Wiki source code of 06 Operation

Version 84.2 by Mora Zhou on 2025/04/28 14:23

Show last authors
1 = **Basic settings** =
2
3 == **Check before operation** ==
4
5 |=(% scope="row" style="width: 79px;" %)**No.**|=(% style="width: 996px;" %)**Content**
6 |=(% colspan="2" %)Wiring
7 |=(% style="width: 79px;" %)1|(% style="width:996px" %)The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 |=(% style="width: 79px;" %)4|(% style="width:996px" %)The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 |=(% style="width: 79px;" %)5|(% style="width:996px" %)Servo drive and servo motor must be grounded reliably.
12 |=(% style="width: 79px;" %)6|(% style="width:996px" %)When using an external braking resistor, the short wiring between drive C and D must be removed.
13 |=(% style="width: 79px;" %)7|(% style="width:996px" %)The force of all cables is within the specified range.
14 |=(% style="width: 79px;" %)8|(% style="width:996px" %)The wiring terminals have been insulated.
15 |=(% colspan="2" %)Environment and Machinery
16 |=(% style="width: 79px;" %)1|(% style="width:996px" %)There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 |=(% style="width: 79px;" %)2|(% style="width:996px" %)The servo drive and external braking resistor are not placed on combustible objects.
18 |=(% style="width: 79px;" %)3|(% style="width:996px" %)The installation, shaft and mechanical structure of the servo motor have been firmly connected.
19
20 Table 6-1 Check contents before operation
21
22 == Power-on ==
23
24 **Connect the main circuit power supply**
25
26 After power on the main circuit, the bus voltage indicator shows no abnormality, and the panel display "rdy", indicating that the servo drive is in an operational state, waiting for the host computer to give the servo enable signal.
27
28 If the drive panel displays other fault codes, please refer to __[[“10 Malfunctions">>doc:Servo.Manual.02 VD2 SA Series.10 Malfunctions.WebHome]]__” to analyze and eliminate the cause of the fault.
29
30 **Set the servo drive enable (S-ON) to invalid (OFF)**
31
32 == Jog operation ==
33
34 Jog operation is used to judge whether the servo motor can rotate normally, and whether there is abnormal vibration and abnormal sound during rotation. Jog operation can be realized in two ways, one is panel jog operation, which can be realized by pressing the buttons on the servo panel. The other is jog operation through the host computer debugging platform.
35
36 **Panel jog operation**
37
38 Enter “P10-01” by pressing the key on the panel. After pressing “OK”, the panel will display the current jog speed. At this time, you can adjust the jog speed by pressing the "up" or "down" keys; After adjusting the moving speed, press "OK", and the panel displays "JOG" and is in a flashing state. Press "OK" again to enter the jog operation mode (the motor is now powered on!). Long press the "up" and "down" keys to achieve the forward and reverse rotation of the motor. Press "Mode" key to exit the jog operation mode. For operation and display, please refer to __[["5.3.2. Jog operation">>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/05%20Panel/#HJogoperation]]__.
39
40 **Jog operation of servo debugging platform**
41
42 Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
43
44 |=(% scope="row" %)**Function code**|=**Name**|=(((
45 **Setting method**
46 )))|=(((
47 **Effective time**
48 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
49 |=(((
50 P10-01
51 )))|(((
52 JOG speed
53 )))|(((
54 Operation setting
55 )))|(((
56 Effective immediately
57 )))|(((
58 100
59 )))|(((
60 0 to 3000
61 )))|(((
62 JOG speed
63 )))|(((
64 rpm
65 )))
66
67 Table 6-2 JOG speed parameter
68
69 == **Rotation direction selection** ==
70
71 By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
72
73 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=Effective time|=**Default value**|=**Range**|=**Definition**|=**Unit**
74 |=(((
75 P00-04
76 )))|(((
77 Rotation direction
78 )))|(((
79 Shutdown setting
80 )))|(((
81 Effective immediately
82 )))|(((
83 0
84 )))|(((
85 0 to 1
86 )))|Forward: facing the motor axis.
87 0: Standard setting (CW is forward);
88 1: Reverse mode (CCW is forward);
89 2: Reverse mode (CCW is forward), set P1-12,
90 P1-17 to limit the CCW direction speed; set
91 P1-13, P1-18 to limit the CW direction speed.
92 **Note:VD2L driver P0-04 setting range: 0~~1, not support P00-4=2!**|-
93
94 Table 6-3 Rotation direction parameters** **
95
96 == **Braking resistor** ==
97
98 The servo motor is in the generator state when decelerating or stopping, the motor will transfer energy back to the drive, which will increase the bus voltage. When the bus voltage exceeds the braking point, The drive can consume the feedback energy in the form of thermal energy through the braking resistor. The braking resistor can be built-in or externally connected, but it cannot be used at the same time. When selecting an external braking resistor, it is necessary to remove the short link on the servo drive.
99
100 The basis for judging whether the braking resistor is built-in or external.
101
102 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
103 1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
104
105 |=(% scope="row" %)**Function code**|=**Name**|=(% style="width: 118px;" %)(((
106 **Setting method**
107 )))|=(% style="width: 126px;" %)(((
108 **Effective time**
109 )))|=**Default**|=**Range**|=**Definition**|=**Unit**
110 |=P00-09|Braking resistor setting|(% style="width:118px" %)(((
111 Operation setting
112 )))|(% style="width:126px" %)(((
113 Effective immediately
114 )))|0|0 to 3|(((
115 0: use built-in braking resistor
116
117 1: use external braking resistor and natural cooling
118
119 2: use external braking resistor and forced air cooling; (cannot be set)
120
121 3: No braking resistor is used, it is all absorbed by capacitor.
122 )))|-
123 (% class="info" %)|(% colspan="8" scope="row" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
124 |=P00-10|External braking resistor value|(% style="width:118px" %)(((
125 Operation setting
126 )))|(% style="width:126px" %)(((
127 Effective immediately
128 )))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
129 |=P00-11|External braking resistor power|(% style="width:118px" %)(((
130 Operation setting
131 )))|(% style="width:126px" %)(((
132 Effective immediately
133 )))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
134
135 Table 6-4 Braking resistor parameters
136
137 == **Servo operation** ==
138
139 **Set the servo enable (S-ON) to valid (ON)**
140
141 The servo drive is in a running state and displays "run", but because there is no instruction input at this time, the servo motor does not rotate and is locked.
142
143 S-ON can be configured and selected by the DI terminal function selection of the function code "DIDO configuration".
144
145 **Input the instruction and the motor rotates**
146
147 Input appropriate instructions during operation, first run the motor at a low speed, and observe the rotation to see if it conforms to the set rotation direction. Observe the actual running speed, bus voltage and other parameters of the motor through the host computer debugging platform. According to [[__"7 Adjustment"__>>doc:Servo.Manual.02 VD2 SA Series.07 Adjustments.WebHome]], the motor could work as expected.
148
149 **Timing diagram of power on**
150
151 (% style="text-align:center" %)
152 (((
153 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
154 [[**Figure 6-1 Timing diagram of power on**>>image:image-20220608163014-1.png||id="Iimage-20220608163014-1.png"]]
155 )))
156
157 == Servo shutdown ==
158
159 According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __Table 6-5__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __Table 6-6__.
160
161 |=(% scope="row" style="width: 150px;" %)Shutdown mode|=(% style="width: 532px;" %)Shutdown description|=(% style="width: 393px;" %)Shutdown characteristics
162 |=(% style="width: 150px;" %)Free stop|(% style="width:532px" %)Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|(% style="width:393px" %)Smooth deceleration, small mechanical shock, but slow deceleration process.
163 |=(% style="width: 150px;" %)Zero-speed shutdown|(% style="width:532px" %)The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|(% style="width:393px" %)Rapid deceleration with mechanical shock, but fast deceleration process.
164
165 Table 6-5 Comparison of two shutdown modes
166
167 |=(% scope="row" style="width: 151px;" %)**Shutdown status**|=(% style="width: 532px;" %)**Free operation status**|=(% style="width: 392px;" %)**Position locked**
168 |=(% style="width: 151px;" %)Characteristics|(% style="width:532px" %)After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|(% style="width:392px" %)After the motor stops rotating, the motor shaft is locked and could not rotate freely.
169
170 Table 6-6 Comparison of two shutdown status
171
172 **Servo enable (S-ON) OFF shutdown**
173
174 The related parameters of the servo OFF shutdown mode are shown in the table below.
175
176 |=(% scope="row" style="width: 94px;" %)**Function code**|=(% style="width: 180px;" %)**Name**|=(% style="width: 119px;" %)(((
177 **Setting method**
178 )))|=(% style="width: 134px;" %)(((
179 **Effective time**
180 )))|=(% style="width: 86px;" %)(((
181 **Default value**
182 )))|=(% style="width: 70px;" %)**Range**|=(% style="width: 347px;" %)**Definition**|=**Unit**
183 |=(% style="width: 94px;" %)P00-05|(% style="width:180px" %)Servo OFF shutdown|(% style="width:119px" %)(((
184 Shutdown
185
186 setting
187 )))|(% style="width:134px" %)(((
188 Effective
189
190 immediately
191 )))|(% style="width:86px" %)0|(% style="width:70px" %)0 to 1|(% style="width:347px" %)(((
192 0: Free stop, and the motor shaft remains free status.
193
194 1: Zero-speed stop, and the motor axis remains free status.
195 )))|-
196
197 Table 6-7 Servo OFF shutdown mode parameters details
198
199 **Emergency shutdown**
200
201 It is free shutdown mode at present, and the motor shaft remains in a free state. The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The V1.18 firmware version adds the Estop stop time setting function. In some occasions where the servo needs to control the emergency stop of the motor, it is necessary to control the emergency stop time of the DI. Therefore, the P01-05 shutdown deceleration time function is added to deal with this situation.
202
203 Estop mode 1 (deceleration stop):
204
205 ~1. Configurate DI function code: 8 [ESTOP]
206
207 2. Set P1-5 shutdown deceleration time.
208
209 3. Trigger DI emergency shutdown.
210
211 4. Servo emergency shutdown and deceleration to zero speed.
212
213 Estop mode 2:
214
215 ~1. Configurate DI function code: 1 [Servo enable SON]
216
217 2. Set P1-05 shutdown deceleration time.
218
219 3. Set P0-05 Servo OFF shutdown mode: zero speed stop.
220
221 4. Trigger DI to turn off servo enable SON.
222
223 |Function code|Name|(((
224 Setting
225
226 method
227 )))|(((
228 Effective
229
230 time
231 )))|Default|Range|Definition|Unit
232 |P01-05|Shutdown deceleration time|(((
233 Shutdown
234
235 setting
236 )))|(((
237 immediately
238
239 Effective
240 )))|50|0 to 65535|The time for the speed command to decelerate from 1000rpm to 0|ms
241
242 **Overtravel shutdown**
243
244 Overtravel means that the movable part of the machine exceeds the set area. In some occasions where the servo moves horizontally or vertically, it is necessary to limit the movement range of the workpiece. The overtravel is generally detected by limit switches, photoelectric switches or the multi-turn position of the encoder, that is, hardware overtravel or software overtravel.
245
246 Once the servo drive detects the action of the limit switch signal, it will immediately force the speed in the current direction of rotation to 0 to prevent it from continuing, and it will not be affected for reverse rotation. The overtravel shutdonw is fixed at zero speed and the motor shaft remains locked.
