Changes for page 06 Operation

Last modified by Iris on 2025/08/06 18:24

From version 42.1
edited by Joey
on 2022/06/10 15:32
Change comment: There is no comment for this version
To version 47.1
edited by Leo Wei
on 2022/06/11 17:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Joey
1 +XWiki.admin
Content
... ... @@ -2,22 +2,21 @@
2 2  
3 3  == **Check before operation** ==
4 4  
5 +|=(% scope="row" %)**No.**|=**Content**
6 +|=(% colspan="2" %)Wiring
7 +|=1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
8 +|=2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
9 +|=3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
10 +|=4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
11 +|=5|Servo drive and servo motor must be grounded reliably.
12 +|=6|When using an external braking resistor, the short wiring between drive C and D must be removed.
13 +|=7|The force of all cables is within the specified range.
14 +|=8|The wiring terminals have been insulated.
15 +|=(% colspan="2" %)Environment and Machinery
16 +|=1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
17 +|=2|The servo drive and external braking resistor are not placed on combustible objects.
18 +|=3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
5 5  
6 -|**No.**|**Content**
7 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Wiring
8 -|1|The main circuit input terminals (L1, L2 and L3) of servo drive must be properly connected.
9 -|2|The main circuit output terminals (U, V and W) of servo drive and the main circuit cables (U, V and W) of servo motor must have the same phase and be properly connected.
10 -|3|The main circuit power input terminals (L1, L2 and L3) and the main circuit output terminals (U, V and W) of servo drive cannot be short-circuited.
11 -|4|The wiring of each control signal cable of servo drive is correct: The external signal wires such as brake and overtravel protection have been reliably connected.
12 -|5|Servo drive and servo motor must be grounded reliably.
13 -|6|When using an external braking resistor, the short wiring between drive C and D must be removed.
14 -|7|The force of all cables is within the specified range.
15 -|8|The wiring terminals have been insulated.
16 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Environment and Machinery
17 -|1|There is no iron filings, metal, etc. that can cause short circuits inside or outside the servo drive.
18 -|2|The servo drive and external braking resistor are not placed on combustible objects.
19 -|3|The installation, shaft and mechanical structure of the servo motor have been firmly connected.
20 -
21 21  Table 6-1 Check contents before operation
22 22  
23 23  == **Power-on** ==
... ... @@ -43,17 +43,17 @@
43 43  Open the jog operation interface of the software “Wecon SCTool”, set the jog speed value in the "set speed" in the "manual operation", click the "servo on" button on the interface, and then achieve the jog forward and reverse function through the "forward rotation" or "Reverse" button on the interface. After clicking the "Servo off" button, the jog operation mode is exited. The related function codes are shown below.
44 44  
45 45  
46 -(% class="table-bordered" %)
47 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
45 +
46 +|=(% scope="row" %)**Function code**|=**Name**|=(((
48 48  **Setting method**
49 -)))|(% style="text-align:center; vertical-align:middle" %)(((
48 +)))|=(((
50 50  **Effective time**
51 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
52 -|(% style="text-align:center; vertical-align:middle" %)P10-01|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)(((
50 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
51 +|=P10-01|JOG speed|(((
53 53  Operation setting
54 -)))|(% style="text-align:center; vertical-align:middle" %)(((
53 +)))|(((
55 55  Effective immediately
56 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 3000|(% style="text-align:center; vertical-align:middle" %)JOG speed|(% style="text-align:center; vertical-align:middle" %)rpm
55 +)))|100|0 to 3000|JOG speed|rpm
57 57  
58 58  Table 6-2 JOG speed parameter
59 59  
... ... @@ -61,25 +61,25 @@
61 61  
62 62  By setting the “P00-04” rotation direction, you could change the rotation direction of the motor without changing the polarity of the input instruction. The function code is shown in below.
63 63  
64 -(% class="table-bordered" %)
65 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
63 +
64 +|=(% scope="row" %)**Function code**|=**Name**|=(((
66 66  **Setting method**
67 -)))|(% style="text-align:center; vertical-align:middle" %)(((
66 +)))|=(((
68 68  **Effective time**
69 -)))|(% style="text-align:center; vertical-align:middle" %)(((
68 +)))|=(((
70 70  **Default value**
71 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
72 -|(% style="text-align:center; vertical-align:middle" %)P00-04|(% style="text-align:center; vertical-align:middle" %)Rotation direction|(% style="text-align:center; vertical-align:middle" %)(((
70 +)))|=**Range**|=**Definition**|=**Unit**
71 +|=P00-04|Rotation direction|(((
73 73  Shutdown setting
74 -)))|(% style="text-align:center; vertical-align:middle" %)(((
73 +)))|(((
75 75  Effective immediately
76 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
75 +)))|0|0 to 1|(((
77 77  Forward rotation: Face the motor shaft to watch
78 78  
79 79  0: standard setting (CW is forward rotation)
80 80  
81 81  1: reverse mode (CCW is forward rotation)
82 -)))|(% style="text-align:center; vertical-align:middle" %)-
81 +)))|-
83 83  
84 84  Table 6-3 Rotation direction parameters** **
85 85  
... ... @@ -92,17 +92,16 @@
92 92  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value ≤ the built-in braking resistor power, use the built-in braking resistor.
93 93  1. the maximum brake energy calculated value > the maximum brake energy absorbed by capacitor, and the brake power calculated value > the built-in braking resistor power, use external braking resistor.
94 94  
95 -(% class="table-bordered" %)
96 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
94 +|=(% scope="row" %)**Function code**|=**Name**|=(((
97 97  **Setting method**
98 -)))|(% style="text-align:center; vertical-align:middle" %)(((
96 +)))|=(((
99 99  **Effective time**
100 -)))|(% style="text-align:center; vertical-align:middle" %)**Default**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
101 -|(% style="text-align:center; vertical-align:middle" %)P00-09|(% style="text-align:center; vertical-align:middle" %)Braking resistor setting|(% style="text-align:center; vertical-align:middle" %)(((
98 +)))|=**Default**|=**Range**|=**Definition**|=**Unit**
99 +|=P00-09|Braking resistor setting|(((
102 102  Operation setting
103 -)))|(% style="text-align:center; vertical-align:middle" %)(((
101 +)))|(((
104 104  Effective immediately
105 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 3|(((
103 +)))|0|0 to 3|(((
106 106  0: use built-in braking resistor
107 107  
108 108  1: use external braking resistor and natural cooling
... ... @@ -110,18 +110,18 @@
110 110  2: use external braking resistor and forced air cooling; (cannot be set)
111 111  
112 112  3: No braking resistor is used, it is all absorbed by capacitor.
113 -)))|(% style="text-align:center; vertical-align:middle" %)-
114 -|(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
115 -|(% style="text-align:center; vertical-align:middle" %)P00-10|(% style="text-align:center; vertical-align:middle" %)External braking resistor value|(% style="text-align:center; vertical-align:middle" %)(((
111 +)))|-
112 +|=(% colspan="8" %)✎**Note: **VD2-010SA1G and VD2F-010SA1P drives have no built-in resistor by default, so the default value of the function code “P00-09” is 3 (No braking resistor is used, it is all absorbed by capacitor).
113 +|=P00-10|External braking resistor value|(((
116 116  Operation setting
117 -)))|(% style="text-align:center; vertical-align:middle" %)(((
115 +)))|(((
118 118  Effective immediately
119 -)))|(% style="text-align:center; vertical-align:middle" %)50|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)Ω
120 -|(% style="text-align:center; vertical-align:middle" %)P00-11|(% style="text-align:center; vertical-align:middle" %)External braking resistor power|(% style="text-align:center; vertical-align:middle" %)(((
117 +)))|50|0 to 65535|It is used to set the external braking resistor value of a certain type of drive.|Ω
118 +|=P00-11|External braking resistor power|(((
121 121  Operation setting
122 -)))|(% style="text-align:center; vertical-align:middle" %)(((
120 +)))|(((
123 123  Effective immediately
124 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle" %)0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|(% style="text-align:center; vertical-align:middle" %)W
122 +)))|100|0 to 65535|It is used to set the external braking resistor power of a certain type of drive.|W
125 125  
126 126  Table 6-4 Braking resistor parameters
127 127  
... ... @@ -139,7 +139,7 @@
139 139  
140 140  **(3) Timing diagram of power on**
141 141  
142 -(% style="text-align:center" %)
140 +
143 143  [[image:image-20220608163014-1.png]]
144 144  
145 145  Figure 6-1 Timing diagram of power on
... ... @@ -148,17 +148,17 @@
148 148  
149 149  According to the different shutdown modes, it could be divided into free shutdown and zero speed shutdown. The respective characteristics are shown in __[[Table 6-5>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__. According to the shutdown status, it could be divided into free running state and position locked, as shown in __[[Table 6-6>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HServoshutdown]]__.
150 150  
151 -(% class="table-bordered" %)
152 -|Shutdown mode|Shutdown description|Shutdown characteristics
153 -|Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
154 -|Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
155 155  
150 +|=(% scope="row" %)Shutdown mode|=Shutdown description|=Shutdown characteristics
151 +|=Free shutdown|Servo motor is not energized and decelerates freely to 0. The deceleration time is affected by factors such as mechanical inertia and mechanical friction.|Smooth deceleration, small mechanical shock, but slow deceleration process.
152 +|=Zero-speed shutdown|The servo drive outputs reverse braking torque, and the motor quickly decelerates to zero-speed.|Rapid deceleration with mechanical shock, but fast deceleration process.
