Wiki source code of 06 Operation

Version 83.1 by Mora Zhou on 2025/04/28 14:09

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|Forward: facing the motor axis.
87 0: Standard setting (CW is forward);
88 1: Reverse mode (CCW is forward);
89 2: Reverse mode (CCW is forward), set P1-12,
90 P1-17 to limit the CCW direction speed; set
91 P1-13, P1-18 to limit the CW direction speed.
92 **Note:VD2L driver P0-04 setting range: 0~~1, not support P00-4=2!**|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 * 0: use built-in braking resistor
116 * 1: use external braking resistor and natural cooling
117 * 2: use external braking resistor and forced air cooling; (cannot be set)
118 * 3: No braking resistor is used, it is all absorbed by capacitor.
119 )))|-
120 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
121 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
122 Operation setting
123 )))|(% style="width:126px" %)(((
124 Effective immediately
125 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
126 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
127 Operation setting
128 )))|(% style="width:126px" %)(((
129 Effective immediately
130 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
131
132 Table 6-4 Braking resistor parameters
133
134 == **Servo operation** ==
135
136 **Set the servo enable (S-ON) to valid (ON)**
137
138 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
139
140 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
141
142 **Input the instruction and the motor rotates**
143
144 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
145
146 **Timing diagram of power on**
147
148 (% style="text-align:center" %)
149 (((
150 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
151 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
152 )))
153
154 == Servo shutdown ==
155
156 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
157
158 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
159 |=(% style="width: 150px;" %)Free shutdown|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
160 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
161
162 Table 6-5 Comparison of two shutdown modes
163
164 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
165 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
166
167 Table 6-6 Comparison of two shutdown status
168
169 **Servo enable (S-ON) OFF shutdown**
170
171 The related parameters of the servo OFF shutdown mode are shown in the table below.
172
173 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
174 **Setting method**
175 )))|=(% style="width: 134px;" %)(((
176 **Effective time**
177 )))|=(% style="width: 86px;" %)(((
178 **Default value**
179 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
180 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
181 Shutdown
182
183 setting
184 )))|(% style="width:134px" %)(((
185 Effective
186
187 immediately
188 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
189 * 0: Free shutdown, and the motor shaft remains free status.
190 * 1: Zero-speed shutdown, and the motor shaft remains free status.
191 )))|-
192
193 Table 6-7 Servo OFF shutdown mode parameters details
194
195 **Emergency shutdown**
196
197 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
198
199 Estop mode 1 (deceleration stop):
200
201 ~1. Configurate DI function code: 8 [ESTOP]
202
203 2. Set P1-5 shutdown deceleration time.
204
205 3. Trigger DI emergency shutdown.
206
207 4. Servo emergency shutdown and deceleration to zero speed.
208
209 Estop mode 2:
210
211 ~1. Configurate DI function code: 1 [Servo enable SON]
212
213 2. Set P1-05 shutdown deceleration time.
214
215 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
216
217 4. Trigger DI to turn off servo enable SON.
218
219 |Function code|Name|(((
220 Setting
221
222 method
223 )))|(((
224 Effective
225
226 time
227 )))|Default|Range|Definition|Unit
228 |P01-05|Shutdown deceleration time|(((
229 Shutdown
230
231 setting
232 )))|(((
233 immediately
234
235 Effective
236 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
237
238 **Overtravel shutdown**
239
240 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
241
242 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
243
244 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
245
246 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
247 **Setting method**
248 )))|=(% style="width: 114px;" %)(((
249 **Effective time**
250 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
251 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
252 * 0: OFF (not used)
253 * 01: S-ON servo enable
254 * 02: A-CLR fault and Warning Clear
255 * 03: POT forward drive prohibition
256 * 04: NOT Reverse drive prohibition
257 * 05: ZCLAMP Zero speed
258 * 06: CL Clear deviation counter
259 * 07: C-SIGN Inverted instruction
260 * 08: E-STOP Emergency stop
261 * 09: GEAR-SEL Electronic Gear Switch 1
262 * 10: GAIN-SEL gain switch
263 * 11: INH Instruction pulse prohibited input
264 * 12: VSSEL Vibration control switch input
265 * 13: INSPD1 Internal speed instruction selection 1
266 * 14: INSPD2 Internal speed instruction selection 2
267 * 15: INSPD3 Internal speedinstruction selection 3
268 * 16: J-SEL inertia ratio switch (not implemented yet)
269 * 17: MixModesel mixed mode selection
270 * 20: Internal multi-segment position enable signal
271 * 21: Internal multi-segment position selection 1
272 * 22: Internal multi-segment position selection 2
273 * 23: Internal multi-segment position selection 3
274 * 24: Internal multi-segment position selection 4
275 * Others: reserved
276 )))|-
277 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
278 Effective immediately
279 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
280 DI port input logic validity function selection.
281
282 * 0: Normally open input. Active low level (switch on);
283 * 1: Normally closed input. Active high level (switch off);
284 )))|-
285 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
286 Effective immediately
287 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
288 Select the DI_3 port type to enable
289
290 * 0: Hardware DI_3 input terminal
291 * 1: virtual VDI_3 input terminal
292 )))|-
293 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
294 Operation setting
295 )))|(% style="width:114px" %)(((
296 again Power-on
297 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
298 * 0: OFF (not used)
299 * 01: SON Servo enable
300 * 02: A-CLR Fault and Warning Clear
301 * 03: POT Forward drive prohibition
302 * 04: NOT Reverse drive prohibition
303 * 05: ZCLAMP Zero speed
304 * 06: CL Clear deviation counter
305 * 07: C-SIGN Inverted instruction
306 * 08: E-STOP Emergency shutdown
307 * 09: GEAR-SEL Electronic Gear Switch 1
308 * 10: GAIN-SEL gain switch
309 * 11: INH Instruction pulse prohibited input
310 * 12: VSSEL Vibration control switch input
311 * 13: INSPD1 Internal speed instruction selection 1
312 * 14: INSPD2 Internal speed instruction selection 2
313 * 15: INSPD3 Internal speed instruction selection 3
314 * 16: J-SEL inertia ratio switch (not implemented yet)
315 * 17: MixModesel mixed mode selection
316 * 20: Internal multi-segment position enable signal
317 * 21: Internal multi-segment position selection 1
318 * 22: Internal multi-segment position selection 2
319 * 23: Internal multi-segment position selection 3
320 * 24: Internal multi-segment position selection 4
321 * Others: reserved
322 )))|-
323 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
324 Effective immediately
325 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
326 DI port input logic validity function selection.
327
328 * 0: Normally open input. Active low level (switch on);
329 * 1: Normally closed input. Active high level (switch off);
330 )))|-
331 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
332 Effective immediately
333 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
334 Select the DI_4 port type to enable
335
336 * 0: Hardware DI_4 input terminal
337 * 1: virtual VDI_4 input terminal
338 )))|-
339
340 Table 6-8 DI3 and DI4 channel parameters
341
342 **(4) Malfunction shutdown**
343
344 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
345
346 == Brake device ==
347
348 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
349
350 (% class="warning" %)|(((
351 (% style="text-align:center" %)
352 [[image:image-20220611151617-1.png]]
353 )))
354 |(((
355 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
356
357 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
358
359 ✎The brake coil has no polarity;
360
361 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
362
363 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
364 )))
365
366 **Wiring of brake device**
367
368 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
369
370
371 (% style="text-align:center" %)
372 (((
373 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
374 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
375 )))
376
377 (% class="warning" %)|(((
378 (% style="text-align:center" %)
379 [[image:image-20220611151642-2.png]]
380 )))
381 |(((
382 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
383
384 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
385
386 ✎It is recommended to use cables above 0.5 mm².