247
248 The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
249
250 |=(% scope="row" style="width: 89px;" %)**Function code**|=(% style="width: 135px;" %)**Name**|=(% style="width: 122px;" %)(((
251 **Setting method**
252 )))|=(% style="width: 114px;" %)(((
253 **Effective time**
254 )))|=(% style="width: 106px;" %)**Default value**|=(% style="width: 84px;" %)**Range**|=(% style="width: 380px;" %)**Definition**|=**Unit**
255 |=(% style="width: 89px;" %)P06-08|(% style="width:135px" %)DI_3 channel function selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)Power-on again|(% style="width:106px" %)3|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
256 0: OFF (not used)
257
258 01: S-ON servo enable
259
260 02: A-CLR fault and Warning Clear
261
262 03: POT forward drive prohibition
263
264 04: NOT Reverse drive prohibition
265
266 05: ZCLAMP Zero speed
267
268 06: CL Clear deviation counter
269
270 07: C-SIGN Inverted instruction
271
272 08: E-STOP Emergency stop
273
274 09: GEAR-SEL Electronic Gear Switch 1
275
276 10: GAIN-SEL gain switch
277
278 11: INH Instruction pulse prohibited input
279
280 12: VSSEL Vibration control switch input
281
282 13: INSPD1 Internal speed instruction selection 1
283
284 14: INSPD2 Internal speed instruction selection 2
285
286 15: INSPD3 Internal speedinstruction selection 3
287
288 16: J-SEL inertia ratio switch (not implemented yet)
289
290 17: MixModesel mixed mode selection
291
292 20: Internal multi-segment position enable signal
293
294 21: Internal multi-segment position selection 1
295
296 22: Internal multi-segment position selection 2
297
298 23: Internal multi-segment position selection 3
299
300 24: Internal multi-segment position selection 4
301
302 25: HOME_START Homing start
303 26: HOME ORG Homing signal
304 27: JOGU DI Forward jog
305 28: JOGD DI Reverse jog
306
307 Others: reserved
308 )))|-
309 |=(% style="width: 89px;" %)P06-09|(% style="width:135px" %)DI_3 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
310 Effective immediately
311 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
312 DI port input logic validity function selection.
313
314 0: Normally open input. Active low level (switch on);
315
316 1: Normally closed input. Active high level (switch off);
317 )))|-
318 |=(% style="width: 89px;" %)P06-10|(% style="width:135px" %)DI_3 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
319 Effective immediately
320 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
321 Select the DI_3 port type to enable
322
323 0: Hardware DI_3 input terminal
324
325 1: virtual VDI_3 input terminal
326 )))|-
327 |=(% style="width: 89px;" %)P06-11|(% style="width:135px" %)DI_4 channel function selection|(% style="width:122px" %)(((
328 Operation setting
329 )))|(% style="width:114px" %)(((
330 again Power-on
331 )))|(% style="width:106px" %)4|(% style="width:84px" %)0 to 32|(% style="width:380px" %)(((
332 0: OFF (not used)
333
334 01: SON Servo enable
335
336 02: A-CLR Fault and Warning Clear
337
338 03: POT Forward drive prohibition
339
340 04: NOT Reverse drive prohibition
341
342 05: ZCLAMP Zero speed
343
344 06: CL Clear deviation counter
345
346 07: C-SIGN Inverted instruction
347
348 08: E-STOP Emergency shutdown
349
350 09: GEAR-SEL Electronic Gear Switch 1
351
352 10: GAIN-SEL gain switch
353
354 11: INH Instruction pulse prohibited input
355
356 12: VSSEL Vibration control switch input
357
358 13: INSPD1 Internal speed instruction selection 1
359
360 14: INSPD2 Internal speed instruction selection 2
361
362 15: INSPD3 Internal speed instruction selection 3
363
364 16: J-SEL inertia ratio switch (not implemented yet)
365
366 17: MixModesel mixed mode selection
367
368 20: Internal multi-segment position enable signal
369
370 21: Internal multi-segment position selection 1
371
372 22: Internal multi-segment position selection 2
373
374 23: Internal multi-segment position selection 3
375
376 24: Internal multi-segment position selection 4
377
378 Others: reserved
379 )))|-
380 |=(% style="width: 89px;" %)P06-12|(% style="width:135px" %)DI_4 channel logic selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
381 Effective immediately
382 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
383 DI port input logic validity function selection.
384
385 0: Normally open input. Active low level (switch on);
386
387 1: Normally closed input. Active high level (switch off);
388 )))|-
389 |=(% style="width: 89px;" %)P06-13|(% style="width:135px" %)DI_4 input source selection|(% style="width:122px" %)Operation setting|(% style="width:114px" %)(((
390 Effective immediately
391 )))|(% style="width:106px" %)0|(% style="width:84px" %)0 to 1|(% style="width:380px" %)(((
392 Select the DI_4 port type to enable
393
394 0: Hardware DI_4 input terminal
395
396 1: virtual VDI_4 input terminal
397 )))|-
398
399 Table 6-8 DI3 and DI4 channel parameters
400
401 **(4) Malfunction shutdown**
402
403 When the machine fails, the servo will perform a fault shutdown operation. The current shutdown mode is fixed to the free shutdown mode, and the motor shaft remains in a free state.
404
405 == Brake device ==
406
407 The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
408
409 (% class="warning" %)|(((
410 (% style="text-align:center" %)
411 [[image:image-20220611151617-1.png]]
412 )))
413 |(((
414 ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
415
416 ✎ After the servo motor stops, turn off the servo enable (S-ON) in time;
417
418 ✎The brake coil has no polarity;
419
420 ✎When the brake coil is energized (that is, the brake is open), magnetic flux leakage may occur at the shaft end and other parts. If users need to use magnetic sensors and other device near the motor, please pay attention!
421
422 ✎When the motor with built-in brake is in operation, the brake device may make a clicking sound, which does not affect the function.
423 )))
424
425 **Wiring of brake device**
426
427 The brake input signal has no polarity. User need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
428
429
430 (% style="text-align:center" %)
431 (((
432 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
433 [[**Figure 6-2 VD2B servo drive brake wiring**>>image:image-20220608163136-2.png||id="Iimage-20220608163136-2.png"]]
434 )))
435
436 (% class="warning" %)|(((
437 (% style="text-align:center" %)
438 [[image:image-20220611151642-2.png]]
439 )))
440 |(((
441 ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
442
443 ✎It is recommended to use the power supply alone for the brake device. If the power supply is shared with other electrical device, the voltage or current may decrease due to the operation of other electrical device, which may cause the brake to malfunction.
444
445 ✎It is recommended to use cables above 0.5 mm².
446 )))
447
448 **Brake software setting**
449
450 For a servo motor with brake, one DO terminal of servo drive must be configured as function 141 (BRK-OFF, brake output), and the effective logic of the DO terminal must be determined.
451
452 Related function code is as below.
453
454 |=(% scope="row" %)**DO function code**|=(% style="width: 241px;" %)**Function name**|=(% style="width: 458px;" %)**Function**|=(% style="width: 191px;" %)(((
455 **Effective time**
456 )))
457 |=141|(% style="width:241px" %)(((
458 BRK-OFF Brake output
459 )))|(% style="width:458px" %)Output the signal indicates the servo motor brake release|(% style="width:191px" %)Power-on again
460
461 Table 6-2 Relevant function codes for brake setting
462
463 |=(% scope="row" %)**Function code**|=**Name**|=(((
464 **Setting method**
465 )))|=(((
466 **Effective time**
467 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
468 |=P1-30|Delay from brake output to instruction reception|(((
469 Operation setting
470 )))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
471 |=P1-31|In static state, delay from brake output OFF to the motor is power off|(((
472 Operation setting
473 )))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
474 |=P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
475 Operation setting
476 )))|Effective immediately|30|0 to 3000|(((
477 When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
478
479 When the brake output (BRK-OFF) is not allocated, this function code has no effect.
480 )))|rpm
481 |=P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
482 Operation setting
483 )))|Effective immediately|500|1 to 1000|(((
484 When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
485
486 When brake output (BRK-OFF) is not allocated, this function code has no effect.
487 )))|ms
488
489 Table 6-9 Brake setting function codes
490
491 According to the state of servo drive, the working sequence of the brake mechanism can be divided into the brake sequence in the normal state of the servo drive and the brake sequence in the fault state of the servo drive.
492
493 **Servo drive brake timing in normal state**
494
495 The brake timing of the normal state could be divided into: the servo motor static (the actual speed of motor is lower than 20 rpm) and servo motor rotation(the actual speed of the motor reaches 20 and above).
496
497 * Brake timing when servo motor is stationary
498
499 When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __Figure 6-3__
500
501 (% class="warning" %)|(((
502 (% style="text-align:center" %)
503 [[image:image-20220611151705-3.png]]
504 )))
505 |(((
506 ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
507
508 ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
509 )))
510
511 (% style="text-align:center" %)
512 (((
513 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
514 [[**Figure 6-3 Brake Timing of when the motor is stationary**>>image:image-20220608163304-3.png||id="Iimage-20220608163304-3.png"]]
515 )))
516
517 (% class="box infomessage" %)
518 (((
519 ✎**Note: **For the delay time of the contact part of the brake at ② in the figure, please refer to the relevant specifications of motor.
520 )))
521
522 * The brake timing when servo motor rotates
523
524 When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __Figure 6-4__.
525
526 (% class="warning" %)|(((
527 (% style="text-align:center" %)
528 [[image:image-20220611151719-4.png]]
529 )))
530 |(((
531 ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
532
533 ✎When the servo motor rotates, the servo enable is OFF and the servo motor is in the zero-speed shutdown state, but the brake output must meet any of the following conditions before it could be set OFF:
534
535 P01-33 time has not arrived, but the motor has decelerated to the speed set by P01-32;
536
537 P01-33 time is up, but the motor speed is still higher than the set value of P01-32.
538
539 ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
540 )))
541
542 (% style="text-align:center" %)
543 (((
544 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
545 [[**Figure 6-4 Brake timing when the motor rotates**>>image:image-20220608163425-4.png||id="Iimage-20220608163425-4.png"]]
546 )))
547
548 **Brake timing when the servo drive fails**
549
550 The brake timing (free shutdown) in the fault status is as follows.
551
552 (% style="text-align:center" %)
553 (((
554 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
555 [[**~~ Figure 6-5 The brake timing (free shutdown) in the fault state**>>image:image-20220608163541-5.png||id="Iimage-20220608163541-5.png"]]
556 )))
557
558 = **Position control mode** =
559
560 Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
561
562 (% style="text-align:center" %)
563 (((
564 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
565 [[**Figure 6-6 Position control diagram**>>image:image-20220608163643-6.png||id="Iimage-20220608163643-6.png"]]
566 )))
567
568 Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
569
570 |=(% scope="row" style="width: 123px;" %)**Function code**|=(% style="width: 134px;" %)**Name**|=(((
571 **Setting method**
572 )))|=(((
573 **Effective time**
574 )))|=(% style="width: 116px;" %)**Default value**|=(% style="width: 118px;" %)**Range**|=(% style="width: 389px;" %)**Definition**|=(% style="width: 151px;" %)**Unit**
575 |=(% style="width: 123px;" %)P00-01|(% style="width:134px" %)Control mode|(((
576 Operation setting
577 )))|(((
578 immediately Effective
579 )))|(% style="width:116px" %)1|(% style="width:118px" %)1 to 6|(% style="width:389px" %)(((
580 1: position control
581
582 2: speed control
583
584 3: torque control
585
586 4: position/speed mix control
587
588 5: position/torque mix control
589
590 6: speed /torque mix control
591
592 VD2L drive P00-01 setting range: 1-3, not supprt mix mode
593 )))|(% style="width:151px" %)-
594
595 Table 6-10 Control mode parameters
596
597 == Position instruction input setting ==
598
599 When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
600
601 |=(% scope="row" %)**Function code**|=**Name**|=(((
602 **Setting method**
603 )))|=(((
604 **Effective time**
605 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
606 |=P01-06|Position instruction source|(((
607 Operation setting
608 )))|(((
609 immediately Effective
610 )))|0|0 to 1|(((
611 0: pulse instruction
612
613 1: internal position instruction
614 )))|-
615
616 Table 6-12 Position instruction source parameter
617
618 **The source of position instruction is pulse instruction (P01-06=0)**
619
620 Low-speed pulse instruction input
621
622 |(% style="text-align:center" %)(((
623 (% class="wikigeneratedid" %)
624 [[VD2A, VD2B and VD2C servo drives>>image:image-20220804160519-1.jpeg||id="Iimage-20220804160519-1.jpeg"]]
625 )))|(% style="text-align:center" %)(((
626 (% class="wikigeneratedid" %)
627 [[VD2F and VD2L servo drive>>image:image-20220804160624-2.jpeg||id="Iimage-20220804160624-2.jpeg"]]
628 )))