153 +
156 156  Table 6-5 Comparison of two shutdown modes
157 157  
158 -(% class="table-bordered" %)
159 -|(% style="text-align:center; vertical-align:middle" %)**Shutdown status**|(% style="text-align:center; vertical-align:middle" %)**Free operation status**|(% style="text-align:center; vertical-align:middle" %)**Position locked**
160 -|(% style="text-align:center; vertical-align:middle" %)Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
161 161  
157 +|=(% scope="row" %)**Shutdown status**|=**Free operation status**|=**Position locked**
158 +|=Characteristics|After the motor stops rotating, it is power-off, and the motor shaft can rotate freely.|After the motor stops rotating, the motor shaft is locked and could not rotate freely.
159 +
162 162  Table 6-6 Comparison of two shutdown status
163 163  
164 164  **(1) Servo enable (S-ON) OFF shutdown**
... ... @@ -165,27 +165,27 @@
165 165  
166 166  The related parameters of the servo OFF shutdown mode are shown in the table below.
167 167  
168 -(% class="table-bordered" %)
169 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
166 +
167 +|=(% scope="row" %)**Function code**|=**Name**|=(((
170 170  **Setting method**
171 -)))|(% style="text-align:center; vertical-align:middle" %)(((
169 +)))|=(((
172 172  **Effective time**
173 -)))|(% style="text-align:center; vertical-align:middle" %)(((
171 +)))|=(((
174 174  **Default value**
175 -)))|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
176 -|(% style="text-align:center; vertical-align:middle" %)P00-05|(% style="text-align:center; vertical-align:middle" %)Servo OFF shutdown|(% style="text-align:center; vertical-align:middle" %)(((
173 +)))|=**Range**|=**Definition**|=**Unit**
174 +|=P00-05|Servo OFF shutdown|(((
177 177  Shutdown
178 178  
179 179  setting
180 -)))|(% style="text-align:center; vertical-align:middle" %)(((
178 +)))|(((
181 181  Effective
182 182  
183 183  immediately
184 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
182 +)))|0|0 to 1|(((
185 185  0: Free shutdown, and the motor shaft remains free status.
186 186  
187 187  1: Zero-speed shutdown, and the motor shaft remains free status.
188 -)))|(% style="text-align:center; vertical-align:middle" %)-
186 +)))|-
189 189  
190 190  Table 6-7Table 6-1 Servo OFF shutdown mode parameters details
191 191  
... ... @@ -201,13 +201,13 @@
201 201  
202 202  The corresponding configuration and selection could be selected through the DI terminal function of the function code "DIDO configuration". The default function of DI3 is POT and DI4 is NOT, as shown in the table below.
203 203  
204 -(% class="table-bordered" %)
205 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
202 +
203 +|=(% scope="row" %)**Function code**|=**Name**|=(((
206 206  **Setting method**
207 -)))|(% style="text-align:center; vertical-align:middle" %)(((
205 +)))|=(((
208 208  **Effective time**
209 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
210 -|(% style="text-align:center; vertical-align:middle" %)P06-08|(% style="text-align:center; vertical-align:middle" %)DI_3 channel function selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Power-on again|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)0 to 32|(((
207 +)))|=**Default value**|=**Range**|=**Definition**|=**Unit**
208 +|=P06-08|DI_3 channel function selection|Operation setting|Power-on again|3|0 to 32|(((
211 211  0: OFF (not used)
212 212  
213 213  01: S-ON servo enable
... ... @@ -255,32 +255,30 @@
255 255  24: Internal multi-segment position selection 4
256 256  
257 257  Others: reserved
258 -)))|(% style="text-align:center; vertical-align:middle" %)-
259 -|(% style="text-align:center; vertical-align:middle" %)P06-09|(% style="text-align:center; vertical-align:middle" %)DI_3 channel logic selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
256 +)))|-
257 +|=P06-09|DI_3 channel logic selection|Operation setting|(((
260 260  Effective immediately
261 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
259 +)))|0|0 to 1|(((
262 262  DI port input logic validity function selection.
263 263  
264 264  0: Normally open input. Active low level (switch on);
265 265  
266 266  1: Normally closed input. Active high level (switch off);
267 -)))|(% style="text-align:center; vertical-align:middle" %)-
268 -|(% style="text-align:center; vertical-align:middle" %)P06-10|(% style="text-align:center; vertical-align:middle" %)DI_3 input source selection|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)(((
265 +)))|-
266 +|=P06-10|DI_3 input source selection|Operation setting|(((
269 269  Effective immediately
270 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
268 +)))|0|0 to 1|(((
271 271  Select the DI_3 port type to enable
272 272  
273 273  0: Hardware DI_3 input terminal
274 274  
275 275  1: virtual VDI_3 input terminal
276 -)))|(% style="text-align:center; vertical-align:middle" %)-
277 -
278 -(% class="table-bordered" %)
279 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-11|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel function selection|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
274 +)))|-
275 +|=P06-11|DI_4 channel function selection|(((
280 280  Operation setting
281 -)))|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
277 +)))|(((
282 282  again Power-on
283 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)4|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 32|(% style="width:454px" %)(((
279 +)))|4|0 to 32|(((
284 284  0 off (not used)
285 285  
286 286  01: SON Servo enable
... ... @@ -328,25 +328,25 @@
328 328  24: Internal multi-segment position selection 4
329 329  
330 330  Others: reserved
331 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
332 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-12|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 channel logic selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
327 +)))|-
328 +|=P06-12|DI_4 channel logic selection|Operation setting|(((
333 333  Effective immediately
334 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
330 +)))|0|0 to 1|(((
335 335  DI port input logic validity function selection.
336 336  
337 337  0: Normally open input. Active low level (switch on);
338 338  
339 339  1: Normally closed input. Active high level (switch off);
340 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
341 -|(% style="text-align:center; vertical-align:middle; width:140px" %)P06-13|(% style="text-align:center; vertical-align:middle; width:272px" %)DI_4 input source selection|(% style="text-align:center; vertical-align:middle; width:162px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:195px" %)(((
336 +)))|-
337 +|=P06-13|DI_4 input source selection|Operation setting|(((
342 342  Effective immediately
343 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)0|(% style="text-align:center; vertical-align:middle; width:78px" %)0 to 1|(% style="width:454px" %)(((
339 +)))|0|0 to 1|(((
344 344  Select the DI_4 port type to enable
345 345  
346 346  0: Hardware DI_4 input terminal
347 347  
348 348  1: virtual VDI_4 input terminal
349 -)))|(% style="text-align:center; vertical-align:middle; width:56px" %)-
345 +)))|-
350 350  
351 351  Table 6-8 DI3 and DI4 channel parameters
352 352  
... ... @@ -358,10 +358,9 @@
358 358  
359 359  The brake is a mechanism that prevents the servo motor shaft from moving when the servo drive is in a non-operating state, and keeps the motor locked in position, so that the moving part of the machine will not move due to its own weight or external force.
360 360  
361 -(% class="table-bordered" %)
357 +
362 362  |(((
363 -(% style="text-align:center" %)
364 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
359 +[[image:image-20220611151617-1.png]]
365 365  )))
366 366  |(((
367 367  ✎The brake device is built into the servo motor, which is only used as a non-energized fixed special mechanism. It cannot be used for braking purposes, and can only be used when the servo motor is kept stopped;
... ... @@ -379,15 +379,14 @@
379 379  
380 380  The brake input signal has no polarity. You need to prepare a 24V power supply. The standard connection of brake signal BK and brake power supply is shown in the figure below. (take VD2B servo drive as example)
381 381  
382 -(% style="text-align:center" %)
377 +
383 383  [[image:image-20220608163136-2.png]]
384 384  
385 385  Figure 6-2 VD2B servo drive brake wiring
386 386  
387 -(% class="table-bordered" %)
382 +
388 388  |(((
389 -(% style="text-align:center" %)
390 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
384 +[[image:image-20220611151642-2.png]]
391 391  )))
392 392  |(((
393 393  ✎The length of the motor brake cable needs to fully consider the voltage drop caused by the cable resistance, and the brake operation needs to ensure that the voltage input is 24V.
... ... @@ -403,42 +403,42 @@
403 403  
404 404  Related function code is as below.