387 )))
388
389 **Brake software setting**
390
391 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
392
393 Related function code is as below.
394
395 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
396 **Effective time**
397 )))
398 |=141|(% style="width:241px" %)(((
399 BRK-OFF Brake output
400 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
401
402 Table 6-2 Relevant function codes for brake setting
403
404 |=(% scope="row" %)**Function code**|=**Name**|=(((
405 **Setting method**
406 )))|=(((
407 **Effective time**
408 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
409 |=P1-30|Delay from brake output to instruction reception|(((
410 Operation setting
411 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
412 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
413 Operation setting
414 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
415 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
416 Operation setting
417 )))|Effective immediately|30|0 to 3000|(((
418 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
419
420 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
421 )))|rpm
422 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
423 Operation setting
424 )))|Effective immediately|500|1 to 1000|(((
425 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
426
427 When brake output (BRK-OFF) is not allocated, this function code has no effect.
428 )))|ms
429
430 Table 6-9 Brake setting function codes
431
432 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
433
434 **Servo drive brake timing in normal state**
435
436 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
437
438 * Brake timing when servo motor is stationary
439
440 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
441
442 (% class="warning" %)|(((
443 (% style="text-align:center" %)
444 [[image:image-20220611151705-3.png]]
445 )))
446 |(((
447 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
448
449 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
450 )))
451
452 (% style="text-align:center" %)
453 (((
454 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
455 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
456 )))
457
458 (% class="box infomessage" %)
459 (((
460 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
461 )))
462
463 * The brake timing when servo motor rotates
464
465 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
466
467 (% class="warning" %)|(((
468 (% style="text-align:center" %)
469 [[image:image-20220611151719-4.png]]
470 )))
471 |(((
472 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
473
474 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
475
476 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
477
478 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
479
480 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
481 )))
482
483 (% style="text-align:center" %)
484 (((
485 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
486 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
487 )))
488
489 **Brake timing when the servo drive fails**
490
491 The brake timing (free shutdown) in the fault status is as follows.
492
493 (% style="text-align:center" %)
494 (((
495 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
496 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
497 )))
498
499 = **Position control mode** =
500
501 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
502
503 (% style="text-align:center" %)
504 (((
505 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
506 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
507 )))
508
509 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
510
511 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
512 **Setting method**
513 )))|=(((
514 **Effective time**
515 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
516 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
517 Operation setting
518 )))|(((
519 immediately Effective
520 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
521 1: position control
522
523 2: speed control
524
525 3: torque control
526
527 4: position/speed mix control
528
529 5: position/torque mix control
530
531 6: speed /torque mix control
532
533 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
534 )))|(% style="width:151px" %)-
535
536 Table 6-10 Control mode parameters
537
538 == Position instruction input setting ==
539
540 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
541
542 |=(% scope="row" %)**Function code**|=**Name**|=(((
543 **Setting method**
544 )))|=(((
545 **Effective time**
546 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
547 |=P01-06|Position instruction source|(((
548 Operation setting
549 )))|(((
550 immediately Effective
551 )))|0|0 to 1|(((
552 0: pulse instruction
553
554 1: internal position instruction
555 )))|-
556
557 Table 6-12 Position instruction source parameter
558
559 **The source of position instruction is pulse instruction (P01-06=0)**
560
561 Low-speed pulse instruction input
562
563 |(% style="text-align:center" %)(((
564 (% class="wikigeneratedid" %)
565 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
566 )))|(% style="text-align:center" %)(((
567 (% class="wikigeneratedid" %)
568 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
569 )))
570 |(% colspan="2" %)Figure 6-7 Position instruction input setting
571
572 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
573
574 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
575
576 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
577 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
578 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
579
580 Table 6-13 Pulse input specifications
581
582 * Differential input
583
584 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
585
586 (% style="text-align:center" %)
587 (((
588 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
589 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
590 )))
591
592 (% class="box infomessage" %)
593 (((
594 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
595 )))
596
597 * Open collector input
598
599 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
600
601 (% style="text-align:center" %)
602 (((
603 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
604 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
605 )))
606
607
608 (% class="box infomessage" %)
609 (((
610 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
611 )))
612
613 * Position pulse frequency and anti-interference level
614
615 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
616
617 (% style="text-align:center" %)
618 (((
619 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
620 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
621 )))
622
623 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
624
625 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
626 **Setting method**
627 )))|=(((
628 **Effective time**
629 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
630 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
631 Operation setting
632 )))|(% rowspan="3" %)(((
633 Power-on again
634 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
635 Set the anti-interference level of external pulse instruction.
636
637 * 0: no filtering;
638 * 1: Filtering time 128ns
639 * 2: Filtering time 256ns
640 * 3: Filtering time 512ns
641 * 4: Filtering time 1.024us
642 * 5: Filtering time 2.048us
643 * 6: Filtering time 4.096us
644 * 7: Filtering time 8.192us
645 * 8: Filtering time 16.384us
646 * 9:
647 ** VD2: Filtering time 25.5us
648 ** VD2F: Filtering time 25.5us
649 )))|(% rowspan="3" %)-
650
651 Table 6-14 Position pulse frequency and anti-interference level parameters
652
653 |**Function code**|**Name**|(((
654 **Setting**
655
656 **method**
657 )))|(((
658 **Effective**
659
660 **time**
661 )))|**Default value**|**Range**|**Definition**|**Unit**
662 |P00-14|Position pulse anti-interference level|(((
663 Operation
664
665 setting
666 )))|(((
667 Power-on
668
669 again
670 )))|2|0 to 8|(((
671 VD2L drive set the anti-interference level of external pulse instruction.
672
673 0: no filtering;
674
675 1: Filtering time 111.1ns
676
677 2: Filtering time 222.2ns
678
679 3: Filtering time 444.4ns
680
681 4: Filtering time 888.8ns
682
683 5: Filtering time 1777.7ns
684
685 6: Filtering time 3555.5ns
686
687 7: Filtering time 7111.7ns
688
689 8: Filtering time 14222.2ns
690
691
692 )))|-
693
694 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
695
696
697 * Position pulse type selection
698
699 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
700
701 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
702 **Setting method**
703 )))|=(% style="width: 109px;" %)(((
704 **Effective time**
705 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
706 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
707 Operation setting
708 )))|(% style="width:109px" %)(((
709 Power-on again
710 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
711 * 0: direction + pulse (positive logic)
712 * 1: CW/CCW
713 * 2: A, B phase quadrature pulse (4 times frequency)
714 * 3: Direction + pulse (negative logic)
715 * 4: CW/CCW (negative logic)
716 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
717
718 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
719 )))|-
720
721 Table 6-15 Position pulse type selection parameter
722
723 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
724 |=0|(% style="width:200px" %)(((
725 Direction + pulse
726
727 (Positive logic)
728 )))|(% style="width:161px" %)(((
729 PULSE
730
731 SIGN
732 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
733 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
734 PULSE (CW)
735
736 SIGN (CCW)
737 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
738 |=2|(% style="width:200px" %)(((
739 AB phase orthogonal
740
741 pulse (4 times frequency)
742 )))|(% style="width:161px" %)(((
743 PULSE (Phase A)
744
745 SIGN (Phase B)
746 )))|(((
747
748
749 [[image:image-20220707094358-9.jpeg]]
750
751 Phase A is 90° ahead of Phase B
752 )))|(((
753
754
755 [[image:image-20220707094407-10.jpeg]]
756
757 Phase B is 90° ahead of Phase A
758 )))
759 |=3|(% style="width:200px" %)(((
760 Direction + pulse
761
762 (Negative logic)
763 )))|(% style="width:161px" %)(((
764 PULSE
765
766 SIGN
767 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
768 |=4|(% style="width:200px" %)(((
769 CW/CCW
770
771 (Negative logic)
772 )))|(% style="width:161px" %)(((
773 PULSE (CW)
774
775 SIGN (CCW)
776 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
777 |=5|(% style="width:200px" %)(((
778 AB phase orthogonal
779
780 pulse (4 times frequency negative logic)
781 )))|(% style="width:161px" %)(((
782 PULSE (Phase A)
783
784 SIGN (Phase B)
785 )))|(((
786
787
788 [[image:image-20220707094429-14.jpeg]]
789
790 Phase B is ahead of A phase by 90°
791 )))|(((
792
793
794 [[image:image-20220707094437-15.jpeg]]
795
796 Phase A is ahead of B phase by 90°
797 )))
798
799 Table 6-16 Pulse description
800
801 **The source of position instruction is internal position instruction (P01-06=1)**
802
803 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
804
805 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
806
807 (% style="text-align:center" %)
808 (((
809 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
810 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
811 )))
812
813
814 * Set multi-segment position running mode
815
816 |=(% scope="row" %)**Function code**|=**Name**|=(((
817 **Setting method**
818 )))|=(((
819 **Effective time**
820 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
821 |=P07-01|Multi-segment position running mode|(((
822 Shutdown setting
823 )))|(((
824 Effective immediately
825 )))|0|0 to 2|(((
826 0: Single running
827
828 1: Cycle running
829
830 2: DI switching running
831 )))|-
832 |=P07-02|Start segment number|(((
833 Shutdown setting
834 )))|(((
835 Effective immediately
836 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
837 |=P07-03|End segment number|(((
838 Shutdown setting
839 )))|(((
840 Effective immediately
841 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
842 |=P07-04|Margin processing method|(((
843 Shutdown setting
844 )))|(((
845 Effective immediately
846 )))|0|0 to 1|(((
847 0: Run the remaining segments
848
849 1: Run again from the start segment
850 )))|-
851 |=P07-05|Displacement instruction type|(((
852 Shutdown setting
853 )))|(((
854 Effective immediately
855 )))|0|0 to 1|(((
856 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
857
858 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
859 )))|-
860
861 Table 6-17 multi-segment position running mode parameters
862
863 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
864
865 1. Single running
866
867 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
868
869 (% style="text-align:center" %)
870 (((
871 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
872 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
873 )))
874
875 * 2. Cycle running
876
877 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
878
879 (% style="text-align:center" %)
880 (((
881 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
882 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
883 )))
884
885 (% class="warning" %)|(((
886 (% style="text-align:center" %)
887 [[image:image-20220611151917-5.png]]
888 )))
889 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
890
891 (% start="3" %)
892 1. DI switching running
893
894 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
895
896 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
897 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
898 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
899 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
900 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
901
902 Table 6-18 DI function code
903
904 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
905
906 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
907 |=0|0|0|0|1
908 |=0|0|0|1|2
909 |=0|0|1|0|3
910 |=0|0|1|1|4
911 |=0|1|0|0|5
912 |=0|1|0|1|6
913 |=0|1|1|0|7
914 |=0|1|1|1|8
915 |=1|0|0|0|9
916 |=1|0|0|1|10
917 |=1|0|1|0|11
918 |=1|0|1|1|12
919 |=1|1|0|0|13
920 |=1|1|0|1|14
921 |=1|1|1|0|15
922 |=1|1|1|1|16
923
924 Table 6-20 INPOS corresponds to running segment number
925
926 The operating curve in this running mode is shown in __Figure 6-14__.
927
928 (% style="text-align:center" %)
929 (((
930 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
931 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
932 )))
933
934 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
935
936 **Run the remaining segments**
937
938 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
939
940 (% style="text-align:center" %)
941 (((
942 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
943 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
944 )))
945
946 (% style="text-align:center" %)
947 (((
948 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
949 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
950 )))
951
952 **Run again from the start segment**
953
954 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
955
956 (% style="text-align:center" %)
957 (((
958 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
959 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
960 )))
961
962 (% style="text-align:center" %)
963 (((
964 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
965 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
966 )))
967
968 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
969
970 * Relative position instruction
971
972 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
973
974 |(((
975 (% style="text-align:center" %)
976 (((
977 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
978 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
979 )))
980 )))|(((
981 (% style="text-align:center" %)
982 (((
983 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
984 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
985 )))
986 )))
987
988 * Absolute position instruction
989
990 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
991
992 |(((
993 (% style="text-align:center" %)
994 (((
995 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
996 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
997 )))
998 )))|(((
999 (% style="text-align:center" %)
1000 (((
1001 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1002 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1003 )))
1004 )))
1005
1006 * Multi-segment position running curve setting
1007
1008 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1009
1010 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1011 |=P07-09|(((
1012 1st segment
1013
1014 displacement
1015 )))|(((
1016 Operation setting
1017 )))|(((
1018 Effective immediately
1019 )))|10000|(((
1020 -2147483647 to
1021
1022 2147483646
1023 )))|Position instruction, positive and negative values could be set|-
1024 |=P07-10|Maximum speed of the 1st displacement|(((
1025 Operation setting
1026 )))|(((
1027 Effective immediately
1028 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1029 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1030 Operation setting
1031 )))|(((
1032 Effective immediately
1033 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1034 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1035 Operation setting
1036 )))|(((
1037 Effective immediately
1038 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1039
1040 Table 6-21 The 1st position operation curve parameters table
1041
1042 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1043
1044 (% style="text-align:center" %)
1045 (((
1046 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1047 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1048 )))
1049
1050
1051 * multi-segment position instruction enable
1052
1053 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1054
1055 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1056 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1057 DI port logic invalid: Does not affect the current operation of the servo motor.