629 |(% colspan="2" %)Figure 6-7 Position instruction input setting
630
631 VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __Figure 6-7__.
632
633 The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
634
635 |=(% scope="row" %)**Pulse method**|=(% style="width: 372px;" %)**Maximum frequency**|=(% style="width: 260px;" %)**Voltage**
636 |=Open collector input|(% style="width:372px" %)200K|(% style="width:260px" %)24V
637 |=Differential input|(% style="width:372px" %)500K|(% style="width:260px" %)5V
638
639 Table 6-13 Pulse input specifications
640
641 * Differential input
642
643 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
644
645 (% style="text-align:center" %)
646 (((
647 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:583px;" %)
648 [[**Figure 6-8 Differential input connection**>>image:image-20220707092615-5.jpeg||height="306" id="Iimage-20220707092615-5.jpeg" width="583"]]
649 )))
650
651 (% class="box infomessage" %)
652 (((
653 ✎**Note: **The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
654 )))
655
656 * Open collector input
657
658 Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
659
660 (% style="text-align:center" %)
661 (((
662 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:679px;" %)
663 [[**Figure 6-9 Open collector input connection**>>image:image-20220707092401-3.jpeg||height="432" id="Iimage-20220707092401-3.jpeg" width="679"]]
664 )))
665
666
667 (% class="box infomessage" %)
668 (((
669 ✎**Note:** The differential input connection of the VD2F drive differs only from the signal pin number. Please refer to “__[[4.4.3 position instruction input signal>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/04%20Wiring/#HPositioninstructioninputsignal]]__”
670 )))
671
672 * Position pulse frequency and anti-interference level
673
674 When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
675
676 (% style="text-align:center" %)
677 (((
678 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
679 [[**Figure 6-10 Example of filtered signal waveform**>>image:image-20220608163952-8.png||id="Iimage-20220608163952-8.png"]]
680 )))
681
682 The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
683
684 |=**Function code**|=(% style="width: 169px;" %)**Name**|=(% style="width: 146px;" %)(((
685 **Setting method**
686 )))|=(((
687 **Effective time**
688 )))|=**Default value**|=(% style="width: 87px;" %)**Range**|=(% colspan="2" style="width: 296px;" %)**Definition**|=**Unit**
689 |(% rowspan="3" %)P00-14|(% rowspan="3" style="width:169px" %)Position pulse anti-interference level|(% rowspan="3" style="width:146px" %)(((
690 Operation setting
691 )))|(% rowspan="3" %)(((
692 Power-on again
693 )))|(% rowspan="3" %)2|(% rowspan="3" style="width:87px" %)0 to 9|(% colspan="2" style="width:296px" %)(((
694 Set the anti-interference level of external pulse instruction.
695
696 * 0: no filtering;
697 * 1: Filtering time 128ns
698 * 2: Filtering time 256ns
699 * 3: Filtering time 512ns
700 * 4: Filtering time 1.024us
701 * 5: Filtering time 2.048us
702 * 6: Filtering time 4.096us
703 * 7: Filtering time 8.192us
704 * 8: Filtering time 16.384us
705 * 9:
706 ** VD2: Filtering time 25.5us
707 ** VD2F: Filtering time 25.5us
708 )))|(% rowspan="3" %)-
709
710 Table 6-14 Position pulse frequency and anti-interference level parameters
711
712 |**Function code**|**Name**|(((
713 **Setting**
714
715 **method**
716 )))|(((
717 **Effective**
718
719 **time**
720 )))|**Default value**|**Range**|**Definition**|**Unit**
721 |P00-14|Position pulse anti-interference level|(((
722 Operation
723
724 setting
725 )))|(((
726 Power-on
727
728 again
729 )))|2|0 to 8|(((
730 VD2L drive set the anti-interference level of external pulse instruction.
731
732 0: no filtering;
733
734 1: Filtering time 111.1ns
735
736 2: Filtering time 222.2ns
737
738 3: Filtering time 444.4ns
739
740 4: Filtering time 888.8ns
741
742 5: Filtering time 1777.7ns
743
744 6: Filtering time 3555.5ns
745
746 7: Filtering time 7111.7ns
747
748 8: Filtering time 14222.2ns
749
750
751 )))|-
752
753 Table 6-15 VD2L Position pulse frequency and anti-interference level parameters
754
755
756 * Position pulse type selection
757
758 In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
759
760 |=(% scope="row" %)**Function code**|=(% style="width: 144px;" %)**Name**|=(% style="width: 110px;" %)(((
761 **Setting method**
762 )))|=(% style="width: 109px;" %)(((
763 **Effective time**
764 )))|=(% style="width: 77px;" %)**Default value**|=(% style="width: 74px;" %)**Range**|=(% style="width: 412px;" %)**Definition**|=**Unit**
765 |=P00-12|(% style="width:144px" %)Position pulse type selection|(% style="width:110px" %)(((
766 Operation setting
767 )))|(% style="width:109px" %)(((
768 Power-on again
769 )))|(% style="width:77px" %)0|(% style="width:74px" %)0 to 5|(% style="width:412px" %)(((
770 * 0: direction + pulse (positive logic)
771 * 1: CW/CCW
772 * 2: A, B phase quadrature pulse (4 times frequency)
773 * 3: Direction + pulse (negative logic)
774 * 4: CW/CCW (negative logic)
775 * 5: A, B phase quadrature pulse (4 times frequency negative logic)
776
777 **✎Note: VD2F and VD2L series drivers do not support the pulse form of CW/CCW! P0-12 parameter setting range of VD2L: 0, 2, 3, 5**
778 )))|-
779
780 Table 6-15 Position pulse type selection parameter
781
782 |=(% scope="row" %)**Pulse type selection**|=(% style="width: 200px;" %)**Pulse type**|=(% style="width: 161px;" %)**Signal**|=**Schematic diagram of forward pulse**|=**Schematic diagram of negative pulse**
783 |=0|(% style="width:200px" %)(((
784 Direction + pulse
785
786 (Positive logic)
787 )))|(% style="width:161px" %)(((
788 PULSE
789
790 SIGN
791 )))|[[image:image-20220707094340-6.jpeg]]|[[image:image-20220707094345-7.jpeg]]
792 |=1|(% style="width:200px" %)CW/CCW|(% style="width:161px" %)(((
793 PULSE (CW)
794
795 SIGN (CCW)
796 )))|(% colspan="2" %)[[image:image-20220707094351-8.jpeg]]
797 |=2|(% style="width:200px" %)(((
798 AB phase orthogonal
799
800 pulse (4 times frequency)
801 )))|(% style="width:161px" %)(((
802 PULSE (Phase A)
803
804 SIGN (Phase B)
805 )))|(((
806
807
808 [[image:image-20220707094358-9.jpeg]]
809
810 Phase A is 90° ahead of Phase B
811 )))|(((
812
813
814 [[image:image-20220707094407-10.jpeg]]
815
816 Phase B is 90° ahead of Phase A
817 )))
818 |=3|(% style="width:200px" %)(((
819 Direction + pulse
820
821 (Negative logic)
822 )))|(% style="width:161px" %)(((
823 PULSE
824
825 SIGN
826 )))|[[image:image-20220707094414-11.jpeg]]|[[image:image-20220707094418-12.jpeg]]
827 |=4|(% style="width:200px" %)(((
828 CW/CCW
829
830 (Negative logic)
831 )))|(% style="width:161px" %)(((
832 PULSE (CW)
833
834 SIGN (CCW)
835 )))|(% colspan="2" %)[[image:image-20220707094423-13.jpeg]]
836 |=5|(% style="width:200px" %)(((
837 AB phase orthogonal
838
839 pulse (4 times frequency negative logic)
840 )))|(% style="width:161px" %)(((
841 PULSE (Phase A)
842
843 SIGN (Phase B)
844 )))|(((
845
846
847 [[image:image-20220707094429-14.jpeg]]
848
849 Phase B is ahead of A phase by 90°
850 )))|(((
851
852
853 [[image:image-20220707094437-15.jpeg]]
854
855 Phase A is ahead of B phase by 90°
856 )))
857
858 Table 6-16 Pulse description
859
860 **The source of position instruction is internal position instruction (P01-06=1)**
861
862 The VD2 series servo drive has a multi-segment position operation function, which supports maximum 16-segment instructions. The displacement, maximum operating speed (steady-state operating speed) and acceleration/deceleration time of each segment could be set separately. The waiting time between positions could also be set according to actual needs. The setting process of multi-segment position is shown in __Figure 6-11__.
863
864 The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
865
866 (% style="text-align:center" %)
867 (((
868 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
869 [[**Figure 6-11 The setting process of multi-segment position**>>image:image-20220608164116-9.png||id="Iimage-20220608164116-9.png"]]
870 )))
871
872
873 * Set multi-segment position running mode
874
875 |=(% scope="row" %)**Function code**|=**Name**|=(((
876 **Setting method**
877 )))|=(((
878 **Effective time**
879 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
880 |=P07-01|Multi-segment position running mode|(((
881 Shutdown setting
882 )))|(((
883 Effective immediately
884 )))|0|0 to 2|(((
885 0: Single running
886
887 1: Cycle running
888
889 2: DI switching running
890 )))|-
891 |=P07-02|Start segment number|(((
892 Shutdown setting
893 )))|(((
894 Effective immediately
895 )))|1|1 to 16|1st segment NO. in non-DI switching mode|-
896 |=P07-03|End segment number|(((
897 Shutdown setting
898 )))|(((
899 Effective immediately
900 )))|1|1 to 16|last segment NO. in non-DI switching mode|-
901 |=P07-04|Margin processing method|(((
902 Shutdown setting
903 )))|(((
904 Effective immediately
905 )))|0|0 to 1|(((
906 0: Run the remaining segments
907
908 1: Run again from the start segment
909 )))|-
910 |=P07-05|Displacement instruction type|(((
911 Shutdown setting
912 )))|(((
913 Effective immediately
914 )))|0|0 to 1|(((
915 (% id="cke_bm_79356S" style="display:none" %) (%%)0: Relative position instruction
916
917 1: Absolute position instruction(% id="cke_bm_79356E" style="display:none" %)
918 )))|-
919
920 Table 6-17 multi-segment position running mode parameters
921
922 VD2 series servo drive has three multi-segment position running modes, and you could select the best running mode according to the site requirements.
923
924 1. Single running
925
926 In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __Figure 6-12__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
927
928 (% style="text-align:center" %)
929 (((
930 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
931 [[**Figure 6-12 Single running curve (P07-02=1, P07-03=2)**>>image:image-20220608164226-10.png||id="Iimage-20220608164226-10.png"]]
932 )))
933
934 * 2. Cycle running
935
936 In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164327-11.png?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
937
938 (% style="text-align:center" %)
939 (((
940 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
941 [[**Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)**>>image:image-20220608164327-11.png||id="Iimage-20220608164327-11.png"]]
942 )))
943
944 (% class="warning" %)|(((
945 (% style="text-align:center" %)
946 [[image:image-20220611151917-5.png]]
947 )))
948 |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
949
950 (% start="3" %)
951 1. DI switching running
952
953 In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
954
955 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
956 |=21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
957 |=22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
958 |=23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
959 |=24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
960
961 Table 6-18 DI function code
962
963 The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
964
965 |=(% scope="row" %)**INPOS4**|=**INPOS3**|=**INPOS2**|=**INPOS1**|=**Running position number**
966 |=0|0|0|0|1
967 |=0|0|0|1|2
968 |=0|0|1|0|3
969 |=0|0|1|1|4
970 |=0|1|0|0|5
971 |=0|1|0|1|6
972 |=0|1|1|0|7
973 |=0|1|1|1|8
974 |=1|0|0|0|9
975 |=1|0|0|1|10
976 |=1|0|1|0|11
977 |=1|0|1|1|12
978 |=1|1|0|0|13
979 |=1|1|0|1|14
980 |=1|1|1|0|15
981 |=1|1|1|1|16
982
983 Table 6-20 INPOS corresponds to running segment number
984
985 The operating curve in this running mode is shown in __Figure 6-14__.
986
987 (% style="text-align:center" %)
988 (((
989 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
990 [[**Figure 6-14 DI switching running curve**>>image:image-20220608164545-12.png||id="Iimage-20220608164545-12.png"]]
991 )))
992
993 VD2 series servo drives have two margin processing methods: run the remaining segments and run from the start segment again. The related function code is P07-04.
994
995 **Run the remaining segments**
996
997 In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608164847-13.png?rev=1.1]]__ and __[[Figure 6-16>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/image-20220608165032-14.png?rev=1.1]]__ respectively.
998
999 (% style="text-align:center" %)
1000 (((
1001 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1002 [[**Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)**>>image:image-20220608164847-13.png||id="Iimage-20220608164847-13.png"]]
1003 )))
1004
1005 (% style="text-align:center" %)
1006 (((
1007 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:734px;" %)
1008 [[**Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)**>>image:image-20220608165032-14.png||height="285" id="Iimage-20220608165032-14.png" width="734"]]
1009 )))
1010
1011 **Run again from the start segment**
1012
1013 In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __Figure 6-17__ and __Figure 6-18__ respectively.
1014
1015 (% style="text-align:center" %)
1016 (((
1017 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1018 [[**Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165343-15.png||id="Iimage-20220608165343-15.png"]]
1019 )))
1020
1021 (% style="text-align:center" %)
1022 (((
1023 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1024 [[**Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)**>>image:image-20220608165558-16.png||id="Iimage-20220608165558-16.png"]]
1025 )))
1026
1027 VD2 series servo drives have two types of displacement instructions: relative position instruction and absolute position instruction. The related function code is P07-05.