405 405  
406 -(% class="table-bordered" %)
407 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)(((
400 +
401 +|**DO function code**|**Function name**|**Function**|(((
408 408  **Effective time**
409 409  )))
410 -|(% style="text-align:center; vertical-align:middle" %)144|(% style="text-align:center; vertical-align:middle" %)(((
404 +|144|(((
411 411  BRK-OFF Brake output
412 -)))|(% style="text-align:center; vertical-align:middle" %)Output the signal indicates the servo motor brake release|(% style="text-align:center; vertical-align:middle" %)Power-on again
406 +)))|Output the signal indicates the servo motor brake release|Power-on again
413 413  
414 414  Table 6-2 Relevant function codes for brake setting
415 415  
416 -(% class="table-bordered" %)
417 -|(% style="text-align:center; vertical-align:middle; width:175px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:175px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
410 +
411 +|**Function code**|**Name**|(((
418 418  **Setting method**
419 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
413 +)))|(((
420 420  **Effective time**
421 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:519px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
422 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-30|(% style="text-align:center; vertical-align:middle; width:175px" %)Delay from brake output to instruction reception|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
415 +)))|**Default value**|**Range**|**Definition**|**Unit**
416 +|P1-30|Delay from brake output to instruction reception|(((
423 423  Operation setting
424 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)250|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 500|(% style="width:519px" %)Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
425 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-31|(% style="text-align:center; vertical-align:middle; width:175px" %)In static state, delay from brake output OFF to the motor is power off|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
418 +)))|Effective immediately|250|0 to 500|Set delay that from the brake (BRK-OFF) output is ON to servo drive allows to receive input instruction. When brake output (BRK-OFF) is not allocated, the function code has no effect.|ms
419 +|P1-31|In static state, delay from brake output OFF to the motor is power off|(((
426 426  Operation setting
427 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)150|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|(% style="text-align:center; vertical-align:middle" %)ms
428 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-32|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, when the brake output OFF, the speed threshold|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
421 +)))|Effective immediately|150|1 to 1000|When the motor is in a static state, set the delay time from brake (BRK-OFF) output OFF to servo drive enters the non-channel state. When the brake output (BRK-OFF) is not allocated, this function code has no effect.|ms
422 +|P1-32|Rotation status, when the brake output OFF, the speed threshold|(((
429 429  Operation setting
430 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)30|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 3000|(% style="width:519px" %)(((
424 +)))|Effective immediately|30|0 to 3000|(((
431 431  When the motor rotates, the motor speed threshold when the brake (BRK-OFF) is allowed to output OFF.
432 432  
433 433  When the brake output (BRK-OFF) is not allocated, this function code has no effect.
434 -)))|(% style="text-align:center; vertical-align:middle" %)rpm
435 -|(% style="text-align:center; vertical-align:middle; width:175px" %)P1-33|(% style="text-align:center; vertical-align:middle; width:175px" %)Rotation status, Delay from servo enable OFF to brake output OFF|(% style="text-align:center; vertical-align:middle; width:175px" %)(((
428 +)))|rpm
429 +|P1-33|Rotation status, Delay from servo enable OFF to brake output OFF|(((
436 436  Operation setting
437 -)))|(% style="text-align:center; vertical-align:middle; width:173px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:128px" %)500|(% style="text-align:center; vertical-align:middle; width:94px" %)1 to 1000|(% style="width:519px" %)(((
431 +)))|Effective immediately|500|1 to 1000|(((
438 438  When the motor rotates, the delay time from the servo enable (S-ON) OFF to the brake (BRK-OFF) output OFF is allowed.
439 439  
440 440  When brake output (BRK-OFF) is not allocated, this function code has no effect.
441 -)))|(% style="text-align:center; vertical-align:middle" %)ms
435 +)))|ms
442 442  
443 443  Table 6-9 Brake setting function codes
444 444  
... ... @@ -452,10 +452,9 @@
452 452  
453 453  When the servo enable changes from ON to OFF, if the actual motor speed is lower than20 rpm, the servo drive will act according to the static brake sequence. The specific sequence action is shown in __[[Figure 6-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2da3eb860da7ba31.gif?rev=1.1]]__
454 454  
455 -(% class="table-bordered" %)
449 +
456 456  |(((
457 -(% style="text-align:center" %)
458 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
451 +[[image:image-20220611151705-3.png]]
459 459  )))
460 460  |(((
461 461  ✎After the brake output is from OFF to ON, within P01-30, do not input position/speed/torque instructions, otherwise the instructions will be lost or operation errors will be caused.
... ... @@ -463,7 +463,6 @@
463 463  ✎When applied to a vertical axis, the external force or the weight of the mechanical moving part may cause the machine to move slightly. When the servo motor is stationary, and the servo enable is OFF, the brake output will be OFF immediately. However, the motor is still energized within the time of P01-31 to prevent mechanical movement from moving due to its own weight or external force.
464 464  )))
465 465  
466 -(% style="text-align:center" %)
467 467  [[image:image-20220608163304-3.png]]
468 468  
469 469  Figure 6-3 Brake Timing of when the motor is stationary
... ... @@ -474,10 +474,9 @@
474 474  
475 475  When the servo enable is from ON to OFF, if the actual motor speed is greater than or equal to 20 rpm, the drive will act in accordance with the rotation brake sequence. The specific sequence action is shown in __[[Figure 6-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_4408711d09c83291.gif?rev=1.1]]__.
476 476  
477 -(% class="table-bordered" %)
469 +
478 478  |(((
479 -(% style="text-align:center" %)
480 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
471 +[[image:image-20220611151719-4.png]]
481 481  )))
482 482  |(((
483 483  ✎When the servo enable is turned from OFF to ON, within P1-30, do not input position, speed or torque instructions, otherwise the instructions will be lost or operation errors will be caused.
... ... @@ -491,7 +491,6 @@
491 491  ✎After the brake output changes from ON to OFF, the motor is still in communication within 50ms to prevent the mechanical movement from moving due to its own weight or external force.
492 492  )))
493 493  
494 -(% style="text-align:center" %)
495 495  [[image:image-20220608163425-4.png]]
496 496  
497 497  Figure 6-4 Brake timing when the motor rotates
... ... @@ -500,7 +500,7 @@
500 500  
501 501  The brake timing (free shutdown) in the fault status is as follows.
502 502  
503 -(% style="text-align:center" %)
493 +
504 504  [[image:image-20220608163541-5.png]]
505 505  
506 506   Figure 6-5 The brake timing (free shutdown) in the fault state
... ... @@ -509,7 +509,7 @@
509 509  
510 510  Position control is the most important and commonly used control mode of the servo system. Position control refers to controlling the position of the motor through position instructions, and determining the target position of the motor by the total number of position instructions. The frequency of the position instruction determines the motor rotation speed. The servo drive can achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used for occasions that require positioning control, such as manipulators, mounter, engraving machines, CNC machine tools, etc. The position control block diagram is shown in the figure below.
511 511  
512 -(% style="text-align:center" %)
502 +
513 513  [[image:image-20220608163643-6.png]]
514 514  
515 515  Figure 6-6 Position control diagram
... ... @@ -516,17 +516,17 @@
516 516  
517 517  Set “P00-01” to 1 by the software “Wecon SCTool”, and the servo drive is in position control mode.
518 518  
519 -(% class="table-bordered" %)
520 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:126px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
509 +
510 +|**Function code**|**Name**|(((
521 521  **Setting method**
522 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
512 +)))|(((
523 523  **Effective time**
524 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:326px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
525 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P01-01|(% style="text-align:center; vertical-align:middle; width:126px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
514 +)))|**Default value**|**Range**|**Definition**|**Unit**
515 +|P01-01|Control mode|(((
526 526  Operation setting
527 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
517 +)))|(((
528 528  immediately Effective
529 -)))|(% style="text-align:center; vertical-align:middle; width:145px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1|(% style="width:326px" %)(((
519 +)))|0|0 to 1|(((
530 530  0: position control
531 531  
532 532  2: speed control
... ... @@ -538,7 +538,7 @@
538 538  5: position/torque mix control
539 539  
540 540  6: speed /torque mix control
541 -)))|(% style="text-align:center; vertical-align:middle" %)-
531 +)))|-
542 542  
543 543  Table 6-10 Control mode parameters
544 544  
... ... @@ -546,21 +546,21 @@
546 546  
547 547  When the VD2 series servo drive is in position control mode, firstly set the position instruction source through the function code “P01-06”.
548 548  
549 -(% class="table-bordered" %)
550 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:149px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
539 +
540 +|**Function code**|**Name**|(((
551 551  **Setting method**
552 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
542 +)))|(((
553 553  **Effective time**
554 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:284px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
555 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P01-06|(% style="text-align:center; vertical-align:middle; width:149px" %)Position instruction source|(% style="text-align:center; vertical-align:middle; width:191px" %)(((
544 +)))|**Default value**|**Range**|**Definition**|**Unit**
545 +|P01-06|Position instruction source|(((
556 556  Operation setting
557 -)))|(% style="text-align:center; vertical-align:middle; width:189px" %)(((
547 +)))|(((
558 558  immediately Effective
559 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 1|(% style="width:284px" %)(((
549 +)))|0|0 to 1|(((
560 560  0: pulse instruction
561 561  
562 562  1: internal position instruction
563 -)))|(% style="text-align:center; vertical-align:middle" %)-
553 +)))|-
564 564  
565 565  Table 6-11 Position instruction source parameter
566 566  
... ... @@ -568,20 +568,20 @@
568 568  
569 569  1) Low-speed pulse instruction input
570 570  
571 -(% class="table-bordered" %)
572 -|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
573 -|(% style="text-align:center; vertical-align:middle" %)VD2A and VD2B servo drives|(% style="text-align:center; vertical-align:middle" %)VD2F servo drive
574 -|(% colspan="2" style="text-align:center; vertical-align:middle" %)Figure 6-7 Position instruction input setting
575 575  
562 +|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/22.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/23.jpg?rev=1.1]]
563 +|VD2A and VD2B servo drives|VD2F servo drive
564 +|(% colspan="2" %)Figure 6-7 Position instruction input setting
565 +
576 576  VD2 series servo drive has a set of pulse input terminals to receive the input of position pulse (via the CN2 terminal). The position pulse mode connection is shown in __[[Figure 6-7>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__.
577 577  
578 578  The instruction pulse and symbol output circuit on the control device(HMI/PLC) side could select differential input or open collector input. The maximum input frequency is shown as below.
