forward torque
2065
2066 limit in torque mode
2067 )))|(((
2068 Operation setting
2069 )))|(((
2070 Effective immediately
2071 )))|3000|0 to 5000|(((
2072 Forward torque
2073
2074 limit in torque mode
2075 )))|0.1%
2076 |=P01-18|(((
2077 Reverse torque
2078
2079 limit in torque mode
2080 )))|(((
2081 Operation setting
2082 )))|(((
2083 Effective immediately
2084 )))|3000|0 to 5000|(((
2085 Reverse torque
2086
2087 limit in torque mode
2088 )))|0.1%
2089
2090 Table 6-48 Speed limit parameters in torque mode
2091
2092 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2093
2094 == Torque-related DO output functions ==
2095
2096 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2097
2098 **Torque arrival**
2099
2100 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2101
2102 (% style="text-align:center" %)
2103 (((
2104 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2105 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2106 )))
2107
2108 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2109
2110 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2111 **Setting method**
2112 )))|=(% style="width: 124px;" %)(((
2113 **Effective time**
2114 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2115 |=P05-20|(% style="width:113px" %)(((
2116 Torque arrival
2117
2118 threshold
2119 )))|(% style="width:100px" %)(((
2120 Operation setting
2121 )))|(% style="width:124px" %)(((
2122 Effective immediately
2123 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2124 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2125
2126 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2127
2128 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2129 )))|%
2130 |=P05-21|(% style="width:113px" %)(((
2131 Torque arrival
2132
2133 hysteresis
2134 )))|(% style="width:100px" %)(((
2135 Operation setting
2136 )))|(% style="width:124px" %)(((
2137 Effective immediately
2138 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2139
2140 Table 6-49 Torque arrival parameters
2141
2142 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2143 |=138|(((
2144 T-COIN torque arrival
2145 )))|Used to determine whether the actual torque instruction has reached the set range
2146
2147 Table 6-50 DO Torque Arrival Function Code
2148
2149 = **Mixed control mode** =
2150
2151 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2152
2153 * Position mode⇔ Speed mode
2154 * Position mode ⇔Torque mode
2155 * Speed mode ⇔Torque mode
2156
2157 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2158
2159 |=(% scope="row" %)**Function code**|=**Name**|=(((
2160 **Setting method**
2161 )))|=(((
2162 **Effective time**
2163 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2164 |=P00-01|Control mode|(((
2165 Shutdown setting
2166 )))|(((
2167 Shutdown setting
2168 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2169 * 1: Position control
2170 * 2: Speed control
2171 * 3: Torque control
2172 * 4: Position/speed mixed control
2173 * 5: Position/torque mixed control
2174 * 6: Speed/torque mixed control
2175 )))|-
2176
2177 Table 6-51 Mixed control mode parameters
2178
2179 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2180
2181 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2182 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2183 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2184 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2185 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2186 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2187 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2188 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2189 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2190 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2191 )))
2192
2193 Table 6-52 Description of DI function codes in control mode
2194
2195 (% class="box infomessage" %)
2196 (((
2197 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2198 )))
2199
2200 = **Absolute system** =
2201
2202 == Overview ==
2203
2204 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2205
2206 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2207
2208 == Single-turn absolute value system ==
2209
2210 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2211
2212 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2213 |A1 (single-turn magnetic encoder)|17|0 to 131071
2214
2215 Table 6-53 Single-turn absolute encoder information
2216
2217 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2218
2219 (% style="text-align:center" %)
2220 (((
2221 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2222 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2223 )))
2224
2225 == Multi-turn absolute value system ==
2226
2227 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2228
2229 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2230 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2231 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2232
2233 Table 6-54 Multi-turn absolute encoder information
2234
2235 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2236
2237 (% style="text-align:center" %)
2238 (((
2239 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2240 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2241 )))
2242
2243 (% class="wikigeneratedid" %)
2244 (((
2245 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2246 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2247 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2248 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2249
2250 |**Function code**|**Name**|(((
2251 **Setting**
2252
2253 **method**
2254 )))|(((
2255 **Effective**
2256
2257 **time**
2258 )))|**Default**|**Range**|**Definition**|**Unit**
2259 |P10-06|Multi-turn absolute encoder reset|(((
2260 Shutdown
2261
2262 setting
2263 )))|Effective immediately|0|0 to 1|(((
2264 0: No operation
2265
2266 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2267
2268 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2269 )))|-
2270
2271 (% style="background-color:#ffffff" %)
2272 |**Function code**|**Name**|(((
2273 **Setting**
2274
2275 **method**
2276 )))|(((
2277 **Effective**
2278
2279 **time**
2280 )))|**Default**|**Range**|**Definition**|**Unit**
2281 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2282 Operation
2283
2284 setting
2285 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2286 )))
2287
2288 == Related functions and parameters ==
2289
2290 **Encoder feedback data**
2291
2292 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2293
2294 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2295 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2296 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2297 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2298
2299 Table 6-55 Encoder feedback data
2300
2301 **Shield multi-turn absolute encoder battery fault**
2302
2303 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2304
2305 |=(% scope="row" %)**Function code**|=**Name**|=(((
2306 **Setting**
2307
2308 **method**
2309 )))|=(((
2310 **Effective**
2311
2312 **time**
2313 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2314 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2315 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2316 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2317 )))|-
2318
2319 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2320
2321 **A93 warning solution**
2322
2323 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2324 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2325