1028
1029 * Relative position instruction
1030
1031 The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
1032
1033 |(((
1034 (% style="text-align:center" %)
1035 (((
1036 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1037 [[**Figure 6-19 Relative position diagram**>>image:image-20220608165710-17.png||id="Iimage-20220608165710-17.png"]]
1038 )))
1039 )))|(((
1040 (% style="text-align:center" %)
1041 (((
1042 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1043 [[**Figure 6-20 Displacement diagram**>>image:image-20220608165749-18.png||id="Iimage-20220608165749-18.png"]]
1044 )))
1045 )))
1046
1047 * Absolute position instruction
1048
1049 The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
1050
1051 |(((
1052 (% style="text-align:center" %)
1053 (((
1054 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1055 [[**Figure 6-21 Absolute indication**>>image:image-20220608165848-19.png||id="Iimage-20220608165848-19.png"]]
1056 )))
1057 )))|(((
1058 (% style="text-align:center" %)
1059 (((
1060 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1061 [[**Figure 6-22 Displacement**>>image:image-20220608170005-20.png||id="Iimage-20220608170005-20.png"]]
1062 )))
1063 )))
1064
1065 * Multi-segment position running curve setting
1066
1067 The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
1068
1069 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1070 |=P07-09|(((
1071 1st segment
1072
1073 displacement
1074 )))|(((
1075 Operation setting
1076 )))|(((
1077 Effective immediately
1078 )))|10000|(((
1079 -2147483647 to
1080
1081 2147483646
1082 )))|Position instruction, positive and negative values could be set|-
1083 |=P07-10|Maximum speed of the 1st displacement|(((
1084 Operation setting
1085 )))|(((
1086 Effective immediately
1087 )))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
1088 |=P07-11|Acceleration and deceleration of 1st segment displacement|(((
1089 Operation setting
1090 )))|(((
1091 Effective immediately
1092 )))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
1093 |=P07-12|Waiting time after completion of the 1st segment displacement|(((
1094 Operation setting
1095 )))|(((
1096 Effective immediately
1097 )))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
1098
1099 Table 6-21 The 1st position operation curve parameters table
1100
1101 After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
1102
1103 (% style="text-align:center" %)
1104 (((
1105 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1106 [[**Figure 6-23 The 1st segment running curve of motor**>>image:image-20220608170149-21.png||id="Iimage-20220608170149-21.png"]]
1107 )))
1108
1109
1110 * multi-segment position instruction enable
1111
1112 When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
1113
1114 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1115 |=20|ENINPOS: Internal multi-segment position enable signal|(((
1116 DI port logic invalid: Does not affect the current operation of the servo motor.
1117
1118 DI port logic valid: Motor runs multi-segment position
1119 )))
1120
1121 (% style="text-align:center" %)
1122 [[image:image-20220611152020-6.png||class="img-thumbnail"]]
1123
1124 It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1125
1126 == Electronic gear ratio ==
1127
1128 **Definition of electronic gear ratio**
1129
1130 In the position control mode, the input position instruction (instruction unit) is to set the load displacement, and the motor position instruction (encoder unit) is to set the motor displacement, in order to establish the proportional relationship between the motor position instruction and the input position instruction, electronic gear ratio function is used. "instruction unit" refers to the minimum resolvable value input from the control device(HMI/PLC) to the servo drive. "Encoder unit" refers to the value of the input instruction processed by the electronic gear ratio.
1131
1132 With the function of the frequency division (electronic gear ratio <1) or multiplication (electronic gear ratio > 1) of the electronic gear ratio, the actual the motor rotation or movement displacement can be set when the input position instruction is 1 instruction unit.
1133
1134 It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1135
1136 (% style="text-align:center" %)
1137 [[image:image-20220707094901-16.png||class="img-thumbnail"]]
1138
1139 Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
1140
1141 **Setting steps of electronic gear ratio**
1142
1143 (% style="text-align:center" %)
1144 (((
1145 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:1021px;" %)
1146 [[**Figure 6-24 Setting steps of electronic gear ratio**>>image:image-20220707100850-20.jpeg||height="458" id="Iimage-20220707100850-20.jpeg" width="1021"]]
1147 )))
1148
1149 **lectronic gear ratio switch setting**
1150
1151 When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1152
1153 |=(% scope="row" %)**Function code**|=**Name**|=(((
1154 **Setting method**
1155 )))|=(((
1156 **Effective time**
1157 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1158 |=P00-16|Number of instruction pulses when the motor rotates one circle|(((
1159 Shutdown setting
1160 )))|(((
1161 Effective immediately
1162 )))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1163 Instruction pulse
1164
1165 unit
1166 )))
1167 |=P00-17|(((
1168 Electronic gear 1
1169
1170 numerator
1171 )))|Operation setting|(((
1172 Effective immediately
1173 )))|1|1 to 4294967294|(((
1174 Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1175
1176 **VD2L: 1-2147483647**
1177 )))|-
1178 |=P00-18|(((
1179 Electronic gear 1
1180
1181 denominator
1182 )))|(((
1183 Operation setting
1184 )))|(((
1185 Effective immediately
1186 )))|1|1 to 4294967294|(((
1187 Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1188
1189 **VD2L: 1-2147483647**
1190 )))|-
1191 |=P00-19|(((
1192 Electronic gear 2
1193
1194 numerator
1195 )))|Operation setting|(((
1196 Effective immediately
1197 )))|1|1 to 4294967294|(((
1198 Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1199
1200 **VD2L: 1-2147483647**
1201 )))|-
1202 |=P00-20|(((
1203 Electronic gear 2
1204
1205 denominator
1206 )))|Operation setting|(((
1207 Effective immediately
1208 )))|1|1 to 4294967294|(((
1209 Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.
1210
1211 **VD2L: 1-2147483647**
1212 )))|-
1213
1214 Table 6-20 Electronic gear ratio function code
1215
1216 To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1217
1218 |=(% scope="row" %)**DI function code**|=**Function name**|=**Function**
1219 |=09|GEAR-SEL electronic gear switch 1|(((
1220 DI port logic invalid: electronic gear ratio 1
1221
1222 DI port logic valid: electronic gear ratio 2
1223 )))
1224
1225 Table 6-21 Switching conditions of electronic gear ratio group
1226
1227 |=**P00-16 value**|=(% style="width: 510px;" %)**DI terminal level corresponding to DI port function 9**|=(% style="width: 400px;" %)**Electronic gear ratio**
1228 |(% rowspan="2" %)0|(% style="width:510px" %)DI port logic invalid|(% style="width:400px" %)(((
1229 (% style="text-align:center" %)
1230 [[image:image-20220707101328-21.png]]
1231 )))
1232 |(% style="width:510px" %)DI port logic valid|(% style="width:400px" %)(((
1233 (% style="text-align:center" %)
1234 [[image:image-20220707101336-22.png]]
1235 )))
1236 |1 to 131072|(% style="width:510px" %)~-~-|(% style="width:400px" %)(((
1237 (% style="text-align:center" %)
1238 [[image:image-20220707101341-23.png]]
1239 )))
1240
1241 Table 6-22 Application of electronic gear ratio
1242
1243 When the function code P00-16 is not 0, the electronic gear ratio [[image:image-20220707101509-25.png]] is invalid.
1244
1245 == Position instruction filtering ==
1246
1247 Position instruction filtering is to filter the position instruction (encoder unit) after the electronic gear ratio frequency division or frequency multiplication, including first-order low-pass filtering and average filtering operation.
1248
1249 In the following situations, position instruction filtering should be added.
1250
1251 1. The position instruction output by host computer has not been processed with acceleration or deceleration;
1252 1. The pulse instruction frequency is low;
1253 1. When the electronic gear ratio is 10 times or more.
1254
1255 Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1256
1257 (% style="text-align:center" %)
1258 (((
1259 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:514px;" %)
1260 [[**Figure 6-25 Position instruction filtering diagram**>>image:image-20220608170455-23.png||height="230" id="Iimage-20220608170455-23.png" width="514"]]
1261 )))
1262
1263 |=(% scope="row" %)**Function code**|=**Name**|=(((
1264 **Setting method**
1265 )))|=(((
1266 **Effective time**
1267 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1268 |=P04-01|Pulse instruction filtering method|(((
1269 Shutdown setting
1270 )))|(((
1271 Effective immediately
1272 )))|0|0 to 1|(((
1273 * 0: 1st-order low-pass filtering
1274 * 1: average filtering
1275 )))|-
1276 |=P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1277 Effective immediately
1278 )))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1279 |=P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1280 Effective immediately
1281 )))|0|0 to 128|Position instruction average filtering time constant|ms
1282
1283 Table 6-25 Position instruction filter function code
1284
1285 == Clearance of position deviation ==
1286
1287 Position deviation clearance means that the drive could zero the deviation register in position mode. The user can realize the function of clearing the position deviation through the DI terminal;
1288
1289 Position deviation = (position instruction-position feedback) (encoder unit)
1290
1291 == Position-related DO output function ==
1292
1293 The feedback value of position instruction is compared with different thresholds, and output DO signal for host computer use.
1294
1295 (% class="wikigeneratedid" id="HPositioningcompletion2Fpositioningapproachoutput" %)
1296 **Positioning completion/positioning approach output**
1297
1298 (% class="wikigeneratedid" %)
1299 the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1300
1301 (% style="text-align:center" %)
1302 (((
1303 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1304 [[**Figure 6-26 Positioning completion signal output diagram**>>image:image-20220608170550-24.png||id="Iimage-20220608170550-24.png"]]
1305 )))
1306
1307 When using the positioning completion or approach function, you could also set positioning completion, positioning approach conditions, window and hold time. The principle of window filter time is shown in Figure 6-27.
1308
1309 To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1310
1311 (% style="text-align:center" %)
1312 (((
1313 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:709px;" %)
1314 [[**Figure 6-27 Positioning completion signal output with increased window filter time diagram**>>image:image-20220608170650-25.png||height="331" id="Iimage-20220608170650-25.png" width="709"]]
1315 )))
1316
1317 |=(% scope="row" %)**Function code**|=**Name**|=(((
1318 **Setting method**
1319 )))|=(% style="width: 129px;" %)(((
1320 **Effective time**
1321 )))|=(% style="width: 95px;" %)**Default value**|=**Range**|=**Definition**|=**Unit**
1322 |=P05-12|Positioning completion threshold|(((
1323 Operation setting
1324 )))|(% style="width:129px" %)(((
1325 Effective immediately
1326 )))|(% style="width:95px" %)800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1327 |=P05-13|Positioning approach threshold|(((
1328 Operation setting
1329 )))|(% style="width:129px" %)(((
1330 Effective immediately
1331 )))|(% style="width:95px" %)5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1332 |=P05-14|Position detection window time|(((
1333 Operation setting
1334 )))|(% style="width:129px" %)(((
1335 Effective immediately
1336 )))|(% style="width:95px" %)10|0 to 20000|Set positioning completion detection window time|ms
1337 |=P05-15|Positioning signal hold time|(((
1338 Operation setting
1339 )))|(% style="width:129px" %)(((
1340 Effective immediately
1341 )))|(% style="width:95px" %)100|0 to 20000|Set positioning completion output hold time|ms
1342
1343 Table 6-26 Function code parameters of positioning completion
1344
1345 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1346 |=134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1347 |=135|(((
1348 P-NEAR positioning close
1349 )))|(((
1350 Output this signal indicates that the servo drive position is close.
1351 )))
1352
1353 Table 6-27 Description of DO rotation detection function code
1354
1355 == **VD2-0xxSA1H collector pulse signal DO Function and VD2L pulse signal DO output function** ==
1356
1357 **(1) VD2-0xxSA1H collector pulse signal DO Function**
1358
1359 The pulse signal of VD2-0xxSA1H is a collector signal output through DO, which can be connected to the high-speed pulse input of PLC without conversion through differential to collector circuit board. However, the pulse frequency division output used by VD2 series is a differential signal, which needs to pass through differential to collector circuit board to be connected to the high-speed pulse input of PLC.
1360
1361 **(2) Pulse signal DO output function of VD2L-0xxSA1P**
1362
1363 The pulse signal of VD2L-0xxSA1P is the collector signal output by DO, and it can be connected to the high-speed pulse input of PLC without the conversion of differential to collector circuit board.
1364
1365 **(3) The difference of collector pulse signal DO Function of VD2-0xxSA1H and DO output function of pulse signal of VD2L-0xxSA1P**
1366
1367 The pulse signal of VD2-0xxSA1H is the collector signal output through DO, and it is a 4 times frequency pulse signal of Phase A/B. DO signal of VD2L is a pulse+direction signal.
1368
1369 DO2, DO3, and DO4 respectively correspond to the pulse frequency division outputs of the Z-axis, A-axis, and B-axis of the pulse output, as shown in the following table.