1058
1059 DI port logic valid: Motor runs multi-segment position
1060 )))
1061
1062 (% style="text-align:center" %)
1063 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1064
1065 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1066
1067 == Electronic gear ratio ==
1068
1069 **Definition of electronic gear ratio**
1070
1071 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1072
1073 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1074
1075 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1076
1077 (% style="text-align:center" %)
1078 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1079
1080 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1081
1082 **Setting steps of electronic gear ratio**
1083
1084 (% style="text-align:center" %)
1085 (((
1086 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1087 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1088 )))
1089
1090 **lectronic gear ratio switch setting**
1091
1092 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1093
1094 |=(% scope="row" %)**Function code**|=**Name**|=(((
1095 **Setting method**
1096 )))|=(((
1097 **Effective time**
1098 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1099 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1100 Shutdown setting
1101 )))|(((
1102 Effective immediately
1103 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1104 Instruction pulse
1105
1106 unit
1107 )))
1108 |=P00-17|(((
1109 Electronic gear 1
1110
1111 numerator
1112 )))|Operation setting|(((
1113 Effective immediately
1114 )))|1|1 to 4294967294|(((
1115 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1116
1117 **VD2L: 1-2147483647**
1118 )))|-
1119 |=P00-18|(((
1120 Electronic gear 1
1121
1122 denominator
1123 )))|(((
1124 Operation setting
1125 )))|(((
1126 Effective immediately
1127 )))|1|1 to 4294967294|(((
1128 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1129
1130 **VD2L: 1-2147483647**
1131 )))|-
1132 |=P00-19|(((
1133 Electronic gear 2
1134
1135 numerator
1136 )))|Operation setting|(((
1137 Effective immediately
1138 )))|1|1 to 4294967294|(((
1139 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1140
1141 **VD2L: 1-2147483647**
1142 )))|-
1143 |=P00-20|(((
1144 Electronic gear 2
1145
1146 denominator
1147 )))|Operation setting|(((
1148 Effective immediately
1149 )))|1|1 to 4294967294|(((
1150 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1151
1152 **VD2L: 1-2147483647**
1153 )))|-
1154
1155 Table 6-20 Electronic gear ratio function code
1156
1157 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1158
1159 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1160 |=09|GEAR-SEL electronic gear switch 1|(((
1161 DI port logic invalid: electronic gear ratio 1
1162
1163 DI port logic valid: electronic gear ratio 2
1164 )))
1165
1166 Table 6-21 Switching conditions of electronic gear ratio group
1167
1168 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1169 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1170 (% style="text-align:center" %)
1171 [[image:image-20220707101328-21.png]]
1172 )))
1173 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1174 (% style="text-align:center" %)
1175 [[image:image-20220707101336-22.png]]
1176 )))
1177 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1178 (% style="text-align:center" %)
1179 [[image:image-20220707101341-23.png]]
1180 )))
1181
1182 Table 6-22 Application of electronic gear ratio
1183
1184 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1185
1186 == Position instruction filtering ==
1187
1188 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1189
1190 In the following situations, position instruction filtering should be added.
1191
1192 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1193 1. The pulse instruction frequency is low;
1194 1. When the electronic gear ratio is 10 times or more.
1195
1196 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1197
1198 (% style="text-align:center" %)
1199 (((
1200 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1201 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1202 )))
1203
1204 |=(% scope="row" %)**Function code**|=**Name**|=(((
1205 **Setting method**
1206 )))|=(((
1207 **Effective time**
1208 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1209 |=P04-01|Pulse instruction filtering method|(((
1210 Shutdown setting
1211 )))|(((
1212 Effective immediately
1213 )))|0|0 to 1|(((
1214 * 0: 1st-order low-pass filtering
1215 * 1: average filtering
1216 )))|-
1217 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1218 Effective immediately
1219 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1220 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1221 Effective immediately
1222 )))|0|0 to 128|Position instruction average filtering time constant|ms
1223
1224 Table 6-25 Position instruction filter function code
1225
1226 == Clearance of position deviation ==
1227
1228 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1229
1230 Position deviation = (position instruction-position feedback) (encoder unit)
1231
1232 == Position-related DO output function ==
1233
1234 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1235
1236 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1237 **Positioning completion/positioning approach output**
1238
1239 (% class="wikigeneratedid" %)
1240 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1241
1242 (% style="text-align:center" %)
1243 (((
1244 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1245 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1246 )))
1247
1248 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1249
1250 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1251
1252 (% style="text-align:center" %)
1253 (((
1254 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1255 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1256 )))
1257
1258 |=(% scope="row" %)**Function code**|=**Name**|=(((
1259 **Setting method**
1260 )))|=(% style="width: 129px;" %)(((
1261 **Effective time**
1262 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1263 |=P05-12|Positioning completion threshold|(((
1264 Operation setting
1265 )))|(% style="width:129px" %)(((
1266 Effective immediately
1267 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1268 |=P05-13|Positioning approach threshold|(((
1269 Operation setting
1270 )))|(% style="width:129px" %)(((
1271 Effective immediately
1272 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1273 |=P05-14|Position detection window time|(((
1274 Operation setting
1275 )))|(% style="width:129px" %)(((
1276 Effective immediately
1277 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1278 |=P05-15|Positioning signal hold time|(((
1279 Operation setting
1280 )))|(% style="width:129px" %)(((
1281 Effective immediately
1282 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1283
1284 Table 6-26 Function code parameters of positioning completion
1285
1286 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1287 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1288 |=135|(((
1289 P-NEAR positioning close
1290 )))|(((
1291 Output this signal indicates that the servo drive position is close.
1292 )))
1293
1294 Table 6-27 Description of DO rotation detection function code
1295
1296 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1297
1298 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1299
1300 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1301
1302 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1303
1304 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1305
1306 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1307
1308 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1309
1310 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1311
1312
1313 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1314 |DO_2 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1315 |(% colspan="8" %)(((
1316 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1317
1318 |Setting value|DO channel function| |Setting value|DO channel function
1319 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1320 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1321 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1322 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1323 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1324 |133|ZSP (zero speed signal)| |144|N/A
1325 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1326 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1327 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1328 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1329 |138|T-COIN (torque arrival)| | |
1330
1331 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1332
1333 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1334
1335 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1336
1337 Note 2:
1338
1339 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1340
1341 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1342
1343 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1344 )))
1345
1346 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1347 |DO_3 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1348 |(% colspan="8" %)(((
1349 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1350
1351 |Setting value|DO channel function| |Setting value|DO channel function
1352 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1353 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1354 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1355 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1356 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1357 |133|ZSP (zero speed signal)| |144|None
1358 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1359 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1360 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1361 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1362 |138|T-COIN (torque arrival)| | |
1363
1364 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1365
1366 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1367
1368 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1369
1370 **Note 2:**
1371
1372 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1373
1374 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1375
1376 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1377 )))
1378
1379 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1380 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1381 |(% colspan="8" %)(((
1382 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1383
1384 |Setting value|DO channel function| |Setting value|DO channel function
1385 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1386 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1387 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1388 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1389 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1390 |133|ZSP (zero speed signal)| |144|None
1391 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1392 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1393 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1394 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1395 |138|T-COIN (torque arrival)| | |
1396
1397 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1398
1399 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1400
1401 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1402
1403 **Note 2:**
1404
1405 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1406
1407 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1408
1409 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1410 )))
1411
1412 = **Speed control mode** =
1413
1414 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1415
1416 (% style="text-align:center" %)
1417 (((
1418 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1419 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1420 )))
1421
1422 == Speed instruction input setting ==
1423
1424 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1425
1426 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1427 **Setting method**
1428 )))|=(% style="width: 125px;" %)(((
1429 **Effective time**
1430 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1431 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1432 Shutdown setting
1433 )))|(% style="width:125px" %)(((
1434 Effective immediately
1435 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1436 * 0: internal speed instruction
1437 * 1: AI_1 analog input (not supported by VD2F)
1438 )))|-
1439
1440 Table 6-26 Speed instruction source parameter
1441
1442 **Speed instruction source is internal speed instruction (P01-01=0)**
1443
1444 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1445
1446 (% style="width:1141px" %)
1447 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1448 **Setting**
1449
1450 **method**
1451 )))|=(% colspan="2" %)(((
1452 **Effective**
1453
1454 **time**
1455 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1456 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1457 Internal speed
1458
1459 Instruction 0
1460 )))|(% colspan="2" %)(((
1461 Operation
1462
1463 setting
1464 )))|(% colspan="2" %)(((
1465 Effective
1466
1467 immediately
1468 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1469 Internal speed instruction 0
1470
1471 When DI input port:
1472
1473 * 15-INSPD3: 0
1474 * 14-INSPD2: 0
1475 * 13-INSPD1: 0,
1476
1477 select this speed instruction to be effective.