2326 |**Function code**|**Name**|(((
2327 **Setting**
2328
2329 **method**
2330 )))|(((
2331 **Effective**
2332
2333 **time**
2334 )))|**Default**|**Range**|**Definition**|**Unit**
2335 |P00-31|Encoder read-write check abnormal frequency|(((
2336 Operation
2337
2338 setting
2339 )))|(((
2340 immediately
2341
2342 Effective
2343 )))|20|0 to100|(((
2344 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2345
2346 0: no alarm
2347
2348 Others: When this setting value is exceeded, report A93.
2349 )))|-
2350
2351 (% class="box infomessage" %)
2352 (((
2353 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2354 )))
2355
2356 == Absolute value system encoder battery box use precautions. ==
2357
2358 **Cautions**
2359
2360 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2361
2362 (% style="text-align:center" %)
2363 (((
2364 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2365 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2366 )))
2367
2368 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2369
2370 **Replace the battery**
2371
2372 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2373
2374 The specific replacement method is as follows:
2375
2376 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2377 * Step2 Remove the old battery.
2378 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2379 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2380
2381 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2382
2383 |=(% scope="row" %)**Function code**|=**Name**|=(((
2384 **Setting method**
2385 )))|=(((
2386 **Effective time**
2387 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2388 |=P10-06|Multi-turn absolute encoder reset|(((
2389 Shutdown setting
2390 )))|(((
2391 Effective immediately
2392 )))|0|0 to 1|(((
2393 * 0: No operation
2394 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2395
2396 (% class="box infomessage" %)
2397 (((
2398 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2399 )))
2400 )))|-
2401
2402 Table 6-56 Absolute encoder reset enable parameter
2403
2404 **Battery selection**
2405
2406 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2407 |(% rowspan="4" style="width:361px" %)(((
2408 Nominal Voltage: 3.6V
2409
2410 Nominal capacity: 2700mAh
2411 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2412 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2413 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2414 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2415
2416 Table 6-57 Absolute value encoder battery information
2417
2418 **✎Note: **
2419
2420 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2421
2422 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2423
2424 Correct placement of batteries +, - direction
2425
2426 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2427 1. This battery cannot be charged.
2428 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2429 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2430 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2431
2432 = **Other functions** =
2433
2434 == VDI ==
2435
2436 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2437
2438 (% class="box infomessage" %)
2439 (((
2440 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2441 )))
2442
2443 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2444
2445 (% style="text-align:center" %)
2446 (((
2447 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2448 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2449 )))
2450
2451 |=(% scope="row" %)**Function code**|=**Name**|=(((
2452 **Setting method**
2453 )))|=(((
2454 **Effective time**
2455 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2456 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2457 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2458
2459 VDI_1 input level:
2460
2461 * 0: low level
2462 * 1: high level
2463 )))|-
2464 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2465 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2466
2467 VDI_2 input level:
2468
2469 * 0: low level
2470 * 1: high level
2471 )))|-
2472 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2473 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2474
2475 VDI_3 input level:
2476
2477 * 0: low level
2478 * 1: high level
2479 )))|-
2480 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2481 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2482
2483 VDI_4 input level:
2484
2485 * 0: low level
2486 * 1: high level
2487 )))|-
2488 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2489 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2490
2491 VDI_5 input level:
2492
2493 * 0: low level
2494 * 1: high level
2495 )))|-
2496 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2497 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2498
2499 VDI_6 input level:
2500
2501 * 0: low level
2502 * 1: high level
2503 )))|-
2504 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2505 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2506
2507 VDI_7 input level:
2508
2509 * 0: low level
2510 * 1: high level
2511 )))|-
2512 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2513 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2514
2515 VDI_8 input level:
2516
2517 * 0: low level
2518 * 1: high level
2519 )))|-
2520
2521 Table 6-57 Virtual VDI parameters
2522
2523 (% class="box infomessage" %)
2524 (((
2525 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2526 )))
2527
2528 == Port filtering time ==
2529
2530 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2531
2532 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2533 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2534 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2535
2536 Table 6-58 DI terminal channel logic selection
2537
2538 == **VDO** ==
2539
2540 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2541
2542 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2543
2544 (% style="text-align:center" %)
2545 (((
2546 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2547 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2548 )))
2549
2550
2551 |=(% scope="row" %)**Function code**|=**Name**|=(((
2552 **Setting method**
2553 )))|=(((
2554 **Effective time**
2555 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2556 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2557 VDO_1 output level:
2558
2559 * 0: low level
2560 * 1: high level
2561 )))|-
2562 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2563 VDO_2 output level:
2564
2565 * 0: low level
2566 * 1: high level
2567 )))|-
2568 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2569 VDO_3 output level:
2570
2571 * 0: low level
2572 * 1: high level
2573 )))|-
2574 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2575 VDO_4 output level:
2576
2577 * 0: low level
2578 * 1: high level
2579 )))|-
2580
2581 Table 6-59 Communication control DO function parameters
2582
2583 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2584 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2585 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2586 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2587 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2588
2589 Table 6-60 VDO function number
2590
2591 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2592
2593 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2594
2595 == Motor overload protection ==
2596
2597 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2598
2599 |=(% scope="row" %)**Function code**|=**Name**|=(((
2600 **Setting method**
2601 )))|=(((
2602 **Effective time**
2603 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2604 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2605 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2606
2607 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2608 )))|%
2609
2610 In the following cases, it could be modified according to the actual heat generation of the motor
2611
2612 1. The motor works in a place with high ambient temperature
2613 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2614
2615 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2616
2617 (% class="box infomessage" %)
2618 (((
2619 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2620 )))