1370
1371
1372 |(% rowspan="2" %)P06-28|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1373 |DO_2 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1374 |(% colspan="8" %)(((
1375 Used to set DO functions corresponding to hardware DO2. Refer to the following table for the functions corresponding to the set value:
1376
1377 |Setting value|DO channel function| |Setting value|DO channel function
1378 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1379 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1380 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1381 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1382 |132|TGON (rotation detection)| |143|OZ (Z pulse output)^^ Note2^^
1383 |133|ZSP (zero speed signal)| |144|N/A
1384 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1385 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1386 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1387 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1388 |138|T-COIN (torque arrival)| | |
1389
1390 When P06-28 is set to a value other than the above table, it is considered to not use DO port function.
1391
1392 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1393
1394 Note 1: To use the BRK-OFF function code, you need to repower to take effect.
1395
1396 Note 2:
1397
1398 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1399
1400 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1401
1402 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1403 )))
1404
1405 |(% rowspan="2" %)P06-30|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1406 |DO_3 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1407 |(% colspan="8" %)(((
1408 Used to set DO functions corresponding to hardware DO3. Refer to the following table for the functions corresponding to the set value:
1409
1410 |Setting value|DO channel function| |Setting value|DO channel function
1411 |128|OFF (not used)| |139|T-LIMIT (torque limit)
1412 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1413 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1414 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1415 |132|TGON (rotation detection)| |143|OA (A pulse output)^^ Note2^^
1416 |133|ZSP (zero speed signal)| |144|None
1417 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1418 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1419 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1420 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1421 |138|T-COIN (torque arrival)| | |
1422
1423 When P06-30 is set to a value other than the above table, it is considered to not use DO port function.
1424
1425 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo driver will report A-90 (DO port configuration duplicate).
1426
1427 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1428
1429 **Note 2:**
1430
1431 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1432
1433 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1434
1435 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1436 )))
1437
1438 |(% rowspan="2" %)P06-32|Parameter name|Setting method|Effective time|Default|Set range|Application category|Unit
1439 |DO_4 channel function selection|Operation setting|Effective immediately|143|128-148|DI/DO|-
1440 |(% colspan="8" %)(((
1441 Used to set DO functions corresponding to hardware DO4. Refer to the following table for the functions corresponding to the set value:
1442
1443 |Setting value|DO channel function| |Setting value|DO channel function
1444 |128|OFF (not used)| |139|T-LIMIT (Torque limit)
1445 |129|RDY (Servo ready)| |140|V-LIMIT (speed limited)
1446 |130|ALM (fault signal)| |141|BRK-OFF (Brake Output)^^ Note1^^
1447 |131|WARN (warning signal)| |142|SRV-ST (Servo start status output)
1448 |132|TGON (rotation detection)| |143|OB (B pulse output)^^ Note2^^
1449 |133|ZSP (zero speed signal)| |144|None
1450 |134|P-COIN (Positioning completed)| |145|COM_VDO1 (communication VDO1 output)
1451 |135|P-NEAR (positioning approach)| |146|COM_VDO1(Communication VDO2 output)
1452 |136|V-COIN (consistent speed)| |147|COM_VDO1(communication VDO3 output)
1453 |137|V-NEAR (speed approach)| |148|COM_VDO1(communication VDO4 output)
1454 |138|T-COIN (torque arrival)| | |
1455
1456 When P06-32 is set to a value other than the above table, it is considered to not use DO port function.
1457
1458 The same DO channel function is not allowed to be assigned to multiple DO ports, otherwise the servo drive will report A-90 (DO port configuration duplicate).
1459
1460 **Note 1:** To use the BRK-OFF function code, you need to repower to take effect.
1461
1462 **Note 2:**
1463
1464 ① Only VD2L and VD2F support function code 143. The code for this function of VD2-0xxSA1G model is empty!
1465
1466 ② Only in the VD2-0xxSA1H model, the default function code for the DO_1 channel function selection is 130ALM (fault signal)! In the VD2-0xxSA1H model, the function code for the DO_2, DO_3, and DO_4 channels are 143 OZ (Z/A/B pulse output), and these 3 channels correspond to the Z-axis, A-axis, and B-axis of the pulse output respectively!
1467
1468 ③ The function selection code of DO_2, DO_3 and DO_4 channels in the VD2L-0xxSA1P model are 143 OZ (Z pulse output), and these 3 channels correspond to Z axis, pulse axis, and direction axis of the pulse output respectively!
1469 )))
1470
1471 = **Speed control mode** =
1472
1473 Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1474
1475 (% style="text-align:center" %)
1476 (((
1477 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:806px;" %)
1478 [[**Figure 6-28 Speed control block diagram**>>image:6.28.jpg||height="260" id="I6.28.jpg" width="806"]]
1479 )))
1480
1481 == Speed instruction input setting ==
1482
1483 In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1484
1485 |=(% scope="row" style="width: 121px;" %)**Function code**|=(% style="width: 186px;" %)**Name**|=(% style="width: 128px;" %)(((
1486 **Setting method**
1487 )))|=(% style="width: 125px;" %)(((
1488 **Effective time**
1489 )))|=(% style="width: 85px;" %)**Default value**|=(% style="width: 75px;" %)**Range**|=(% style="width: 310px;" %)**Definition**|=**Unit**
1490 |=(% style="width: 121px;" %)P01-01|(% style="width:186px" %)Speed instruction source|(% style="width:128px" %)(((
1491 Shutdown setting
1492 )))|(% style="width:125px" %)(((
1493 Effective immediately
1494 )))|(% style="width:85px" %)0|(% style="width:75px" %)0 to 1|(% style="width:310px" %)(((
1495 * 0: internal speed instruction
1496 * 1: AI_1 analog input (not supported by VD2F)
1497 )))|-
1498
1499 Table 6-26 Speed instruction source parameter
1500
1501 **Speed instruction source is internal speed instruction (P01-01=0)**
1502
1503 Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as belo
1504
1505 (% style="width:1141px" %)
1506 |=(% colspan="1" scope="row" %)**Function code**|=(% colspan="2" %)**Name**|=(% colspan="2" %)(((
1507 **Setting**
1508
1509 **method**
1510 )))|=(% colspan="2" %)(((
1511 **Effective**
1512
1513 **time**
1514 )))|=(% colspan="2" %)**Default value**|=(% colspan="2" %)**Range**|=(% colspan="2" %)**Definition**|=(% colspan="2" %)**Unit**
1515 |=(% colspan="1" %)P01-02|(% colspan="2" %)(((
1516 Internal speed
1517
1518 Instruction 0
1519 )))|(% colspan="2" %)(((
1520 Operation
1521
1522 setting
1523 )))|(% colspan="2" %)(((
1524 Effective
1525
1526 immediately
1527 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1528 Internal speed instruction 0
1529
1530 When DI input port:
1531
1532 * 15-INSPD3: 0
1533 * 14-INSPD2: 0
1534 * 13-INSPD1: 0,
1535
1536 select this speed instruction to be effective.
1537 )))|(% colspan="2" %)rpm
1538 |=(% colspan="1" %)P01-23|(% colspan="2" %)(((
1539 Internal speed
1540
1541 Instruction 1
1542 )))|(% colspan="2" %)(((
1543 Operation
1544
1545 setting
1546 )))|(% colspan="2" %)(((
1547 Effective
1548
1549 immediately
1550 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1551 Internal speed instruction 1
1552
1553 When DI input port:
1554
1555 * 15-INSPD3: 0
1556 * 14-INSPD2: 0
1557 * 13-INSPD1: 1,
1558
1559 Select this speed instruction to be effective.
1560 )))|(% colspan="2" %)rpm
1561 |=(% colspan="1" %)P01-24|(% colspan="2" %)(((
1562 Internal speed
1563
1564 Instruction 2
1565 )))|(% colspan="2" %)(((
1566 Operation
1567
1568 setting
1569 )))|(% colspan="2" %)(((
1570 Effective
1571
1572 immediately
1573 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1574 Internal speed instruction 2
1575
1576 When DI input port:
1577
1578 * 15-INSPD3: 0
1579 * 14-INSPD2: 1
1580 * 13-INSPD1: 0,
1581
1582 Select this speed instruction to be effective.
1583 )))|(% colspan="2" %)rpm
1584 |=(% colspan="1" %)P01-25|(% colspan="2" %)(((
1585 Internal speed
1586
1587 Instruction 3
1588 )))|(% colspan="2" %)(((
1589 Operation
1590
1591 setting
1592 )))|(% colspan="2" %)(((
1593 Effective
1594
1595 immediately
1596 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1597 Internal speed instruction 3
1598
1599 When DI input port:
1600
1601 * 15-INSPD3: 0
1602 * 14-INSPD2: 1
1603 * 13-INSPD1: 1,
1604
1605 Select this speed instruction to be effective.
1606 )))|(% colspan="2" %)rpm
1607 |=P01-26|(% colspan="2" %)(((
1608 Internal speed
1609
1610 Instruction 4
1611 )))|(% colspan="2" %)(((
1612 Operation
1613
1614 setting
1615 )))|(% colspan="2" %)(((
1616 Effective
1617
1618 immediately
1619 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1620 Internal speed instruction 4
1621
1622 When DI input port:
1623
1624 * 15-INSPD3: 1
1625 * 14-INSPD2: 0
1626 * 13-INSPD1: 0,
1627
1628 Select this speed instruction to be effective.
1629 )))|(% colspan="1" %)rpm
1630 |=P01-27|(% colspan="2" %)(((
1631 Internal speed
1632
1633 Instruction 5
1634 )))|(% colspan="2" %)(((
1635 Operation
1636
1637 setting
1638 )))|(% colspan="2" %)(((
1639 Effective
1640
1641 immediately
1642 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1643 Internal speed instruction 5
1644
1645 When DI input port:
1646
1647 * 15-INSPD3: 1
1648 * 14-INSPD2: 0
1649 * 13-INSPD1: 1,
1650
1651 Select this speed instruction to be effective.
1652 )))|(% colspan="1" %)rpm
1653 |=P01-28|(% colspan="2" %)(((
1654 Internal speed
1655
1656 Instruction 6
1657 )))|(% colspan="2" %)(((
1658 Operation
1659
1660 setting
1661 )))|(% colspan="2" %)(((
1662 Effective
1663
1664 immediately
1665 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1666 Internal speed instruction 6
1667
1668 When DI input port:
1669
1670 * 15-INSPD3: 1
1671 * 14-INSPD2: 1
1672 * 13-INSPD1: 0,
1673
1674 Select this speed instruction to be effective.
1675 )))|(% colspan="1" %)rpm
1676 |=P01-29|(% colspan="2" %)(((
1677 Internal speed
1678
1679 Instruction 7
1680 )))|(% colspan="2" %)(((
1681 Operation
1682
1683 setting
1684 )))|(% colspan="2" %)(((
1685 Effective
1686
1687 immediately
1688 )))|(% colspan="2" %)0|(% colspan="2" %)-5000 to 5000|(% colspan="2" %)(((
1689 Internal speed instruction 7
1690
1691 When DI input port:
1692
1693 * 15-INSPD3: 1
1694 * 14-INSPD2: 1
1695 * 13-INSPD1: 1,
1696
1697 Select this speed instruction to be effective.
1698 )))|(% colspan="1" %)rpm
1699
1700 Table 6-27 Internal speed instruction parameters
1701
1702 |=(% scope="row" %)**DI function code**|=**function name**|=**Function**
1703 |=13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1704 |=14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1705 |=15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1706
1707 Table 6-28 DI multi-speed function code description
1708
1709 The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1710
1711
1712 |=**INSPD3**|=**INSPD2**|=**INSPD1**|=**Running segment number**|=**Internal speed instruction number**
1713 |0|0|0|1|0
1714 |0|0|1|2|1
1715 |0|1|0|3|2
1716 |(% colspan="5" %)......
1717 |1|1|1|8|7
1718
1719 Table 6-29 Correspondence between INSPD bits and segment numbers
1720
1721 (% style="text-align:center" %)
1722 (((
1723 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:814px;" %)
1724 [[**Figure 6-29 Multi-segment speed running curve**>>image:image-20220608170845-26.png||height="524" id="Iimage-20220608170845-26.png" width="814"]]
1725 )))
1726
1727 **Speed instruction source is internal speed instruction (P01-01=1)**
1728
1729 The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1730
1731 (% style="text-align:center" %)
1732 (((
1733 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1734 [[**Figure 6-30 Analog input circuit**>>image:image-20220608153341-5.png||id="Iimage-20220608153341-5.png"]]
1735 )))
1736
1737 Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1738
1739 (% style="text-align:center" %)
1740 (((
1741 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1742 [[**Figure 6-31 Analog voltage speed instruction setting steps**>>image:image-20220608170955-27.png||id="Iimage-20220608170955-27.png"]]
1743 )))
1744
1745 Explanation of related terms:
1746
1747 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
1748 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
1749 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1750
1751 (% style="text-align:center" %)
1752 (((
1753 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1754 [[**Figure 6-32 AI_1 diagram before and after bias**>>image:image-20220608171124-28.png||id="Iimage-20220608171124-28.png"]]
1755 )))
1756
1757 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
1758 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1759 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1760 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1761 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1762
1763 Table 6-30 AI_1 parameters
1764
1765 (% class="box infomessage" %)
1766 (((
1767 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
1768 )))
1769
1770 == Acceleration and deceleration time setting ==
1771
1772 The acceleration and deceleration time setting can achieve the expectation of controlling acceleration by converting the speed instruction with higher acceleration into the speed instruction with gentle acceleration.