579 579  
580 -(% class="table-bordered" %)
581 -|(% style="text-align:center; vertical-align:middle" %)**Pulse method**|(% style="text-align:center; vertical-align:middle" %)**Maximum frequency**|(% style="text-align:center; vertical-align:middle" %)**Voltage**
582 -|(% style="text-align:center; vertical-align:middle" %)Open collector input|(% style="text-align:center; vertical-align:middle" %)200K|(% style="text-align:center; vertical-align:middle" %)24V
583 -|(% style="text-align:center; vertical-align:middle" %)Differential input|(% style="text-align:center; vertical-align:middle" %)500K|(% style="text-align:center; vertical-align:middle" %)5V
584 584  
571 +|**Pulse method**|**Maximum frequency**|**Voltage**
572 +|Open collector input|200K|24V
573 +|Differential input|500K|5V
574 +
585 585  Table 6-12 Pulse input specifications
586 586  
587 587  1.Differential input
... ... @@ -588,7 +588,7 @@
588 588  
589 589  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
590 590  
591 -(% style="text-align:center" %)
581 +
592 592  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/24.jpg?rev=1.1]]
593 593  
594 594  Figure 6-8 Differential input connection
... ... @@ -599,7 +599,7 @@
599 599  
600 600  Take VD2A and VD2B drive as examples, the connection of differential input is shown as below.
601 601  
602 -(% style="text-align:center" %)
592 +
603 603  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/25.jpg?rev=1.1]]
604 604  
605 605  Figure 6-9 Open collector input connection
... ... @@ -610,7 +610,7 @@
610 610  
611 611  When low-speed pulses input pins, you need to set a certain pin filter time to filter the input pulse instructions to prevent external interference from entering the servo drive and affecting motor control. After the filter function is enabled, the input and output waveforms of the signal are shown in Figure 6-10.
612 612  
613 -(% style="text-align:center" %)
603 +
614 614  [[image:image-20220608163952-8.png]]
615 615  
616 616  Figure 6-10 Example of filtered signal waveform
... ... @@ -617,22 +617,22 @@
617 617  
618 618  The input pulse frequency refers to the frequency of the input signal, which can be modified through the function code “P00-13”. If the actual input frequency is greater than the set value of “P00-13”, it may cause pulse loss or alarm. The position pulse anti-interference level can be adjusted through the function code “P00-14”, the larger the set value, the greater the filtering depth. The details of related function code parameters are as shown below.
619 619  
620 -(% class="table-bordered" %)
621 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:202px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
610 +
611 +|**Function code**|**Name**|(((
622 622  **Setting method**
623 -)))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
613 +)))|(((
624 624  **Effective time**
625 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:71px" %)**Range**|(% colspan="2" style="text-align:center; vertical-align:middle; width:349px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
626 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P00-13|(% style="text-align:center; vertical-align:middle; width:202px" %)Maximum position pulse frequency|(% style="text-align:center; vertical-align:middle; width:158px" %)(((
615 +)))|**Default value**|**Range**|(% colspan="2" %)**Definition**|**Unit**
616 +|P00-13|Maximum position pulse frequency|(((
627 627  Shutdown setting
628 -)))|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
618 +)))|(((
629 629  Effective immediately
630 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)300|(% style="text-align:center; vertical-align:middle; width:71px" %)1 to 500|(% colspan="2" style="width:349px" %)Set the maximum frequency of external pulse instruction|KHz
631 -|(% rowspan="3" style="text-align:center; vertical-align:middle; width:120px" %)P00-14|(% rowspan="3" style="text-align:center; vertical-align:middle; width:202px" %)Position pulse anti-interference level|(% rowspan="3" style="text-align:center; vertical-align:middle; width:158px" %)(((
620 +)))|300|1 to 500|(% colspan="2" %)Set the maximum frequency of external pulse instruction|KHz
621 +|(% rowspan="3" %)P00-14|(% rowspan="3" %)Position pulse anti-interference level|(% rowspan="3" %)(((
632 632  Operation setting
633 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:159px" %)(((
623 +)))|(% rowspan="3" %)(((
634 634  Power-on again
635 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle; width:105px" %)2|(% rowspan="3" style="text-align:center; vertical-align:middle; width:71px" %)0 to 9|(% colspan="2" style="width:349px" %)(((
625 +)))|(% rowspan="3" %)2|(% rowspan="3" %)0 to 9|(% colspan="2" %)(((
636 636  Set the anti-interference level of external pulse instruction.
637 637  
638 638  0: no filtering;
... ... @@ -652,8 +652,8 @@
652 652  7: Filtering time 8.192us
653 653  
654 654  8: Filtering time 16.384us
655 -)))|(% rowspan="3" style="text-align:center; vertical-align:middle" %)-
656 -|(% rowspan="2" style="width:29px" %)9|VD2: Filtering time 25.5us
645 +)))|(% rowspan="3" %)-
646 +|(% rowspan="2" %)9|VD2: Filtering time 25.5us
657 657  |VD2F: Filtering time 25.5us
658 658  
659 659  Table 6-13 Position pulse frequency and anti-interference level parameters
... ... @@ -662,17 +662,17 @@
662 662  
663 663  In VD2 series servo drives, there are three types of input pulse instructions, and the related function codes are shown in the table below.
664 664  
665 -(% class="table-bordered" %)
666 -|(% style="text-align:center; vertical-align:middle; width:132px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:184px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
655 +
656 +|**Function code**|**Name**|(((
667 667  **Setting method**
668 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
658 +)))|(((
669 669  **Effective time**
670 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:373px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
671 -|(% style="text-align:center; vertical-align:middle; width:132px" %)P00-12|(% style="text-align:center; vertical-align:middle; width:184px" %)Position pulse type selection|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
660 +)))|**Default value**|**Range**|**Definition**|**Unit**
661 +|P00-12|Position pulse type selection|(((
672 672  Operation setting
673 -)))|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
663 +)))|(((
674 674  Power-on again
675 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)0|(% style="text-align:center; vertical-align:middle; width:66px" %)0 to 5|(% style="width:373px" %)(((
665 +)))|0|0 to 5|(((
676 676  0: direction + pulse (positive logic)
677 677  
678 678  1: CW/CCW
... ... @@ -684,74 +684,74 @@
684 684  4: CW/CCW (negative logic)
685 685  
686 686  5: A, B phase quadrature pulse (4 times frequency negative logic)
687 -)))|(% style="text-align:center; vertical-align:middle" %)-
677 +)))|-
688 688  
689 689  Table 6-14 Position pulse type selection parameter
690 690  
691 -(% class="table-bordered" %)
692 -|(% style="text-align:center; vertical-align:middle; width:185px" %)**Pulse type selection**|(% style="text-align:center; vertical-align:middle; width:177px" %)**Pulse type**|(% style="text-align:center; vertical-align:middle" %)**Signal**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of forward pulse**|(% style="text-align:center; vertical-align:middle" %)**Schematic diagram of negative pulse**
693 -|(% style="text-align:center; vertical-align:middle; width:185px" %)0|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
681 +
682 +|**Pulse type selection**|**Pulse type**|**Signal**|**Schematic diagram of forward pulse**|**Schematic diagram of negative pulse**
683 +|0|(((
694 694  Direction + pulse
695 695  
696 696  (Positive logic)
697 -)))|(% style="text-align:center; vertical-align:middle" %)(((
687 +)))|(((
698 698  PULSE
699 699  
700 700  SIGN
701 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
702 -|(% style="text-align:center; vertical-align:middle; width:185px" %)1|(% style="text-align:center; vertical-align:middle; width:177px" %)CW/CCW|(% style="text-align:center; vertical-align:middle" %)(((
691 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/21.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/26.jpg?rev=1.1]]
692 +|1|CW/CCW|(((
703 703  PULSE (CW)
704 704  
705 705  SIGN (CCW)
706 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
707 -|(% style="text-align:center; vertical-align:middle; width:185px" %)2|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
696 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/27.jpg?rev=1.1]]
697 +|2|(((
708 708  AB phase orthogonal
709 709  
710 710  pulse (4 times frequency)
711 -)))|(% style="text-align:center; vertical-align:middle" %)(((
701 +)))|(((
712 712  PULSE (Phase A)
713 713  
714 714  SIGN (Phase B)
715 -)))|(% style="text-align:center; vertical-align:middle" %)(((
705 +)))|(((
716 716  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/28.jpg?rev=1.1]]
717 717  
718 718  Phase A is 90° ahead of Phase B
719 -)))|(% style="text-align:center; vertical-align:middle" %)(((
709 +)))|(((
720 720  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/29.jpg?rev=1.1]]
721 721  
722 722  Phase B is 90° ahead of Phase A
723 723  )))
724 -|(% style="text-align:center; vertical-align:middle; width:185px" %)3|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
714 +|3|(((
725 725  Direction + pulse
726 726  
727 727  (Negative logic)
728 -)))|(% style="text-align:center; vertical-align:middle" %)(((
718 +)))|(((
729 729  PULSE
730 730  
731 731  SIGN
732 -)))|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
733 -|(% style="text-align:center; vertical-align:middle; width:185px" %)4|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
722 +)))|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/30.jpg?rev=1.1]]|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/31.jpg?rev=1.1]]
723 +|4|(((
734 734  CW/CCW
735 735  
736 736  (Negative logic)
737 -)))|(% style="text-align:center; vertical-align:middle" %)(((
727 +)))|(((
738 738  PULSE (CW)
739 739  
740 740  SIGN (CCW)
741 -)))|(% colspan="2" style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
742 -|(% style="text-align:center; vertical-align:middle; width:185px" %)5|(% style="text-align:center; vertical-align:middle; width:177px" %)(((
731 +)))|(% colspan="2" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/32.jpg?rev=1.1]]
732 +|5|(((
743 743  AB phase orthogonal
744 744  
745 745  pulse (4 times frequency negative logic)
746 -)))|(% style="text-align:center; vertical-align:middle" %)(((
736 +)))|(((
747 747  PULSE (Phase A)
748 748  
749 749  SIGN (Phase B)
750 -)))|(% style="text-align:center; vertical-align:middle" %)(((
740 +)))|(((
751 751  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/33.jpg?rev=1.1]]
752 752  
753 753  B phase is ahead of A phase by 90°
754 -)))|(% style="text-align:center; vertical-align:middle" %)(((
744 +)))|(((
755 755  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/34.jpg?rev=1.1]]
756 756  
757 757  A phase is ahead of B phase by 90°
... ... @@ -765,7 +765,7 @@
765 765  
766 766  The servo drive completely runs the multi-segment position instruction set by P07-01 once, and the total number of positions is called completing one round of operation.