1478 )))|(% colspan="2" %)rpm
1479 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1480 Internal speed
1481
1482 Instruction 1
1483 )))|(% colspan="2" %)(((
1484 Operation
1485
1486 setting
1487 )))|(% colspan="2" %)(((
1488 Effective
1489
1490 immediately
1491 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1492 Internal speed instruction 1
1493
1494 When DI input port:
1495
1496 * 15-INSPD3: 0
1497 * 14-INSPD2: 0
1498 * 13-INSPD1: 1,
1499
1500 Select this speed instruction to be effective.
1501 )))|(% colspan="2" %)rpm
1502 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1503 Internal speed
1504
1505 Instruction 2
1506 )))|(% colspan="2" %)(((
1507 Operation
1508
1509 setting
1510 )))|(% colspan="2" %)(((
1511 Effective
1512
1513 immediately
1514 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1515 Internal speed instruction 2
1516
1517 When DI input port:
1518
1519 * 15-INSPD3: 0
1520 * 14-INSPD2: 1
1521 * 13-INSPD1: 0,
1522
1523 Select this speed instruction to be effective.
1524 )))|(% colspan="2" %)rpm
1525 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1526 Internal speed
1527
1528 Instruction 3
1529 )))|(% colspan="2" %)(((
1530 Operation
1531
1532 setting
1533 )))|(% colspan="2" %)(((
1534 Effective
1535
1536 immediately
1537 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1538 Internal speed instruction 3
1539
1540 When DI input port:
1541
1542 * 15-INSPD3: 0
1543 * 14-INSPD2: 1
1544 * 13-INSPD1: 1,
1545
1546 Select this speed instruction to be effective.
1547 )))|(% colspan="2" %)rpm
1548 |=P01-26|(% colspan="2" %)(((
1549 Internal speed
1550
1551 Instruction 4
1552 )))|(% colspan="2" %)(((
1553 Operation
1554
1555 setting
1556 )))|(% colspan="2" %)(((
1557 Effective
1558
1559 immediately
1560 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1561 Internal speed instruction 4
1562
1563 When DI input port:
1564
1565 * 15-INSPD3: 1
1566 * 14-INSPD2: 0
1567 * 13-INSPD1: 0,
1568
1569 Select this speed instruction to be effective.
1570 )))|(% colspan="1" %)rpm
1571 |=P01-27|(% colspan="2" %)(((
1572 Internal speed
1573
1574 Instruction 5
1575 )))|(% colspan="2" %)(((
1576 Operation
1577
1578 setting
1579 )))|(% colspan="2" %)(((
1580 Effective
1581
1582 immediately
1583 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1584 Internal speed instruction 5
1585
1586 When DI input port:
1587
1588 * 15-INSPD3: 1
1589 * 14-INSPD2: 0
1590 * 13-INSPD1: 1,
1591
1592 Select this speed instruction to be effective.
1593 )))|(% colspan="1" %)rpm
1594 |=P01-28|(% colspan="2" %)(((
1595 Internal speed
1596
1597 Instruction 6
1598 )))|(% colspan="2" %)(((
1599 Operation
1600
1601 setting
1602 )))|(% colspan="2" %)(((
1603 Effective
1604
1605 immediately
1606 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1607 Internal speed instruction 6
1608
1609 When DI input port:
1610
1611 * 15-INSPD3: 1
1612 * 14-INSPD2: 1
1613 * 13-INSPD1: 0,
1614
1615 Select this speed instruction to be effective.
1616 )))|(% colspan="1" %)rpm
1617 |=P01-29|(% colspan="2" %)(((
1618 Internal speed
1619
1620 Instruction 7
1621 )))|(% colspan="2" %)(((
1622 Operation
1623
1624 setting
1625 )))|(% colspan="2" %)(((
1626 Effective
1627
1628 immediately
1629 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1630 Internal speed instruction 7
1631
1632 When DI input port:
1633
1634 * 15-INSPD3: 1
1635 * 14-INSPD2: 1
1636 * 13-INSPD1: 1,
1637
1638 Select this speed instruction to be effective.
1639 )))|(% colspan="1" %)rpm
1640
1641 Table 6-27 Internal speed instruction parameters
1642
1643 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1644 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1645 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1646 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1647
1648 Table 6-28 DI multi-speed function code description
1649
1650 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1651
1652
1653 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1654 |0|0|0|1|0
1655 |0|0|1|2|1
1656 |0|1|0|3|2
1657 |(% colspan="5" %)......