1773
1774 In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1775
1776 (% style="text-align:center" %)
1777 (((
1778 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1779 [[**Figure 6-33 of acceleration and deceleration time diagram**>>image:image-20220608171314-29.png||id="Iimage-20220608171314-29.png"]]
1780 )))
1781
1782 (% style="text-align:center" %)
1783 [[image:image-20220707103616-27.png||class="img-thumbnail"]]
1784
1785 |=(% scope="row" %)**Function code**|=**Name**|=(((
1786 **Setting method**
1787 )))|=(((
1788 **Effective time**
1789 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1790 |=P01-03|Acceleration time|(((
1791 Operation setting
1792 )))|(((
1793 Effective immediately
1794 )))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1795 |=P01-04|Deceleration time|(((
1796 Operation setting
1797 )))|(((
1798 Effective immediately
1799 )))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1800
1801 Table 6-31 Acceleration and deceleration time parameters
1802
1803 == Speed instruction limit ==
1804
1805 In speed mode, the servo drive could limit the size of the speed instruction. The sources of speed instruction limit include:
1806
1807 1. P01-10: Set the maximum speed limit value
1808 1. P01-12: Set forward speed limit value
1809 1. P01-13: Set reverse speed limit value
1810 1. The maximum speed of the motor: determined by motor model
1811
1812 The actual motor speed limit interval satisfies the following relationship:
1813
1814 The amplitude of forward speed instruction ≤ min (Maximum motor speed, P01-10, P01-12)
1815
1816 The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1817
1818 |=(% scope="row" %)**Function code**|=**Name**|=(((
1819 **Setting method**
1820 )))|=(((
1821 **Effective time**
1822 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1823 |=P01-10|Maximum speed threshold|(((
1824 Operation setting
1825 )))|(((
1826 Effective immediately
1827 )))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1828 |=P01-12|Forward speed threshold|(((
1829 Operation setting
1830 )))|(((
1831 Effective immediately
1832 )))|3000|0 to 5000|Set forward speed limit value|rpm
1833 |=P01-13|Reverse speed threshold|(((
1834 Operation setting
1835 )))|(((
1836 Effective immediately
1837 )))|3000|0 to 5000|Set reverse speed limit value|rpm
1838
1839 Table 6-32 Rotation speed related function codes
1840
1841 == Zero-speed clamp function ==
1842
1843 The zero speed clamp function refers to the speed control mode, when the zero speed clamp signal (ZCLAMP) is valid, and the absolute value of the speed instruction is lower than the zero speed clamp speed threshold (P01-22), the servo motor is at In locked state, the servo drive is in position lock mode at this time, and the speed instruction is invalid.
1844
1845 If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1846
1847 |=(% scope="row" %)**Function code**|=**Name**|=(((
1848 **Setting method**
1849 )))|=(((
1850 **Effective time**
1851 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1852 |=P01-21|(((
1853 Zero-speed clamp function selection
1854 )))|(((
1855 Operation setting
1856 )))|(((
1857 Effective immediately
1858 )))|0|0 to 3|(((
1859 Set the zero-speed clamp function. In speed mode:
1860
1861 * 0: Force the speed to 0;
1862 * 1: Force the speed to 0, and keep the position locked when the actual speed is less than P01-22
1863 * 2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1864 * 3: Invalid, ignore zero-speed clamp input
1865 )))|-
1866 |=P01-22|(((
1867 Zero-speed clamp speed threshold
1868 )))|(((
1869 Operation setting
1870 )))|(((
1871 Effective immediately
1872 )))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1873
1874 Table 6-33 Zero-speed clamp related parameters
1875
1876 (% style="text-align:center" %)
1877 (((
1878 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1879 [[**Figure 6-34 Zero-speed clamp diagram**>>image:image-20220608171549-30.png||id="Iimage-20220608171549-30.png"]]
1880 )))
1881
1882 == Speed-related DO output function ==
1883
1884 The feedback value of the position instruction is compared with different thresholds, and could output DO signal for host computer use.
1885
1886 **Rotation detection signal**
1887
1888 After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1889
1890 (% style="text-align:center" %)
1891 (((
1892 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1893 [[**Figure 6-35 Rotation detection signal diagram**>>image:image-20220608171625-31.png||id="Iimage-20220608171625-31.png"]]
1894 )))
1895
1896 To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __Table 6-34__ and __Table 6-35__.
1897
1898 |=(% scope="row" %)**Function code**|=**Name**|=(((
1899 **Setting method**
1900 )))|=(((
1901 **Effective time**
1902 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1903 |=P05-16|(((
1904 Rotation detection
1905
1906 speed threshold
1907 )))|(((
1908 Operation setting
1909 )))|(((
1910 Effective immediately
1911 )))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1912
1913 Table 6-34 Rotation detection speed threshold parameters
1914
1915 |=(% scope="row" %)**DO function code**|=(% style="width: 247px;" %)**Function name**|=(% style="width: 695px;" %)**Function**
1916 |=132|(% style="width:247px" %)(((
1917 T-COIN rotation detection
1918 )))|(% style="width:695px" %)(((
1919 Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1920
1921 Invalid, when the absolute value of motor speed after filtering is less than set value of function code P05-16
1922 )))
1923
1924 Table 6-35 DO rotation detection function code
1925
1926 **Zero-speed signal**
1927
1928 If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1929
1930 (% style="text-align:center" %)
1931 (((
1932 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1933 [[**Figure 6-36 Zero-speed signal diagram**>>image:image-20220608171904-32.png||id="Iimage-20220608171904-32.png"]]
1934 )))
1935
1936 To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __Table 6-36__ and __Table 6-37__.
1937
1938 |=(% scope="row" %)**Function code**|=**Name**|=(((
1939 **Setting method**
1940 )))|=(((
1941 **Effective time**
1942 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1943 |=P05-19|Zero speed output signal threshold|(((
1944 Operation setting
1945 )))|(((
1946 Effective immediately
1947 )))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1948
1949 Table 6-36 Zero-speed output signal threshold parameter
1950
1951 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
1952 |=133|(((
1953 ZSP zero speed signal
1954 )))|Output this signal indicates that the servo motor is stopping rotation
1955
1956 Table 6-37 DO zero-speed signal function code
1957
1958 **Speed consistent signal**
1959
1960 When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1961
1962 (% style="text-align:center" %)
1963 (((
1964 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1965 [[**Figure 6-37 Speed consistent signal diagram**>>image:image-20220608172053-33.png||id="Iimage-20220608172053-33.png"]]
1966 )))
1967
1968 To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __Table 6-38__ and __Table 6-39__.
1969
1970 |=(% scope="row" %)**Function code**|=**Name**|=(((
1971 **Setting method**
1972 )))|=(((
1973 **Effective time**
1974 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
1975 |=P05-17|Speed consistent signal threshold|(((
1976 Operationsetting
1977 )))|(((
1978 Effective immediately
1979 )))|10|0 to 100|Set speed consistent signal threshold|rpm
1980
1981 Table 6-38 Speed consistent signal threshold parameters
1982
1983 |=(% scope="row" %)**DO Function code**|=(% style="width: 262px;" %)**Function name**|=(% style="width: 684px;" %)**Function**
1984 |=136|(% style="width:262px" %)(((
1985 U-COIN consistent speed
1986 )))|(% style="width:684px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1987
1988 Table 6-39 DO speed consistent function code
1989
1990 **Speed approach signal**
1991
1992 After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1993
1994 (% style="text-align:center" %)
1995 (((
1996 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1997 [[**Figure 6-38 Speed approaching signal diagram**>>image:image-20220608172207-34.png||id="Iimage-20220608172207-34.png"]]
1998 )))
1999
2000 To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __Table 6-40__ and __Table 6-41__.
2001
2002 |=(% scope="row" style="width: 147px;" %)**Function code**|=(% style="width: 184px;" %)**Name**|=(((
2003 **Setting method**
2004 )))|=(((
2005 **Effective time**
2006 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2007 |=(% style="width: 147px;" %)P05-18|(% style="width:184px" %)Speed approach signal threshold|(((
2008 Operation setting
2009 )))|(((
2010 Effective immediately
2011 )))|100|10 to 6000|Set speed approach signal threshold|rpm
2012
2013 Table 6-40 Speed approaching signal threshold parameters
2014
2015 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2016 |=137|(((
2017 V-NEAR speed approach
2018 )))|The output signal indicates that the actual speed of the servo motor has reached the expected value
2019
2020 Table 6-41 DO speed approach function code
2021
2022 = **Torque control mode** =
2023
2024 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
2025
2026 (% style="text-align:center" %)
2027 (((
2028 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2029 [[**Figure 6-39 Torque mode diagram**>>image:image-20220608172405-35.png||id="Iimage-20220608172405-35.png"]]
2030 )))
2031
2032 == **Torque instruction input setting** ==
2033
2034 In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
2035
2036 |=(% scope="row" %)**Function code**|=**Name**|=(((
2037 **Setting method**
2038 )))|=(((
2039 **Effective time**
2040 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2041 |=P01-07|Torque instruction source|(((
2042 Shutdown setting
2043 )))|(((
2044 Effective immediately
2045 )))|0|0 to 1|(((
2046 0: internal torque instruction
2047
2048 1: AI_1 analog input(not supported by VD2F and VD2L)
2049 )))|-
2050
2051 Table 6-42 Torque instruction source parameter
2052
2053 **Torque instruction source is internal torque instruction (P01-07=0)**
2054
2055 Torque instruction source is from inside, the value is set by function code P01-08.
2056
2057 |=(% scope="row" %)**Function code**|=**Name**|=(((
2058 **Setting method**
2059 )))|=(((
2060 **Effective time**
2061 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2062 |=P01-08|Torque instruction keyboard set value|(((
2063 Operation setting
2064 )))|(((
2065 Effective immediately
2066 )))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
2067
2068 Table 6-43 Torque instruction keyboard set value
2069
2070 **Torque instruction source is AI_1 analog input (P01-07=1)**
2071
2072 The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
2073
2074 (% style="text-align:center" %)
2075 (((
2076 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:408px;" %)
2077 [[**Figure 6-40 Analog input circuit**>>image:image-20220608153646-7.png||height="213" id="Iimage-20220608153646-7.png" width="408"]]
2078 )))
2079
2080 Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
2081
2082 (% style="text-align:center" %)
2083 (((
2084 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2085 [[**Figure 6-41 Analog voltage torque instruction setting steps**>>image:image-20220608172502-36.png||id="Iimage-20220608172502-36.png"]]
2086 )))
2087
2088 Explanation of related terms:
2089
2090 * Zero drift: When analog input voltage is 0, the servo drive sample voltage value relative to the value of GND.
2091 * Bias: After zero drift correction, the corresponding analog input voltage when the sample voltage is 0.
2092 * Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
2093
2094 (% style="text-align:center" %)
2095 (((
2096 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2097 [[**Figure 6-42 AI_1 diagram before and after bias**>>image:image-20220608172611-37.png||id="Iimage-20220608172611-37.png"]]
2098 )))
2099
2100 |=(% scope="row" %)**Function code**|=**Name**|=**Setting method**|=**Effective time**|=**Default value**|=**Range**|=**Definition**|=**Unit**
2101 |=P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
2102 |=P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
2103 |=P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
2104 |=P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
2105
2106 Table 6-44 AI_1 parameters
2107
2108 (% class="box infomessage" %)
2109 (((
2110 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2111 )))
2112
2113 == Torque instruction filtering ==
2114
2115 In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __Figure 6-43__.
2116
2117 |=(% scope="row" %)**Function code**|=**Name**|=(((
2118 **Setting method**
2119 )))|=(((
2120 **Effective time**
2121 )))|=**Default value**|=(% style="width: 83px;" %)**Range**|=(% style="width: 369px;" %)**Definition**|=**Unit**
2122 |=P04-04|Torque filtering time constant|(((
2123 Operation setting
2124 )))|(((
2125 Effective immediately
2126 )))|50|(% style="width:83px" %)10 to 2500|(% style="width:369px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
2127
2128 Table 6-45 Torque filtering time constant parameter details
2129
2130 (% class="box infomessage" %)
2131 (((
2132 ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
2133 )))
2134
2135 (% style="text-align:center" %)
2136 (((
2137 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2138 [[**Figure 6-43 Torque instruction-first-order filtering diagram**>>image:image-20220608172646-38.png||id="Iimage-20220608172646-38.png"]]
2139 )))
2140
2141 == Torque instruction limit ==
2142
2143 When the absolute value of torque instruction input by host computer is greater than the absolute value of torque instruction limit, the drive's actual torque instruction is limited and equal to the limit value of torque instruction. Otherwise, it is equal to the torque instruction value input by host computer.