767 767  
768 -(% style="text-align:center" %)
758 +
769 769  [[image:image-20220608164116-9.png]]
770 770  
771 771  Figure 6-11 The setting process of multi-segment position
... ... @@ -772,51 +772,51 @@
772 772  
773 773  1) Set multi-segment position running mode
774 774  
775 -(% class="table-bordered" %)
776 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
765 +
766 +|**Function code**|**Name**|(((
777 777  **Setting method**
778 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
768 +)))|(((
779 779  **Effective time**
780 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
781 -|(% style="text-align:center; vertical-align:middle" %)P07-01|(% style="text-align:center; vertical-align:middle" %)Multi-segment position running mode|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
770 +)))|**Default value**|**Range**|**Definition**|**Unit**
771 +|P07-01|Multi-segment position running mode|(((
782 782  Shutdown setting
783 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
773 +)))|(((
784 784  Effective immediately
785 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 2|(((
775 +)))|0|0 to 2|(((
786 786  0: Single running
787 787  
788 788  1: Cycle running
789 789  
790 790  2: DI switching running
791 -)))|(% style="text-align:center; vertical-align:middle" %)-
792 -|(% style="text-align:center; vertical-align:middle" %)P07-02|(% style="text-align:center; vertical-align:middle" %)Start segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
781 +)))|-
782 +|P07-02|Start segment number|(((
793 793  Shutdown setting
794 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
784 +)))|(((
795 795  Effective immediately
796 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|1st segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
797 -|(% style="text-align:center; vertical-align:middle" %)P07-03|(% style="text-align:center; vertical-align:middle" %)End segment number|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
786 +)))|1|1 to 16|1st segment NO. in non-DI switching mode|-
787 +|P07-03|End segment number|(((
798 798  Shutdown setting
799 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
789 +)))|(((
800 800  Effective immediately
801 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)1|(% style="text-align:center; vertical-align:middle" %)1 to 16|last segment NO. in non-DI switching mode|(% style="text-align:center; vertical-align:middle" %)-
802 -|(% style="text-align:center; vertical-align:middle" %)P07-04|(% style="text-align:center; vertical-align:middle" %)Margin processing method|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
791 +)))|1|1 to 16|last segment NO. in non-DI switching mode|-
792 +|P07-04|Margin processing method|(((
803 803  Shutdown setting
804 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
794 +)))|(((
805 805  Effective immediately
806 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
796 +)))|0|0 to 1|(((
807 807  0: Run the remaining segments
808 808  
809 809  1: Run again from the start segment
810 -)))|(% style="text-align:center; vertical-align:middle" %)-
811 -|(% style="text-align:center; vertical-align:middle" %)P07-05|(% style="text-align:center; vertical-align:middle" %)Displacement instruction type|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
800 +)))|-
801 +|P07-05|Displacement instruction type|(((
812 812  Shutdown setting
813 -)))|(% style="text-align:center; vertical-align:middle; width:200px" %)(((
803 +)))|(((
814 814  Effective immediately
815 -)))|(% style="text-align:center; vertical-align:middle; width:16px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
805 +)))|0|0 to 1|(((
816 816  0: Relative position instruction
817 817  
818 818  1: Absolute position instruction
819 -)))|(% style="text-align:center; vertical-align:middle" %)-
809 +)))|-
820 820  
821 821  Table 6-16 multi-segment position running mode parameters
822 822  
... ... @@ -826,7 +826,7 @@
826 826  
827 827  In this running mode, the segment number is automatically incremented and switched, and the servo drive only operates for one round (the servo drive runs completely once for the total number of multi-segment position instructions set by P07-02 and P07-03). The single running curve is shown in __[[Figure 6-12>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_669701d67ab2f246.gif?rev=1.1]]__, and S1 and S2 are the displacements of the 1st segment and the 2nd segment respectively
828 828  
829 -(% style="text-align:center" %)
819 +
830 830  [[image:image-20220608164226-10.png]]
831 831  
832 832  Figure 6-12 Single running curve (P07-02=1, P07-03=2)
... ... @@ -835,12 +835,12 @@
835 835  
836 836  In this running mode, the position number is automatically incremented and switched, and the servo drive repeatedly runs the total number of multi-segment position instructions set by P07-02 and P07-03. The waiting time could be set between each segment. The cycle running curve is shown in __[[Figure 6-13>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_80b358d07288f7b4.gif?rev=1.1]]__, and S1,S2,S3 and S4 are the displacements of the 1st, 2nd, 3rd and 4th segment respectively.
837 837  
838 -(% style="text-align:center" %)
828 +
839 839  [[image:image-20220608164327-11.png]]
840 840  
841 841  Figure 6-13 Cycle running curve (P07-02=1, P07-03=4)
842 842  
843 -|(% style="text-align:center; vertical-align:middle" %)[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
833 +|[[image:image-20220611151917-5.png]]
844 844  |In single running and cycle running mode, the setting value of P07-03 needs to be greater than the setting value of P07-02.
845 845  
846 846  3. DI switching running
... ... @@ -847,30 +847,30 @@
847 847  
848 848  In this running mode, the next running segment number could be set when operating the current segment number. The interval time is determined by the instruction delay of the host computer. The running segment number is determined by DI terminal logic, and the related function codes are shown in the table below.
849 849  
850 -(% class="table-bordered" %)
851 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
852 -|(% style="text-align:center; vertical-align:middle" %)21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
853 -|(% style="text-align:center; vertical-align:middle" %)22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
854 -|(% style="text-align:center; vertical-align:middle" %)23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
855 -|(% style="text-align:center; vertical-align:middle" %)24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
856 856  
841 +|**DI function code**|**Function name**|**Function**
842 +|21|INPOS1: Internal multi-segment position segment selection 1|Form internal multi-segment position running segment number
843 +|22|INPOS2: Internal multi-segment position segment selection 2|Form internal multi-segment position running segment number
844 +|23|INPOS3: Internal multi-segment position segment selection 3|Form internal multi-segment position running segment number
845 +|24|INPOS4: Internal multi-segment position segment selection 4|Form internal multi-segment position running segment number
846 +
857 857  Table 6-17 DI function code
858 858  
859 859  The multi-segment segment number is a 4-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. Table 6-17 shows the correspondence between the position bits 1 to 4 of the internal multi-segment position and the position number.
860 860  
861 -(% class="table-bordered" %)
862 -|(% style="text-align:center; vertical-align:middle" %)**INPOS4**|(% style="text-align:center; vertical-align:middle" %)**INPOS3**|(% style="text-align:center; vertical-align:middle" %)**INPOS2**|(% style="text-align:center; vertical-align:middle" %)**INPOS1**|(% style="text-align:center; vertical-align:middle" %)**Running position number**
863 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1
864 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2
865 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3
866 -|(% colspan="5" style="text-align:center; vertical-align:middle" %)…………
867 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)16
868 868  
852 +|**INPOS4**|**INPOS3**|**INPOS2**|**INPOS1**|**Running position number**
853 +|0|0|0|0|1
854 +|0|0|0|1|2
855 +|0|0|1|0|3
856 +|(% colspan="5" %)…………
857 +|1|1|1|1|16
858 +
869 869  Table 6-18 INPOS corresponds to running segment number
870 870  
871 871  The operating curve in this running mode is shown in __[[Figure 6-14>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_91c44ab732c79e26.gif?rev=1.1]]__.
872 872  
873 -(% style="text-align:center" %)
863 +
874 874  [[image:image-20220608164545-12.png]]
875 875  
876 876  Figure 6-14 DI switching running curve
... ... @@ -881,12 +881,12 @@
881 881  
882 882  In this processing way, the multi-segment position instruction enable is OFF during running, the servo drive will abandon the unfinished displacement part and shutdown, and the positioning completion signal will be valid after the shutdown is complete. When the multi-segment position enable is ON, and the servo drive will start to run from the next segment where the OFF occurs. The curves of single running and cycle running are shown in __[[Figure 6-15>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_29777829e6742c0d.gif?rev=1.1]]__ and __[[Figure 6-16>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_d264849e0940e3e4.gif?rev=1.1]]__ respectively.