1658 |1|1|1|8|7
1659
1660 Table 6-29 Correspondence between INSPD bits and segment numbers
1661
1662 (% style="text-align:center" %)
1663 (((
1664 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1665 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1666 )))
1667
1668 **Speed instruction source is internal speed instruction (P01-01=1)**
1669
1670 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1671
1672 (% style="text-align:center" %)
1673 (((
1674 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1675 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1676 )))
1677
1678 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1679
1680 (% style="text-align:center" %)
1681 (((
1682 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1683 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1684 )))
1685
1686 Explanation of related terms:
1687
1688 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1689 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1690 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1691
1692 (% style="text-align:center" %)
1693 (((
1694 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1695 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1696 )))
1697
1698 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1699 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1700 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1701 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1702 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1703
1704 Table 6-30 AI_1 parameters
1705
1706 (% class="box infomessage" %)
1707 (((
1708 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1709 )))
1710
1711 == Acceleration and deceleration time setting ==
1712
1713 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1714
1715 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1716
1717 (% style="text-align:center" %)
1718 (((
1719 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1720 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1721 )))
1722
1723 (% style="text-align:center" %)
1724 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1725
1726 |=(% scope="row" %)**Function code**|=**Name**|=(((
1727 **Setting method**
1728 )))|=(((
1729 **Effective time**
1730 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1731 |=P01-03|Acceleration time|(((
1732 Operation setting
1733 )))|(((
1734 Effective immediately
1735 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1736 |=P01-04|Deceleration time|(((
1737 Operation setting
1738 )))|(((
1739 Effective immediately
1740 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1741
1742 Table 6-31 Acceleration and deceleration time parameters
1743
1744 == Speed instruction limit ==
1745
1746 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1747
1748 1. P01-10: Set the maximum speed limit value
1749 1. P01-12: Set forward speed limit value
1750 1. P01-13: Set reverse speed limit value
1751 1. The maximum speed of the motor: determined by motor model
1752
1753 The actual motor speed limit interval satisfies the following relationship:
1754
1755 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1756
1757 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1758
1759 |=(% scope="row" %)**Function code**|=**Name**|=(((
1760 **Setting method**
1761 )))|=(((
1762 **Effective time**
1763 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1764 |=P01-10|Maximum speed threshold|(((
1765 Operation setting
1766 )))|(((
1767 Effective immediately
1768 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1769 |=P01-12|Forward speed threshold|(((
1770 Operation setting
1771 )))|(((
1772 Effective immediately
1773 )))|3000|0 to 5000|Set forward speed limit value|rpm
1774 |=P01-13|Reverse speed threshold|(((
1775 Operation setting
1776 )))|(((
1777 Effective immediately
1778 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1779
1780 Table 6-32 Rotation speed related function codes
1781
1782 == Zero-speed clamp function ==
1783
1784 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1785
1786 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1787
1788 |=(% scope="row" %)**Function code**|=**Name**|=(((
1789 **Setting method**
1790 )))|=(((
1791 **Effective time**
1792 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1793 |=P01-21|(((
1794 Zero-speed clamp function selection
1795 )))|(((
1796 Operation setting
1797 )))|(((
1798 Effective immediately
1799 )))|0|0 to 3|(((
1800 Set the zero-speed clamp function. In speed mode:
1801
1802 * 0: Force the speed to 0;
1803 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1804 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1805 * 3: Invalid, ignore zero-speed clamp input
1806 )))|-
1807 |=P01-22|(((
1808 Zero-speed clamp speed threshold
1809 )))|(((
1810 Operation setting
1811 )))|(((
1812 Effective immediately
1813 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1814
1815 Table 6-33 Zero-speed clamp related parameters
1816
1817 (% style="text-align:center" %)
1818 (((
1819 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1820 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1821 )))
1822
1823 == Speed-related DO output function ==
1824
1825 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1826
1827 **Rotation detection signal**
1828
1829 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1830
1831 (% style="text-align:center" %)
1832 (((
1833 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1834 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1835 )))
1836
1837 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1838
1839 |=(% scope="row" %)**Function code**|=**Name**|=(((
1840 **Setting method**
1841 )))|=(((
1842 **Effective time**
1843 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1844 |=P05-16|(((
1845 Rotation detection
1846
1847 speed threshold
1848 )))|(((
1849 Operation setting
1850 )))|(((
1851 Effective immediately
1852 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1853
1854 Table 6-34 Rotation detection speed threshold parameters
1855
1856 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1857 |=132|(% style="width:247px" %)(((
1858 T-COIN rotation detection
1859 )))|(% style="width:695px" %)(((
1860 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1861
1862 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1863 )))
1864
1865 Table 6-35 DO rotation detection function code
1866
1867 **Zero-speed signal**
1868
1869 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1870
1871 (% style="text-align:center" %)
1872 (((
1873 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1874 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1875 )))
1876
1877 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1878
1879 |=(% scope="row" %)**Function code**|=**Name**|=(((
1880 **Setting method**
1881 )))|=(((
1882 **Effective time**
1883 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1884 |=P05-19|Zero speed output signal threshold|(((
1885 Operation setting
1886 )))|(((
1887 Effective immediately
1888 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1889
1890 Table 6-36 Zero-speed output signal threshold parameter
1891
1892 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1893 |=133|(((
1894 ZSP zero speed signal
1895 )))|Output this signal indicates that the servo motor is stopping rotation
1896
1897 Table 6-37 DO zero-speed signal function code
1898
1899 **Speed consistent signal**
1900
1901 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1902
1903 (% style="text-align:center" %)
1904 (((
1905 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1906 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1907 )))
1908
1909 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1910
1911 |=(% scope="row" %)**Function code**|=**Name**|=(((
1912 **Setting method**
1913 )))|=(((
1914 **Effective time**
1915 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1916 |=P05-17|Speed consistent signal threshold|(((
1917 Operationsetting
1918 )))|(((
1919 Effective immediately
1920 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1921
1922 Table 6-38 Speed consistent signal threshold parameters
1923
1924 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1925 |=136|(% style="width:262px" %)(((
1926 U-COIN consistent speed
1927 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1928
1929 Table 6-39 DO speed consistent function code
1930
1931 **Speed approach signal**
1932
1933 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1934
1935 (% style="text-align:center" %)
1936 (((
1937 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1938 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1939 )))
1940
1941 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
1942
1943 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
1944 **Setting method**
1945 )))|=(((
1946 **Effective time**
1947 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1948 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
1949 Operation setting
1950 )))|(((
1951 Effective immediately
1952 )))|100|10 to 6000|Set speed approach signal threshold|rpm
1953
1954 Table 6-40 Speed approaching signal threshold parameters
1955
1956 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1957 |=137|(((
1958 V-NEAR speed approach
1959 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1960
1961 Table 6-41 DO speed approach function code
1962
1963 = **Torque control mode** =
1964
1965 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1966
1967 (% style="text-align:center" %)
1968 (((
1969 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1970 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
1971 )))
1972
1973 == **Torque instruction input setting** ==
1974
1975 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1976
1977 |=(% scope="row" %)**Function code**|=**Name**|=(((
1978 **Setting method**
1979 )))|=(((
1980 **Effective time**
1981 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1982 |=P01-07|Torque instruction source|(((
1983 Shutdown setting
1984 )))|(((
1985 Effective immediately
1986 )))|0|0 to 1|(((
1987 0: internal torque instruction
1988
1989 1: AI_1 analog input(not supported by VD2F and VD2L)