2144
2145 At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
2146
2147 (% style="text-align:center" %)
2148 (((
2149 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2150 [[**Figure 6-44 Torque instruction limit diagram**>>image:image-20220608172806-39.png||id="Iimage-20220608172806-39.png"]]
2151 )))
2152
2153 **Set torque limit source**
2154
2155 You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
2156
2157 |=(% scope="row" %)**Function code**|=**Name**|=(((
2158 **Setting method**
2159 )))|=(((
2160 **Effective time**
2161 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2162 |=P01-14|(((
2163 Torque limit source
2164 )))|(((
2165 Shutdown setting
2166 )))|(((
2167 Effective immediately
2168 )))|0|0 to 1|(((
2169 * 0: internal value
2170 * 1: AI_1 analog input (not supported by VD2F and VD2L)
2171 )))|-
2172
2173 * Torque limit source is internal torque instruction (P01-14=0)
2174
2175 Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
2176
2177 |=(% scope="row" %)**Function code**|=**Name**|=(((
2178 **Setting method**
2179 )))|=(((
2180 **Effective time**
2181 )))|=**Default value**|=(% style="width: 106px;" %)**Range**|=(% style="width: 363px;" %)**Definition**|=**Unit**
2182 |=P01-15|(((
2183 Forward torque limit
2184 )))|(((
2185 Operation setting
2186 )))|(((
2187 Effective immediately
2188 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
2189 |=P01-16|(((
2190 Reverse torque limit
2191 )))|(((
2192 Operation setting
2193 )))|(((
2194 Effective immediately
2195 )))|3000|(% style="width:106px" %)0 to 3000|(% style="width:363px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
2196
2197 Table 6-46 Torque limit parameter details
2198
2199 * Torque limit source is external (P01-14=1)
2200
2201 Torque limit source is from external analog channel. The limit value is determined by the torque value corresponding to external AI_2 terminal.
2202
2203 **Set torque limit DO signal output**
2204
2205 When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
2206
2207 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2208 |=139|(((
2209 T-LIMIT in torque limit
2210 )))|Output of this signal indicates that the servo motor torque is limited
2211
2212 Table 6-47 DO torque limit function codes
2213
2214 == **Speed limit in torque mode** ==
2215
2216 In torque mode, if the given torque instruction is too large to exceed the load torque of the mechanical side. This would cause the servo motor to continuously accelerate and overspeed. In order to protect the machinery, the speed of the motor must be limited.
2217
2218 In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __Figure 6-45__ and __Figure 6-46__.
2219
2220 |(((
2221 (% style="text-align:center" %)
2222 (((
2223 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2224 [[**Figure 6-45 Forward running curve**>>image:image-20220608172910-40.png||id="Iimage-20220608172910-40.png"]]
2225 )))
2226 )))|(((
2227 (% style="text-align:center" %)
2228 (((
2229 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2230 [[Figure 6-46 Reverse running curve>>image:image-20220608173155-41.png||id="Iimage-20220608173155-41.png"]]
2231 )))
2232 )))
2233
2234 |=(% scope="row" %)**Function code**|=**Name**|=(((
2235 **Setting method**
2236 )))|=(((
2237 **Effective time**
2238 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2239 |=P01-17|(((
2240 Forward speed
2241
2242 limit in torque mode
2243 )))|(((
2244 Operation setting
2245 )))|(((
2246 Effective immediately
2247 )))|3000|0 to 5000|(((
2248 Forward torque
2249
2250 limit in torque mode
2251 )))|rpm
2252 |=P01-18|(((
2253 Reverse speed
2254
2255 limit in torque mode
2256 )))|(((
2257 Operation setting
2258 )))|(((
2259 Effective immediately
2260 )))|3000|0 to 5000|(((
2261 Reverse torque
2262
2263 limit in torque mode
2264 )))|rpm
2265
2266 Table 6-48 Speed limit parameters in torque mode
2267
2268 ✎**Note:** Function codes P01-17 and P01-18 are only effective in limiting motor speed under the torque mode. The speed limit value is set according to load requirements. To set speed limit in speed mode or position mode, please refer to __[[6.3.3 Speed instruction limit>>https://docs.we-con.com.cn/bin/view/Servo/Manual/02%20VD2%20SA%20Series/06%20Operation/#HSpeedinstructionlimit]]__.
2269
2270 == Torque-related DO output functions ==
2271
2272 The feedback value of torque instruction is compared with different thresholds, and could output the DO signal for the host computer use. The DO terminal of the servo drive is assigned to different functions and determine the logic to be valid.
2273
2274 **Torque arrival**
2275
2276 The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2277
2278 (% style="text-align:center" %)
2279 (((
2280 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:705px;" %)
2281 [[**Figure 6-47 Torque arrival output diagram**>>image:image-20220608173541-42.png||height="342" id="Iimage-20220608173541-42.png" width="705"]]
2282 )))
2283
2284 To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __Table 6-49__ and __Table 6-50__.
2285
2286 |=(% scope="row" %)**Function code**|=(% style="width: 113px;" %)**Name**|=(% style="width: 100px;" %)(((
2287 **Setting method**
2288 )))|=(% style="width: 124px;" %)(((
2289 **Effective time**
2290 )))|=(% style="width: 83px;" %)**Default value**|=(% style="width: 94px;" %)**Range**|=(% style="width: 421px;" %)**Definition**|=**Unit**
2291 |=P05-20|(% style="width:113px" %)(((
2292 Torque arrival
2293
2294 threshold
2295 )))|(% style="width:100px" %)(((
2296 Operation setting
2297 )))|(% style="width:124px" %)(((
2298 Effective immediately
2299 )))|(% style="width:83px" %)100|(% style="width:94px" %)0 to 300|(% style="width:421px" %)(((
2300 The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2301
2302 When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2303
2304 When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2305 )))|%
2306 |=P05-21|(% style="width:113px" %)(((
2307 Torque arrival
2308
2309 hysteresis
2310 )))|(% style="width:100px" %)(((
2311 Operation setting
2312 )))|(% style="width:124px" %)(((
2313 Effective immediately
2314 )))|(% style="width:83px" %)10|(% style="width:94px" %)0 to 20|(% style="width:421px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2315
2316 Table 6-49 Torque arrival parameters
2317
2318 |=(% scope="row" %)**DO function code**|=**Function name**|=**Function**
2319 |=138|(((
2320 T-COIN torque arrival
2321 )))|Used to determine whether the actual torque instruction has reached the set range
2322
2323 Table 6-50 DO Torque Arrival Function Code
2324
2325 = **Mixed control mode** =
2326
2327 Mixed control mode means that when the servo enable is ON and the status of the servo drive is "run", the mode of the servo drive could be switched between different modes. The VD2 series servo drives have the following 3 mixed control modes:
2328
2329 * Position mode⇔ Speed mode
2330 * Position mode ⇔Torque mode
2331 * Speed mode ⇔Torque mode
2332
2333 Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2334
2335 |=(% scope="row" %)**Function code**|=**Name**|=(((
2336 **Setting method**
2337 )))|=(((
2338 **Effective time**
2339 )))|=**Default value**|=(% style="width: 90px;" %)**Range**|=(% style="width: 273px;" %)**Definition**|=**Unit**
2340 |=P00-01|Control mode|(((
2341 Shutdown setting
2342 )))|(((
2343 Shutdown setting
2344 )))|1|(% style="width:90px" %)1 to 6|(% style="width:273px" %)(((
2345 * 1: Position control
2346 * 2: Speed control
2347 * 3: Torque control
2348 * 4: Position/speed mixed control
2349 * 5: Position/torque mixed control
2350 * 6: Speed/torque mixed control
2351
2352 **VD2L drive P0-01 setting range: 1-3, not support mixed mode**
2353 )))|-
2354
2355 Table 6-51 Mixed control mode parameters
2356
2357 Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/09%20Parameters/]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2358
2359 |=(% scope="row" %)**DI function code**|=**Name**|=(% style="width: 187px;" %)**Function name**|=(% style="width: 662px;" %)**Function**
2360 |=17|MixModeSel|(% style="width:187px" %)Mixed mode selection|(% style="width:662px" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2361 (% style="margin-left:auto; margin-right:auto; width:585px" %)
2362 |=**P00-01**|=(% style="width: 243px;" %)**MixModeSel terminal logic**|=(% style="width: 220px;" %)**Control mode**
2363 |(% rowspan="2" %)4|(% style="width:243px" %)Valid|(% style="width:220px" %)Speed mode
2364 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2365 |(% rowspan="2" %)5|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2366 |(% style="width:243px" %)invalid|(% style="width:220px" %)Position mode
2367 |(% rowspan="2" %)6|(% style="width:243px" %)Valid|(% style="width:220px" %)Torque mode
2368 |(% style="width:243px" %)invalid|(% style="width:220px" %)Speed mode
2369 )))
2370
2371 Table 6-52 Description of DI function codes in control mode
2372
2373 (% class="box infomessage" %)
2374 (((
2375 ✎**Note:** In mixed control mode, it is recommended to switch the mode at zero speed or low speed, and the switching process will be smoother.
2376 )))
2377
2378 = **Absolute system** =
2379
2380 == Overview ==
2381
2382 Absolute encoder could detect the position of the servo motor within one turn, and could count the number of turns of the motor. This series of servo drives are equipped with a maximum of 23-bit encoders and could memorize 16-bit multi-turn data, and position, speed, torque control modes could be used. Especially in position control, the absolute value encoder does not need to count, could achieve direct internal high-speed reading and external output, and could significantly reduce the subsequent calculation tasks of the receiving device controller. When the drive is powered off, the encoder uses battery backup data. After power on, the drive uses the encoder's absolute position to calculate the absolute mechanical position, eliminating the need for repeated mechanical origin reset operations.
2383
2384 The absolute value encoder is determined by the mechanical position of the photoelectric code disc, and is not affected by power failure or interference. Each position of the absolute encoder determined by the mechanical position is unique, and no external sensor is required to assist in memorizing position.
2385
2386 == Single-turn absolute value system ==
2387
2388 The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2389
2390 |=**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2391 |A1 (single-turn magnetic encoder)|17|0 to 131071
2392
2393 Table 6-53 Single-turn absolute encoder information
2394
2395 The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2396
2397 (% style="text-align:center" %)
2398 (((
2399 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:629px;" %)
2400 [[**Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position**>>image:image-20220608173618-43.png||height="307" id="Iimage-20220608173618-43.png" width="629"]]
2401 )))
2402
2403 == Multi-turn absolute value system ==
2404
2405 The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2406
2407 |=(% scope="row" %)**Encoder type**|=**Encoder resolution (bits)**|=**Data range**
2408 |=C1 (multi-turn magnetic encoder)|17|0 to 131071
2409 |=D2 (multi-turn Optical encoder)|23|0 to 8388607
2410
2411 Table 6-54 Multi-turn absolute encoder information
2412
2413 The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2414
2415 (% style="text-align:center" %)
2416 (((
2417 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2418 [[**Figure 6-49 The relationship between encoder feedback position and rotating load position**>>image:image-20220608173701-44.png||id="Iimage-20220608173701-44.png"]]
2419 )))
2420
2421 (% class="wikigeneratedid" %)
2422 (((
2423 Multi-turn absolute value position U0-56 origin setting (only for multi-turn encoders)
2424 Under the following two working conditions: 1. The current physical position of the motor cannot reach the
2425 absolute zero point (U0-56). The value of U0-56 can be calibrated by moving the motor to the target position and setting the offset value of P10-8. 2. Move the motor to a known position on the machine and use this function to determine the position of U0-56.
2426 P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When setting P10-06=1, the value of U0-56 is updated to the value of P10-8 multi-turn absolute value encoder origin offset compensation at the reset time.