883 883  
884 -(% style="text-align:center" %)
874 +
885 885  [[image:image-20220608164847-13.png]]
886 886  
887 887  Figure 6-15 Single running-run the remaining segments (P07-02=1, P07-03=4)
888 888  
889 -(% style="text-align:center" %)
879 +
890 890  [[image:image-20220608165032-14.png]]
891 891  
892 892  Figure 6-16 Cycle running-run the remaining segment (P07-02=1, P07-03=4)
... ... @@ -895,12 +895,12 @@
895 895  
896 896  In this processing mode, when the multi-segment position instruction enable is OFF during running, the servo drive will abandon the uncompleted displacement part and shutdown. After the shutdown is completed, the positioning completion signal is valid. When the multi-segment position enable is ON, and the servo drive will start to operate from the next position set by P07-02. The curves of single running and cycle running are shown in __[[Figure 6-17>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_2328499c9613af49.gif?rev=1.1]]__ and __[[Figure 6-18>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_1f2e35174b1afd3c.gif?rev=1.1]]__ respectively.
897 897  
898 -(% style="text-align:center" %)
888 +
899 899  [[image:image-20220608165343-15.png]]
900 900  
901 901  Figure 6-17 Single running-run from the start segment again (P07-02=1, P07-03=4)
902 902  
903 -(% style="text-align:center" %)
893 +
904 904  [[image:image-20220608165558-16.png]]
905 905  
906 906  Figure 6-18 Cyclic running-run from the start segment again (P07-02=1, P07-03=4)
... ... @@ -912,10 +912,8 @@
912 912  The relative position instruction takes the current stop position of the motor as the start point and specifies the amount of displacement.
913 913  
914 914  |(((
915 -(% style="text-align:center" %)
916 916  [[image:image-20220608165710-17.png]]
917 917  )))|(((
918 -(% style="text-align:center" %)
919 919  [[image:image-20220608165749-18.png]]
920 920  )))
921 921  |Figure 6-19 Relative position diagram|Figure 6-20 Displacement diagram
... ... @@ -925,10 +925,8 @@
925 925  The absolute position instruction takes "reference origin" as the zero point of absolute positioning, and specifies the amount of displacement.
926 926  
927 927  |(((
928 -(% style="text-align:center" %)
929 929  [[image:image-20220608165848-19.png]]
930 930  )))|(((
931 -(% style="text-align:center" %)
932 932  [[image:image-20220608170005-20.png]]
933 933  )))
934 934  |Figure 6-21 Absolute indication|Figure 6-22 Displacement
... ... @@ -937,46 +937,46 @@
937 937  
938 938  The multi-segment position running supports maximum 16 segments different position instructions. The displacement, maximum running speed (steady-state running speed), acceleration and deceleration time of each position and the waiting time between segment could all be set. __[[Table 6-19>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPositioninstructioninputsetting]]__ are the related function codes of the 1st segment running curve.
939 939  
940 -(% class="table-bordered" %)
941 -|(% style="text-align:center; vertical-align:middle; width:124px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:171px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
926 +
927 +|**Function code**|**Name**|(((
942 942  **Setting method**
943 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
929 +)))|(((
944 944  **Effective time**
945 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:143px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:260px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
946 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-09|(% style="text-align:center; vertical-align:middle; width:171px" %)(((
931 +)))|**Default value**|**Range**|**Definition**|**Unit**
932 +|P07-09|(((
947 947  1st segment
948 948  
949 949  displacement
950 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
936 +)))|(((
951 951  Operation setting
952 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
938 +)))|(((
953 953  Effective immediately
954 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)10000|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
940 +)))|10000|(((
955 955  -2147483647 to
956 956  
957 957  2147483646
958 -)))|(% style="width:260px" %)Position instruction, positive and negative values could be set|(% style="text-align:center; vertical-align:middle" %)-
959 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-10|(% style="text-align:center; vertical-align:middle; width:171px" %)Maximum speed of the 1st displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
944 +)))|Position instruction, positive and negative values could be set|-
945 +|P07-10|Maximum speed of the 1st displacement|(((
960 960  Operation setting
961 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
947 +)))|(((
962 962  Effective immediately
963 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 5000|(% style="width:260px" %)Steady-state running speed of the 1st segment|(% style="text-align:center; vertical-align:middle" %)rpm
964 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-11|(% style="text-align:center; vertical-align:middle; width:171px" %)Acceleration and deceleration of 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
949 +)))|100|1 to 5000|Steady-state running speed of the 1st segment|rpm
950 +|P07-11|Acceleration and deceleration of 1st segment displacement|(((
965 965  Operation setting
966 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
952 +)))|(((
967 967  Effective immediately
968 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)The time required for the acceleration and deceleration of the 1st segment|(% style="text-align:center; vertical-align:middle" %)ms
969 -|(% style="text-align:center; vertical-align:middle; width:124px" %)P07-12|(% style="text-align:center; vertical-align:middle; width:171px" %)Waiting time after completion of the 1st segment displacement|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
954 +)))|100|1 to 65535|The time required for the acceleration and deceleration of the 1st segment|ms
955 +|P07-12|Waiting time after completion of the 1st segment displacement|(((
970 970  Operation setting
971 -)))|(% style="text-align:center; vertical-align:middle; width:187px" %)(((
957 +)))|(((
972 972  Effective immediately
973 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)100|(% style="text-align:center; vertical-align:middle; width:143px" %)1 to 65535|(% style="width:260px" %)Delayed waiting time from the completion of the 1st segment to the start of the next segment|(% style="text-align:center; vertical-align:middle" %)Set by P07-06
959 +)))|100|1 to 65535|Delayed waiting time from the completion of the 1st segment to the start of the next segment|Set by P07-06
974 974  
975 975  Table 6-19 The 1st position operation curve parameters table
976 976  
977 977  After setting the above parameters, the actual operation curve of the motor is shown in Figure 6-23.
978 978  
979 -(% style="text-align:center" %)
965 +
980 980  [[image:image-20220608170149-21.png]]
981 981  
982 982  Figure 6-23 The 1st segment running curve of motor
... ... @@ -985,16 +985,15 @@
985 985  
986 986  When selecting multi-segment position instruction as the instruction source, configure 1 DI port channel of the servo drive to function 20 (internal multi-segment position enable signal), and confirm the valid logic of the DI terminal.
987 987  
988 -(% class="table-bordered" %)
989 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
990 -|(% style="text-align:center; vertical-align:middle" %)20|(% style="text-align:center; vertical-align:middle" %)ENINPOS: Internal multi-segment position enable signal|(% style="text-align:center; vertical-align:middle" %)(((
974 +
975 +|**DI function code**|**Function name**|**Function**
976 +|20|ENINPOS: Internal multi-segment position enable signal|(((
991 991  DI port logic invalid: Does not affect the current operation of the servo motor.
992 992  
993 993  DI port logic valid: Motor runs multi-segment position
994 994  )))
995 995  
996 -(% style="text-align:center" %)
997 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png" data-xwiki-image-style-alignment="center"]]
982 +[[image:image-20220611152020-6.png]]
998 998  
999 999  It should be noted that only when the internal multi-segment position enable signal is OFF, can the P07 group parameters be actually modified to write into the servo drive!
1000 1000  
... ... @@ -1008,13 +1008,13 @@
1008 1008  
1009 1009  It it noted that the electronic gear ratio setting range of the 2500-line incremental encoder should meet the formula (6-1), and the electronic gear ratio setting range of the 17-bit encoder should meet the formula (6-2), setting range of the electronic gear ratio of 23-bit encoder should meet the formula (6-3)
1010 1010  
1011 -(% style="text-align:center" %)
996 +
1012 1012  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/35.png?rev=1.1]]
1013 1013  
1014 -(% style="text-align:center" %)
999 +
1015 1015  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/36.png?rev=1.1]]
1016 1016  
1017 -(% style="text-align:center" %)
1002 +
1018 1018  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/37.png?rev=1.1]]
1019 1019  
1020 1020  Otherwise, the servo drive will report Er.35: "Electronic gear ratio setting exceeds the limit"!
... ... @@ -1021,7 +1021,7 @@
1021 1021  
1022 1022  **(2) Setting steps of electronic gear ratio**
1023 1023  
1024 -(% style="text-align:center" %)
1009 +
1025 1025  [[image:image-20220608170320-22.png]]
1026 1026  
1027 1027  Figure 6-24 Setting steps of electronic gear ratio
... ... @@ -1036,6 +1036,7 @@
1036 1036  
1037 1037  Step5: Calculate the value of electronic gear ratio according to formula below.
1038 1038  
1024 +
1039 1039  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/38.png?rev=1.1]]
1040 1040  
1041 1041  **(3) lectronic gear ratio switch setting**
... ... @@ -1043,59 +1043,59 @@
1043 1043  
1044 1044  When the function code P00-16 is 0, the electronic gear ratio switching function could be used. You could switch between electronic gear 1 and electronic gear 2 as needed. There is only one set of gear ratios at any time. Related function codes are shown in the table below.