1990 )))|-
1991
1992 Table 6-42 Torque instruction source parameter
1993
1994 **Torque instruction source is internal torque instruction (P01-07=0)**
1995
1996 Torque instruction source is from inside, the value is set by function code P01-08.
1997
1998 |=(% scope="row" %)**Function code**|=**Name**|=(((
1999 **Setting method**
2000 )))|=(((
2001 **Effective time**
2002 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2003 |=P01-08|Torque instruction keyboard set value|(((
2004 Operation setting
2005 )))|(((
2006 Effective immediately
2007 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2008
2009 Table 6-43 Torque instruction keyboard set value
2010
2011 **Torque instruction source is AI_1 analog input (P01-07=1)**
2012
2013 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2014
2015 (% style="text-align:center" %)
2016 (((
2017 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2018 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2019 )))
2020
2021 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2022
2023 (% style="text-align:center" %)
2024 (((
2025 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2026 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2027 )))
2028
2029 Explanation of related terms:
2030
2031 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2032 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2033 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2034
2035 (% style="text-align:center" %)
2036 (((
2037 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2038 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2039 )))
2040
2041 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2042 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2043 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2044 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2045 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2046
2047 Table 6-44 AI_1 parameters
2048
2049 (% class="box infomessage" %)
2050 (((
2051 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2052 )))
2053
2054 == Torque instruction filtering ==
2055
2056 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2057
2058 |=(% scope="row" %)**Function code**|=**Name**|=(((
2059 **Setting method**
2060 )))|=(((
2061 **Effective time**
2062 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2063 |=P04-04|Torque filtering time constant|(((
2064 Operation setting
2065 )))|(((
2066 Effective immediately
2067 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2068
2069 Table 6-45 Torque filtering time constant parameter details
2070
2071 (% class="box infomessage" %)
2072 (((
2073 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2074 )))
2075
2076 (% style="text-align:center" %)
2077 (((
2078 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2079 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2080 )))
2081
2082 == Torque instruction limit ==
2083
2084 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2085
2086 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2087
2088 (% style="text-align:center" %)
2089 (((
2090 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2091 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2092 )))
2093
2094 **Set torque limit source**
2095
2096 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2097
2098 |=(% scope="row" %)**Function code**|=**Name**|=(((
2099 **Setting method**
2100 )))|=(((
2101 **Effective time**
2102 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2103 |=P01-14|(((
2104 Torque limit source
2105 )))|(((
2106 Shutdown setting
2107 )))|(((
2108 Effective immediately
2109 )))|0|0 to 1|(((
2110 * 0: internal value
2111 * 1: AI_1 analog input (not supported by VD2F and VD2L)
2112 )))|-
2113
2114 * Torque limit source is internal torque instruction (P01-14=0)
2115
2116 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2117
2118 |=(% scope="row" %)**Function code**|=**Name**|=(((
2119 **Setting method**
2120 )))|=(((
2121 **Effective time**
2122 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2123 |=P01-15|(((
2124 Forward torque limit
2125 )))|(((
2126 Operation setting
2127 )))|(((
2128 Effective immediately
2129 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2130 |=P01-16|(((
2131 Reverse torque limit
2132 )))|(((
2133 Operation setting
2134 )))|(((
2135 Effective immediately
2136 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2137
2138 Table 6-46 Torque limit parameter details
2139
2140 * Torque limit source is external (P01-14=1)
2141
2142 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2143
2144 **Set torque limit DO signal output**
2145
2146 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2147
2148 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2149 |=139|(((
2150 T-LIMIT in torque limit
2151 )))|Output of this signal indicates that the servo motor torque is limited
2152
2153 Table 6-47 DO torque limit function codes
2154
2155 == **Speed limit in torque mode** ==
2156
2157 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2158
2159 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2160
2161 |(((
2162 (% style="text-align:center" %)
2163 (((
2164 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2165 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2166 )))
2167 )))|(((
2168 (% style="text-align:center" %)
2169 (((
2170 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2171 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2172 )))
2173 )))
2174
2175 |=(% scope="row" %)**Function code**|=**Name**|=(((
2176 **Setting method**
2177 )))|=(((
2178 **Effective time**
2179 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2180 |=P01-17|(((
2181 Forward speed
2182
2183 limit in torque mode
2184 )))|(((
2185 Operation setting
2186 )))|(((
2187 Effective immediately
2188 )))|3000|0 to 5000|(((
2189 Forward torque
2190
2191 limit in torque mode
2192 )))|rpm
2193 |=P01-18|(((
2194 Reverse speed
2195
2196 limit in torque mode
2197 )))|(((
2198 Operation setting
2199 )))|(((
2200 Effective immediately
2201 )))|3000|0 to 5000|(((
2202 Reverse torque
2203
2204 limit in torque mode
2205 )))|rpm
2206
2207 Table 6-48 Speed limit parameters in torque mode
2208
2209 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2210
2211 == Torque-related DO output functions ==
2212
2213 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2214
2215 **Torque arrival**
2216
2217 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2218
2219 (% style="text-align:center" %)
2220 (((
2221 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2222 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2223 )))
2224
2225 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2226
2227 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2228 **Setting method**
2229 )))|=(% style="width: 124px;" %)(((
2230 **Effective time**
2231 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2232 |=P05-20|(% style="width:113px" %)(((
2233 Torque arrival
2234
2235 threshold
2236 )))|(% style="width:100px" %)(((
2237 Operation setting
2238 )))|(% style="width:124px" %)(((
2239 Effective immediately
2240 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2241 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2242
2243 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2244
2245 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2246 )))|%
2247 |=P05-21|(% style="width:113px" %)(((
2248 Torque arrival
2249
2250 hysteresis
2251 )))|(% style="width:100px" %)(((
2252 Operation setting
2253 )))|(% style="width:124px" %)(((
2254 Effective immediately
2255 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2256
2257 Table 6-49 Torque arrival parameters
2258
2259 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2260 |=138|(((
2261 T-COIN torque arrival
2262 )))|Used to determine whether the actual torque instruction has reached the set range
2263
2264 Table 6-50 DO Torque Arrival Function Code
2265
2266 = **Mixed control mode** =
2267
2268 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2269
2270 * Position mode⇔ Speed mode
2271 * Position mode ⇔Torque mode
2272 * Speed mode ⇔Torque mode
2273
2274 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2275
2276 |=(% scope="row" %)**Function code**|=**Name**|=(((
2277 **Setting method**
2278 )))|=(((
2279 **Effective time**
2280 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2281 |=P00-01|Control mode|(((
2282 Shutdown setting
2283 )))|(((
2284 Shutdown setting
2285 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2286 * 1: Position control
2287 * 2: Speed control
2288 * 3: Torque control
2289 * 4: Position/speed mixed control
2290 * 5: Position/torque mixed control
2291 * 6: Speed/torque mixed control
2292
2293 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2294 )))|-
2295
2296 Table 6-51 Mixed control mode parameters
2297
2298 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2299
2300 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2301 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2302 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2303 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2304 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2305 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2306 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2307 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2308 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2309 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2310 )))
2311
2312 Table 6-52 Description of DI function codes in control mode
2313
2314 (% class="box infomessage" %)
2315 (((
2316 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2317 )))
2318
2319 = **Absolute system** =
2320
2321 == Overview ==
2322
2323 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2324
2325 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2326
2327 == Single-turn absolute value system ==
2328
2329 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2330
2331 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2332 |A1 (single-turn magnetic encoder)|17|0 to 131071
2333
2334 Table 6-53 Single-turn absolute encoder information
2335
2336 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2337
2338 (% style="text-align:center" %)
2339 (((
2340 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2341 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2342 )))
2343
2344 == Multi-turn absolute value system ==
2345
2346 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2347
2348 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2349 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2350 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2351
2352 Table 6-54 Multi-turn absolute encoder information
2353
2354 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2355
2356 (% style="text-align:center" %)
2357 (((
2358 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2359 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2360 )))
2361
2362 (% class="wikigeneratedid" %)
2363 (((
2364 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2365 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2366 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2367 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2368
2369 |**Function code**|**Name**|(((
2370 **Setting**
2371
2372 **method**
2373 )))|(((
2374 **Effective**
2375
2376 **time**
2377 )))|**Default**|**Range**|**Definition**|**Unit**
2378 |P10-06|Multi-turn absolute encoder reset|(((
2379 Shutdown
2380
2381 setting
2382 )))|Effective immediately|0|0 to 1|(((
2383 0: No operation
2384
2385 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2386
2387 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2388 )))|-
2389
2390 (% style="background-color:#ffffff" %)
2391 |**Function code**|**Name**|(((
2392 **Setting**
2393
2394 **method**
2395 )))|(((
2396 **Effective**
2397
2398 **time**
2399 )))|**Default**|**Range**|**Definition**|**Unit**
2400 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2401 Operation
2402
2403 setting
2404 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2405 )))
2406
2407 == Related functions and parameters ==
2408
2409 **Encoder feedback data**
2410
2411 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2412
2413 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2414 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2415 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2416 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2417
2418 Table 6-55 Encoder feedback data
2419
2420 **Shield multi-turn absolute encoder battery fault**
2421
2422 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2423
2424 |=(% scope="row" %)**Function code**|=**Name**|=(((
2425 **Setting**
2426
2427 **method**
2428 )))|=(((
2429 **Effective**
2430
2431 **time**
2432 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2433 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2434 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2435 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2436 )))|-
2437
2438 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2439
2440 **A93 warning solution**
2441
2442 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2443 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2444