2427
2428 |**Function code**|**Name**|(((
2429 **Setting**
2430
2431 **method**
2432 )))|(((
2433 **Effective**
2434
2435 **time**
2436 )))|**Default**|**Range**|**Definition**|**Unit**
2437 |P10-06|Multi-turn absolute encoder reset|(((
2438 Shutdown
2439
2440 setting
2441 )))|Effective immediately|0|0 to 1|(((
2442 0: No operation
2443
2444 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2445
2446 **✎Note:** After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2447 )))|-
2448
2449 (% style="background-color:#ffffff" %)
2450 |**Function code**|**Name**|(((
2451 **Setting**
2452
2453 **method**
2454 )))|(((
2455 **Effective**
2456
2457 **time**
2458 )))|**Default**|**Range**|**Definition**|**Unit**
2459 |P10-08|Multi-turn absolute encoder origin offset compensation|(((
2460 Operation
2461
2462 setting
2463 )))|Effective immediately|0|-2147483647 to 2147483646|P10-08 multi-turn absolute encoder origin offset compensation is used in conjunction with U0-56 multi-turn absolute encoder current position. When P10-6 is set to 1, the value of U0-56 is updated to P10-8.|-
2464 )))
2465
2466 == Related functions and parameters ==
2467
2468 **Encoder feedback data**
2469
2470 The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2471
2472 |=(% scope="row" %)**Monitoring number**|=**Category**|=**Name**|=**Unit**|=**Data type**
2473 |=U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2474 |=U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2475 |=U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2476
2477 Table 6-55 Encoder feedback data
2478
2479 **Shield multi-turn absolute encoder battery fault**
2480
2481 The VD2 series absolute value servo drive provides shielded multi-turn absolute encoder battery fault function to shield under voltage and low-voltage fault. You could set by setting the function code P00-30.
2482
2483 |=(% scope="row" %)**Function code**|=**Name**|=(((
2484 **Setting**
2485
2486 **method**
2487 )))|=(((
2488 **Effective**
2489
2490 **time**
2491 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2492 |=P00-30|Shield multi-turn absolute encoder battery fault|Operation setting|Power on again|0|0 to 1|(((
2493 * 0:Detect multi-turn absolute encoder battery under voltage, and battery low voltage fault
2494 * 1: (Not recommended) Shield multi-turn absolute motor battery failure alarm. Multi-turn absolute application may cause mechanical fault, only multi-turn absolute encoder motors is used as single-turn absolute
2495 )))|-
2496
2497 This function is permitted when a multi-turn absolute encoder motor is used as a single-turn absolute and when it is confirmed that no mechanical failure will occur.
2498
2499 **A93 warning solution**
2500
2501 Check the encoder communication wire and its placement, reduce the abnormal frequency, and eliminate A93. In this way, the A93 warning problem can be completely solved, and the operation of the motor will not be affected after the A93 warning is released.
2502 Increase the threshold for encoder read-write check exceptions is only suitable as a temporary solution. Eliminate A93 warning by increasing exception threshold. The disadvantage is that the motor may run in an unstable state.
2503
2504 |**Function code**|**Name**|(((
2505 **Setting**
2506
2507 **method**
2508 )))|(((
2509 **Effective**
2510
2511 **time**
2512 )))|**Default**|**Range**|**Definition**|**Unit**
2513 |P00-31|Encoder read-write check abnormal frequency|(((
2514 Operation
2515
2516 setting
2517 )))|(((
2518 immediately
2519
2520 Effective
2521 )))|20|0 to100|(((
2522 The setting of the alarm threshold for the abnormal frequency of the encoder read-write
2523
2524 0: no alarm
2525
2526 Others: When this setting value is exceeded, report A93.
2527 )))|-
2528
2529 (% class="box infomessage" %)
2530 (((
2531 **✎Note: **Be sure to use the shield multi-turn absolute encoder battery fault function carefully, otherwise it may cause data loss, mechanical failure, or even personal injury or death.
2532 )))
2533
2534 == Absolute value system encoder battery box use precautions. ==
2535
2536 **Cautions**
2537
2538 Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2539
2540 (% style="text-align:center" %)
2541 (((
2542 (% class="wikigeneratedid img-thumbnail" style="display:inline-block; width:975px;" %)
2543 [[**Figure 6-50 the encoder battery box**>>image:image-20220707111333-28.png||height="390" id="Iimage-20220707111333-28.png" width="975"]]
2544 )))
2545
2546 When it is detected that the battery voltage is less than 3.1V, A-92 (Encoder battery low voltage warning) will occur. Please replace the battery in time.
2547
2548 **Replace the battery**
2549
2550 Please replace the battery while keeping the servo drive and motor well connected and the power on.
2551
2552 The specific replacement method is as follows:
2553
2554 * Step1 Push open the buckles on both ends of the outer cover of the battery compartment and open the outer cover.
2555 * Step2 Remove the old battery.
2556 * Step3 Embed the new battery, and the battery plug wire according to the anti-dull port on the battery box for placement.
2557 * Step4 Close the outer cover of the battery box, please be careful not to pinch the connector wiring when closing.
2558
2559 When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2560
2561 |=(% scope="row" %)**Function code**|=**Name**|=(((
2562 **Setting method**
2563 )))|=(((
2564 **Effective time**
2565 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2566 |=P10-06|Multi-turn absolute encoder reset|(((
2567 Shutdown setting
2568 )))|(((
2569 Effective immediately
2570 )))|0|0 to 1|(((
2571 * 0: No operation
2572 * 1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2573
2574 (% class="box infomessage" %)
2575 (((
2576 ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2577 )))
2578 )))|-
2579
2580 Table 6-56 Absolute encoder reset enable parameter
2581
2582 **Battery selection**
2583
2584 |=(% scope="row" style="width: 361px;" %)**Battery selection specification**|=(% style="width: 496px;" %)**Item**|=(% style="width: 219px;" %)**Value**
2585 |(% rowspan="4" style="width:361px" %)(((
2586 Nominal Voltage: 3.6V
2587
2588 Nominal capacity: 2700mAh
2589 )))|(% style="width:496px" %)Standard battery voltage (V)|(% style="width:219px" %)3.6
2590 |(% style="width:496px" %)Standard cell voltage (V)|(% style="width:219px" %)3.1
2591 |(% style="width:496px" %)Battery ambient temperature range|(% style="width:219px" %)0 to 40
2592 |(% style="width:496px" %)Battery storage ambient temperature range|(% style="width:219px" %)-20 to 60
2593
2594 Table 6-57 Absolute value encoder battery information
2595
2596 **✎Note: **
2597
2598 If the battery is replaced when the servo drive is powered off, the encoder data will be lost.
2599
2600 When the servo drive is powered off, please ensure that the maximum speed of motor does not exceed 3000 rpm to ensure that the encoder position information is accurately recorded. Please store the storage device according to the specified ambient temperature, and ensure that the encoder battery has reliable contact and sufficient power, otherwise the encoder position information may be lost.
2601
2602 Correct placement of batteries +, - direction
2603
2604 1. Do not disassemble the battery or put the battery into the fire! If the battery is put into the fire or heated, there is a risk of explosion!
2605 1. This battery cannot be charged.
2606 1. If the battery is left inside the machine after a long period of use or the battery is no longer usable, liquid may leak out, etc. Please replace it as soon as possible! (Recommended to replace every 2 years, you can contact the manufacturer's technical staff for replacement)
2607 1. Do not allow the battery to short-circuit or peel the battery skin! Otherwise, there may be a one-time outflow of high current, making the battery's power weakened, or even rupture.
2608 1. After the replacement of the battery, please dispose of it according to local laws and regulations.
2609
2610 = **Other functions** =
2611
2612 == VDI ==
2613
2614 VDI (Virtual Digital Signal Input Port) is similar to hardware DI terminal. The DI function could also be assigned for use.
2615
2616 (% class="box infomessage" %)
2617 (((
2618 ✎**Note: **If multiple VDI terminals are configured with the same non-zero DI function, servo drive will occur an error “A-89” (DI port configuration is duplicate).
2619 )))
2620
2621 Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2622
2623 (% style="text-align:center" %)
2624 (((
2625 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2626 [[**Figure 6-51 VDI_1 setting steps**>>image:image-20220608173804-46.png||id="Iimage-20220608173804-46.png"]]
2627 )))
2628
2629 |=(% scope="row" %)**Function code**|=**Name**|=(((
2630 **Setting method**
2631 )))|=(((
2632 **Effective time**
2633 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2634 |=P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2635 When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2636
2637 VDI_1 input level:
2638
2639 * 0: low level
2640 * 1: high level
2641 )))|-
2642 |=P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2643 When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2644
2645 VDI_2 input level:
2646
2647 * 0: low level
2648 * 1: high level
2649 )))|-
2650 |=P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2651 When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2652
2653 VDI_3 input level:
2654
2655 * 0: low level
2656 * 1: high level
2657 )))|-
2658 |=P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2659 When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2660
2661 VDI_4 input level:
2662
2663 * 0: low level
2664 * 1: high level
2665 )))|-
2666 |=P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2667 When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2668
2669 VDI_5 input level:
2670
2671 * 0: low level
2672 * 1: high level
2673 )))|-
2674 |=P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2675 When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2676
2677 VDI_6 input level:
2678
2679 * 0: low level
2680 * 1: high level
2681 )))|-
2682 |=P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2683 When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2684
2685 VDI_7 input level:
2686
2687 * 0: low level
2688 * 1: high level
2689 )))|-
2690 |=P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2691 When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2692
2693 VDI_8 input level:
2694
2695 * 0: low level
2696 * 1: high level
2697 )))|-
2698
2699 Table 6-57 Virtual VDI parameters
2700
2701 (% class="box infomessage" %)
2702 (((
2703 ✎**Note: **“☆” means VD2F servo drive does not support the function code .
2704 )))
2705
2706 == Port filtering time ==
2707
2708 VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2709
2710 |=(% scope="row" style="width: 204px;" %)**Setting value**|=(% style="width: 235px;" %)**DI channel logic selection**|=(% style="width: 637px;" %)**Illustration**
2711 |=(% style="width: 204px;" %)0|(% style="width:235px" %)Active high level|(% style="width:637px" %)[[image:image-20220707113050-31.jpeg]]
2712 |=(% style="width: 204px;" %)1|(% style="width:235px" %)Active low level|(% style="width:637px" %)[[image:image-20220707113205-33.jpeg||height="166" width="526"]]
2713
2714 Table 6-58 DI terminal channel logic selection
2715
2716 == **VDO** ==
2717
2718 In addition to being an internal hardware output port, DO terminal is also used as a communication VDO. The communication control DO function could help you to achieve communication control DO output on the servo drive.
2719
2720 Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2721
2722 (% style="text-align:center" %)
2723 (((
2724 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
2725 [[**Figure 6-52 VDO_2 setting steps**>>image:image-20220608173957-48.png||id="Iimage-20220608173957-48.png"]]
2726 )))
2727
2728
2729 |=(% scope="row" %)**Function code**|=**Name**|=(((
2730 **Setting method**
2731 )))|=(((
2732 **Effective time**
2733 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2734 |=P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2735 VDO_1 output level:
2736
2737 * 0: low level
2738 * 1: high level
2739 )))|-
2740 |=P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2741 VDO_2 output level:
2742
2743 * 0: low level
2744 * 1: high level
2745 )))|-
2746 |=P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2747 VDO_3 output level:
2748
2749 * 0: low level
2750 * 1: high level
2751 )))|-
2752 |=P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2753 VDO_4 output level:
2754
2755 * 0: low level
2756 * 1: high level
2757 )))|-
2758
2759 Table 6-59 Communication control DO function parameters
2760
2761 |=(% scope="row" %)**DO function number**|=**Function name**|=**Function**
2762 |=145|COM_VDO1 communication VDO1 output|Use communication VDO
2763 |=146|COM_VDO1 communication VDO2 output|Use communication VDO
2764 |=147|COM_VDO1 communication VDO3 output|Use communication VDO
2765 |=148|COM_VDO1 communication VDO4output|Use communication VDO
2766
2767 Table 6-60 VDO function number
2768
2769 ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
2770
2771 If multiple DO terminals are configured with the same non-128 DI function, servo drive will occur an error “A-90” (DO port configuration is duplicate).
2772
2773 == Motor overload protection ==
2774
2775 VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2776
2777 |=(% scope="row" %)**Function code**|=**Name**|=(((
2778 **Setting method**
2779 )))|=(((
2780 **Effective time**
2781 )))|=**Default value**|=**Range**|=**Definition**|=**Unit**
2782 |=P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2783 According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2784
2785 50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2786 )))|%
2787
2788 In the following cases, it could be modified according to the actual heat generation of the motor
2789
2790 1. The motor works in a place with high ambient temperature
2791 1. The motor runs in cycle circulates, and the single running cycle is short and the acceleration and deceleration is frequent.
2792
2793 In the case of confirming that the motor will not burn out, it is also possible to shield the overload protection fault detection function (P10-04 set to 0).
2794
2795 (% class="box infomessage" %)
2796 (((
2797 ✎**Note:** It is advised to configure function codes for DO terminals in sequence to avoid errors. Please use the shielded overload protection fault detection function with caution, otherwise it will cause burn out the motor.
2798 )))