1045 1045  
1046 -(% class="table-bordered" %)
1047 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:159px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1032 +
1033 +|**Function code**|**Name**|(((
1048 1048  **Setting method**
1049 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1035 +)))|(((
1050 1050  **Effective time**
1051 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:127px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:311px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1052 -|(% style="text-align:center; vertical-align:middle" %)P00-16|(% style="text-align:center; vertical-align:middle; width:159px" %)Number of instruction pulses when the motor rotates one circle|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1037 +)))|**Default value**|**Range**|**Definition**|**Unit**
1038 +|P00-16|Number of instruction pulses when the motor rotates one circle|(((
1053 1053  Shutdown setting
1054 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1040 +)))|(((
1055 1055  Effective immediately
1056 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10000|(% style="text-align:center; vertical-align:middle; width:127px" %)0 to 131072|(% style="width:311px" %)Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(% style="text-align:center; vertical-align:middle" %)(((
1042 +)))|10000|0 to 131072|Set the number of position command pulses required for each turn of the motor. When the setting value is 0, [P00-17]/[P00-19] Electronic gear 1/2 numerator, [P00-18]/[P00-20] Electronic gear 1/2 denominator is valid.|(((
1057 1057  Instruction pulse
1058 1058  
1059 1059  unit
1060 1060  )))
1061 -|(% style="text-align:center; vertical-align:middle" %)P00-17|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1047 +|P00-17|(((
1062 1062  Electronic gear 1
1063 1063  
1064 1064  numerator
1065 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1051 +)))|Operation setting|(((
1066 1066  Effective immediately
1067 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1068 -|(% style="text-align:center; vertical-align:middle" %)P00-18|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1053 +)))|1|1 to 4294967294|Set the numerator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1054 +|P00-18|(((
1069 1069  Electronic gear 1
1070 1070  
1071 1071  denominator
1072 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1058 +)))|(((
1073 1073  Operation setting
1074 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1060 +)))|(((
1075 1075  Effective immediately
1076 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1077 -|(% style="text-align:center; vertical-align:middle" %)P00-19|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1062 +)))|1|1 to 4294967294|Set the denominator of the 1st group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1063 +|P00-19|(((
1078 1078  Electronic gear 2
1079 1079  
1080 1080  numerator
1081 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1067 +)))|Operation setting|(((
1082 1082  Effective immediately
1083 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1084 -|(% style="text-align:center; vertical-align:middle" %)P00-20|(% style="text-align:center; vertical-align:middle; width:159px" %)(((
1069 +)))|1|1 to 4294967294|Set the numerator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1070 +|P00-20|(((
1085 1085  Electronic gear 2
1086 1086  
1087 1087  denominator
1088 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1074 +)))|Operation setting|(((
1089 1089  Effective immediately
1090 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1|(% style="text-align:center; vertical-align:middle; width:127px" %)1 to 4294967294|(% style="width:311px" %)Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|(% style="text-align:center; vertical-align:middle" %)-
1076 +)))|1|1 to 4294967294|Set the denominator of the 2nd group electronic gear ratio for position instruction frequency division or multiplication. P00-16 is effective when the number of instruction pulses of one motor rotation is 0.|-
1091 1091  
1092 1092  Table 6-20 Electronic gear ratio function code
1093 1093  
1094 1094  To use electronic gear ratio 2, it is necessary to configure any DI port as function 09 (GEAR-SEL electronic gear switch 1), and determine the valid logic of the DI terminal.
1095 1095  
1096 -(% class="table-bordered" %)
1097 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1098 -|(% style="text-align:center; vertical-align:middle" %)09|(% style="text-align:center; vertical-align:middle" %)GEAR-SEL electronic gear switch 1|(% style="text-align:center; vertical-align:middle" %)(((
1082 +
1083 +|**DI function code**|**Function name**|**Function**
1084 +|09|GEAR-SEL electronic gear switch 1|(((
1099 1099  DI port logic invalid: electronic gear ratio 1
1100 1100  
1101 1101  DI port logic valid: electronic gear ratio 2
... ... @@ -1103,10 +1103,10 @@
1103 1103  
1104 1104  Table 6-21 Switching conditions of electronic gear ratio group
1105 1105  
1106 -|(% style="text-align:center; vertical-align:middle" %)**P00-16 value**|(% style="text-align:center; vertical-align:middle" %)**DI terminal level corresponding to DI port function 9**|(% style="text-align:center; vertical-align:middle" %)**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)DI port logic invalid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1108 -|(% style="text-align:center; vertical-align:middle" %)DI port logic valid|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1109 -|(% style="text-align:center; vertical-align:middle" %)1 to 131072|(% style="text-align:center; vertical-align:middle" %)~-~-|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1092 +|**P00-16 value**|**DI terminal level corresponding to DI port function 9**|**Electronic gear ratio**[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/39.png?rev=1.1]]
1093 +|(% rowspan="2" %)0|DI port logic invalid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/40.png?rev=1.1]]
1094 +|DI port logic valid|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/41.png?rev=1.1]]
1095 +|1 to 131072|~-~-|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/42.png?rev=1.1]]
1110 1110  
1111 1111  Table 6-22 Application of electronic gear ratio
1112 1112  
... ... @@ -1124,32 +1124,32 @@
1124 1124  
1125 1125  Reasonable setting of the position loop filter time constant can operate the motor more smoothly, so that the motor speed will not overshoot before reaching the stable point. This setting has no effect on the number of instruction pulses. The filter time is not as long as possible. If the filter time is longer, the delay time will be longer too, and the response time will be correspondingly longer. It is an illustration of several kinds of position filtering.
1126 1126  
1127 -(% style="text-align:center" %)
1113 +
1128 1128  [[image:image-20220608170455-23.png]]
1129 1129  
1130 1130  Figure 6-25 Position instruction filtering diagram
1131 1131  
1132 -(% class="table-bordered" %)
1133 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:193px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1118 +
1119 +|**Function code**|**Name**|(((
1134 1134  **Setting method**
1135 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1121 +)))|(((
1136 1136  **Effective time**
1137 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:93px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:280px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Unit**
1138 -|(% style="text-align:center; vertical-align:middle" %)P04-01|(% style="text-align:center; vertical-align:middle; width:193px" %)Pulse instruction filtering method|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
1123 +)))|**Default value**|**Range**|**Definition**|**Unit**
1124 +|P04-01|Pulse instruction filtering method|(((
1139 1139  Shutdown setting
1140 -)))|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1126 +)))|(((
1141 1141  Effective immediately
1142 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1|(% style="width:280px" %)(((
1128 +)))|0|0 to 1|(((
1143 1143  0: 1st-order low-pass filtering
1144 1144  
1145 1145  1: average filtering
1146 -)))|(% style="text-align:center; vertical-align:middle; width:72px" %)-
1147 -|(% style="text-align:center; vertical-align:middle" %)P04-02|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction 1st-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1132 +)))|-
1133 +|P04-02|Position instruction 1st-order low-pass filtering time constant|Shutdown setting|(((
1148 1148  Effective immediately
1149 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 1000|(% style="width:280px" %)Position instruction first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1150 -|(% style="text-align:center; vertical-align:middle" %)P04-03|(% style="text-align:center; vertical-align:middle; width:193px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:150px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:209px" %)(((
1135 +)))|0|0 to 1000|Position instruction first-order low-pass filtering time constant|ms
1136 +|P04-03|Position instruction average filtering time constant|Shutdown setting|(((
1151 1151  Effective immediately
1152 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:93px" %)0 to 128|(% style="width:280px" %)Position instruction average filtering time constant|(% style="text-align:center; vertical-align:middle; width:72px" %)ms
1138 +)))|0|0 to 128|Position instruction average filtering time constant|ms
1153 1153  
1154 1154  Table 6-23 Position instruction filter function code
1155 1155  
... ... @@ -1169,7 +1169,7 @@
1169 1169  (% class="wikigeneratedid" %)
1170 1170  the positioning completion function means that when the position deviation meets the value set by P05-12, it could be considered that the positioning is complete in position control mode. At this time, servo drive could output the positioning completion signal, and the host computer could confirm the completion of the positioning of servo drive after receiving the signal.
1171 1171  
1172 -(% style="text-align:center" %)
1158 +
1173 1173  [[image:image-20220608170550-24.png]]
1174 1174  
1175 1175  Figure 6-26 Positioning completion signal output diagram
... ... @@ -1178,46 +1178,46 @@
1178 1178  
1179 1179  To use the positioning completion/positioning approach function, a DO terminal of the servo drive should be assigned to the function 134 (P-COIN, positioning completion)/ 135 (P-NEAR, positioning approach). The related code parameters and DO function codes are shown as __[[Table 6-24>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HPosition-relatedDOoutputfunction]]__.
1180 1180  
1181 -(% style="text-align:center" %)
1167 +
1182 1182  [[image:image-20220608170650-25.png]]
1183 1183  
1184 1184  Figure 6-27 Positioning completion signal output with increased window filter time diagram
1185 1185  
1186 -(% class="table-bordered" %)
1187 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:133px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1172 +
1173 +|**Function code**|**Name**|(((
1188 1188  **Setting method**
1189 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1175 +)))|(((
1190 1190  **Effective time**
1191 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:100px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:293px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1192 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-12|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1177 +)))|**Default value**|**Range**|**Definition**|**Unit**
1178 +|P05-12|Positioning completion threshold|(((
1193 1193  Operation setting
1194 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1180 +)))|(((
1195 1195  Effective immediately
1196 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)800|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning completion threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1197 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-13|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1182 +)))|800|1 to 65535|Positioning completion threshold|Equivalent pulse unit
1183 +|P05-13|Positioning approach threshold|(((
1198 1198  Operation setting
1199 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1185 +)))|(((
1200 1200  Effective immediately
1201 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)5000|(% style="text-align:center; vertical-align:middle; width:100px" %)1 to 65535|(% style="text-align:center; vertical-align:middle; width:293px" %)Positioning approach threshold|(% style="text-align:center; vertical-align:middle" %)Equivalent pulse unit
1202 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-14|(% style="text-align:center; vertical-align:middle; width:133px" %)Position detection window time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1187 +)))|5000|1 to 65535|Positioning approach threshold|Equivalent pulse unit
1188 +|P05-14|Position detection window time|(((
1203 1203  Operation setting
1204 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1190 +)))|(((
1205 1205  Effective immediately
1206 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)10|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion detection window time|(% style="text-align:center; vertical-align:middle" %)ms
1207 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P05-15|(% style="text-align:center; vertical-align:middle; width:133px" %)Positioning signal hold time|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1192 +)))|10|0 to 20000|Set positioning completion detection window time|ms
1193 +|P05-15|Positioning signal hold time|(((
1208 1208  Operation setting
1209 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1195 +)))|(((
1210 1210  Effective immediately
1211 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)100|(% style="text-align:center; vertical-align:middle; width:100px" %)0 to 20000|(% style="text-align:center; vertical-align:middle; width:293px" %)Set positioning completion output hold time|(% style="text-align:center; vertical-align:middle" %)ms
1197 +)))|100|0 to 20000|Set positioning completion output hold time|ms
1212 1212  
1213 1213  Table 6-24 Function code parameters of positioning completion
1214 1214  
1215 -(% class="table-bordered" %)
1216 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1217 -|(% style="text-align:center; vertical-align:middle" %)134|(% style="text-align:center; vertical-align:middle" %)P-COIN positioning complete|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates the servo drive position is complete.