2445 |**Function code**|**Name**|(((
2446 **Setting**
2447
2448 **method**
2449 )))|(((
2450 **Effective**
2451
2452 **time**
2453 )))|**Default**|**Range**|**Definition**|**Unit**
2454 |P00-31|Encoder read-write check abnormal frequency|(((
2455 Operation
2456
2457 setting
2458 )))|(((
2459 immediately
2460
2461 Effective
2462 )))|20|0 to100|(((
2463 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2464
2465 0: no alarm
2466
2467 Others: When this setting value is exceeded, report A93.
2468 )))|-
2469
2470 (% class="box infomessage" %)
2471 (((
2472 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2473 )))
2474
2475 == Absolute value system encoder battery box use precautions. ==
2476
2477 **Cautions**
2478
2479 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2480
2481 (% style="text-align:center" %)
2482 (((
2483 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2484 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2485 )))
2486
2487 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2488
2489 **Replace the battery**
2490
2491 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2492
2493 The specific replacement method is as follows:
2494
2495 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2496 * Step2 Remove the old battery.
2497 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2498 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2499
2500 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2501
2502 |=(% scope="row" %)**Function code**|=**Name**|=(((
2503 **Setting method**
2504 )))|=(((
2505 **Effective time**
2506 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2507 |=P10-06|Multi-turn absolute encoder reset|(((
2508 Shutdown setting
2509 )))|(((
2510 Effective immediately
2511 )))|0|0 to 1|(((
2512 * 0: No operation
2513 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2514
2515 (% class="box infomessage" %)
2516 (((
2517 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2518 )))
2519 )))|-
2520
2521 Table 6-56 Absolute encoder reset enable parameter
2522
2523 **Battery selection**
2524
2525 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2526 |(% rowspan="4" style="width:361px" %)(((
2527 Nominal Voltage: 3.6V
2528
2529 Nominal capacity: 2700mAh
2530 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2531 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2532 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2533 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2534
2535 Table 6-57 Absolute value encoder battery information
2536
2537 **✎Note: **
2538
2539 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2540
2541 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2542
2543 Correct placement of batteries +, - direction
2544
2545 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2546 1. This battery cannot be charged.
2547 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2548 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2549 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2550
2551 = **Other functions** =
2552
2553 == VDI ==
2554
2555 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2556
2557 (% class="box infomessage" %)
2558 (((
2559 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2560 )))
2561
2562 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2563
2564 (% style="text-align:center" %)
2565 (((
2566 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2567 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2568 )))
2569
2570 |=(% scope="row" %)**Function code**|=**Name**|=(((
2571 **Setting method**
2572 )))|=(((
2573 **Effective time**
2574 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2575 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2576 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2577
2578 VDI_1 input level:
2579
2580 * 0: low level
2581 * 1: high level
2582 )))|-
2583 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2584 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2585
2586 VDI_2 input level:
2587
2588 * 0: low level
2589 * 1: high level
2590 )))|-
2591 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2592 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2593
2594 VDI_3 input level:
2595
2596 * 0: low level
2597 * 1: high level
2598 )))|-
2599 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2600 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2601
2602 VDI_4 input level:
2603
2604 * 0: low level
2605 * 1: high level
2606 )))|-
2607 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2608 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2609
2610 VDI_5 input level:
2611
2612 * 0: low level
2613 * 1: high level
2614 )))|-
2615 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2616 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2617
2618 VDI_6 input level:
2619
2620 * 0: low level
2621 * 1: high level
2622 )))|-
2623 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2624 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2625
2626 VDI_7 input level:
2627
2628 * 0: low level
2629 * 1: high level
2630 )))|-
2631 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2632 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2633
2634 VDI_8 input level:
2635
2636 * 0: low level
2637 * 1: high level
2638 )))|-
2639
2640 Table 6-57 Virtual VDI parameters
2641
2642 (% class="box infomessage" %)
2643 (((
2644 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2645 )))
2646
2647 == Port filtering time ==
2648
2649 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2650
2651 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2652 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2653 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2654
2655 Table 6-58 DI terminal channel logic selection
2656
2657 == **VDO** ==
2658
2659 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2660
2661 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2662
2663 (% style="text-align:center" %)
2664 (((
2665 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2666 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2667 )))
2668
2669
2670 |=(% scope="row" %)**Function code**|=**Name**|=(((
2671 **Setting method**
2672 )))|=(((
2673 **Effective time**
2674 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2675 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2676 VDO_1 output level:
2677
2678 * 0: low level
2679 * 1: high level
2680 )))|-
2681 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2682 VDO_2 output level:
2683
2684 * 0: low level
2685 * 1: high level
2686 )))|-
2687 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2688 VDO_3 output level:
2689
2690 * 0: low level
2691 * 1: high level
2692 )))|-
2693 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2694 VDO_4 output level:
2695
2696 * 0: low level
2697 * 1: high level
2698 )))|-
2699
2700 Table 6-59 Communication control DO function parameters
2701
2702 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2703 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2704 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2705 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2706 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2707
2708 Table 6-60 VDO function number
2709
2710 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2711
2712 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2713
2714 == Motor overload protection ==
2715
2716 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2717
2718 |=(% scope="row" %)**Function code**|=**Name**|=(((
2719 **Setting method**
2720 )))|=(((
2721 **Effective time**
2722 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2723 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2724 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2725
2726 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2727 )))|%
2728
2729 In the following cases, it could be modified according to the actual heat generation of the motor
2730
2731 1. The motor works in a place with high ambient temperature
2732 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2733
2734 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2735
2736 (% class="box infomessage" %)
2737 (((
2738 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2739 )))