1218 -|(% style="text-align:center; vertical-align:middle" %)135|(% style="text-align:center; vertical-align:middle" %)(((
1201 +
1202 +|**DO function code**|**Function name**|**Function**
1203 +|134|P-COIN positioning complete|Output this signal indicates the servo drive position is complete.
1204 +|135|(((
1219 1219  P-NEAR positioning close
1220 -)))|(% style="text-align:center; vertical-align:middle" %)(((
1206 +)))|(((
1221 1221  Output this signal indicates that the servo drive position is close.
1222 1222  )))
1223 1223  
... ... @@ -1227,7 +1227,7 @@
1227 1227  
1228 1228  Speed control refers to controlling the speed of the machine through speed instructions. Given the speed instruction by digital voltage or communication, the servo drive can control the mechanical speed fast and precisely. Therefore, the speed control mode is mainly used to control the rotation speed such as analog CNC engraving and milling machine. [[Figure 6-28>>path:http://13.229.109.52:8080/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/6.28.jpg?width=806&height=260&rev=1.1]] is the speed control block diagram.
1229 1229  
1230 -(% style="text-align:center" %)
1216 +
1231 1231  [[image:6.28.jpg||height="260" width="806"]]
1232 1232  
1233 1233  Figure 6-28 Speed control block diagram
... ... @@ -1236,21 +1236,21 @@
1236 1236  
1237 1237  In speed control mode, VD2A and VD2B servo drives have two instruction source: internal speed instruction and analog speed instruction. VD2F drive only supports internal speed instruction. Speed instruction source is set by function code P01-01.
1238 1238  
1239 -(% class="table-bordered" %)
1240 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:180px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1225 +
1226 +|**Function code**|**Name**|(((
1241 1241  **Setting method**
1242 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1228 +)))|(((
1243 1243  **Effective time**
1244 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:83px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:328px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1245 -|(% style="text-align:center; vertical-align:middle" %)P01-01|(% style="text-align:center; vertical-align:middle; width:180px" %)Speed instruction source|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1230 +)))|**Default value**|**Range**|**Definition**|**Unit**
1231 +|P01-01|Speed instruction source|(((
1246 1246  Shutdown setting
1247 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1233 +)))|(((
1248 1248  Effective immediately
1249 -)))|(% style="text-align:center; vertical-align:middle; width:124px" %)1|(% style="text-align:center; vertical-align:middle; width:83px" %)1 to 6|(% style="text-align:center; vertical-align:middle; width:328px" %)(((
1235 +)))|1|1 to 6|(((
1250 1250  0: internal speed instruction
1251 1251  
1252 1252  1: AI_1 analog input (not supported by VD2F)
1253 -)))|(% style="text-align:center; vertical-align:middle" %)-
1239 +)))|-
1254 1254  
1255 1255  Table 6-26 Speed instruction source parameter
1256 1256  
... ... @@ -1258,19 +1258,19 @@
1258 1258  
1259 1259  Speed instruction comes from internal instruction, and the internal speed instruction is given by a number. The VD2 series servo drive has internal multi-segment speed running function. There are 8 segments speed instructions stored in servo drive, and the speed of each segment could be set individually. The servo drive uses the 1st segment internal speed by default. To use the 2nd to 8th segment internal speed, the corresponding number of DI terminals must be configured as functions 13, 14, and 15. The detailed parameters and function codes are shown as below.
1260 1260  
1261 -(% class="table-bordered" %)
1262 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:212px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:138px" %)(((
1247 +
1248 +|**Function code**|**Name**|(((
1263 1263  **Setting method**
1264 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1250 +)))|(((
1265 1265  **Effective time**
1266 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:302px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1267 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-02|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1252 +)))|**Default value**|**Range**|**Definition**|**Unit**
1253 +|(% rowspan="2" %)P01-02|(% rowspan="2" %)(((
1268 1268  Internal speed Instruction 0
1269 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1255 +)))|(% rowspan="2" %)(((
1270 1270  Operation setting
1271 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1257 +)))|(% rowspan="2" %)(((
1272 1272  Effective immediately
1273 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1259 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1274 1274  Internal speed instruction 0
1275 1275  
1276 1276  When DI input port:
... ... @@ -1282,15 +1282,15 @@
1282 1282  13-INSPD1: 0,
1283 1283  
1284 1284  select this speed instruction to be effective.
1285 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1286 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1287 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-23|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1271 +)))|(% rowspan="2" %)rpm
1272 +|-5000 to 5000*
1273 +|(% rowspan="2" %)P01-23|(% rowspan="2" %)(((
1288 1288  Internal speed Instruction 1
1289 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1275 +)))|(% rowspan="2" %)(((
1290 1290  Operation setting
1291 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1277 +)))|(% rowspan="2" %)(((
1292 1292  Effective immediately
1293 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1279 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1294 1294  Internal speed instruction 1
1295 1295  
1296 1296  When DI input port:
... ... @@ -1302,15 +1302,15 @@
1302 1302  13-INSPD1: 1,
1303 1303  
1304 1304  Select this speed instruction to be effective.
1305 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1306 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1307 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-24|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1291 +)))|(% rowspan="2" %)rpm
1292 +|-5000 to 5000*
1293 +|(% rowspan="2" %)P01-24|(% rowspan="2" %)(((
1308 1308  Internal speed Instruction 2
1309 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1295 +)))|(% rowspan="2" %)(((
1310 1310  Operation setting
1311 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1297 +)))|(% rowspan="2" %)(((
1312 1312  Effective immediately
1313 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1299 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1314 1314  Internal speed instruction 2
1315 1315  
1316 1316  When DI input port:
... ... @@ -1322,15 +1322,15 @@
1322 1322  13-INSPD1: 0,
1323 1323  
1324 1324  Select this speed instruction to be effective.
1325 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1326 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1327 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:112px" %)P01-25|(% rowspan="2" style="text-align:center; vertical-align:middle; width:212px" %)(((
1311 +)))|(% rowspan="2" %)rpm
1312 +|-5000 to 5000*
1313 +|(% rowspan="2" %)P01-25|(% rowspan="2" %)(((
1328 1328  Internal speed Instruction 3
1329 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1315 +)))|(% rowspan="2" %)(((
1330 1330  Operation setting
1331 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:160px" %)(((
1317 +)))|(% rowspan="2" %)(((
1332 1332  Effective immediately
1333 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1319 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1334 1334  Internal speed instruction 3
1335 1335  
1336 1336  When DI input port:
... ... @@ -1342,17 +1342,16 @@
1342 1342  13-INSPD1: 1,
1343 1343  
1344 1344  Select this speed instruction to be effective.
1345 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1346 -|(% style="text-align:center; vertical-align:middle; width:118px" %)-5000 to 5000*
1331 +)))|(% rowspan="2" %)rpm
1332 +|-5000 to 5000*
1347 1347  
1348 -(% class="table-bordered" %)
1349 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-26|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1334 +|(% rowspan="2" %)P01-26|(% rowspan="2" %)(((
1350 1350  Internal speed Instruction 4
1351 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1336 +)))|(% rowspan="2" %)(((
1352 1352  Operation setting
1353 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1338 +)))|(% rowspan="2" %)(((
1354 1354  Effective immediately
1355 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1340 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1356 1356  Internal speed instruction 4
1357 1357  
1358 1358  When DI input port:
... ... @@ -1364,15 +1364,15 @@
1364 1364  13-INSPD1: 0,
1365 1365  
1366 1366  Select this speed instruction to be effective.
1367 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1368 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1369 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-27|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1352 +)))|(% rowspan="2" %)rpm
1353 +|-5000 to 5000*
1354 +|(% rowspan="2" %)P01-27|(% rowspan="2" %)(((
1370 1370  Internal speed Instruction 5
1371 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1356 +)))|(% rowspan="2" %)(((
1372 1372  Operation setting
1373 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1358 +)))|(% rowspan="2" %)(((
1374 1374  Effective immediately
1375 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1360 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1376 1376  Internal speed instruction 5
1377 1377  
1378 1378  When DI input port:
... ... @@ -1384,15 +1384,15 @@
1384 1384  13-INSPD1: 1,
1385 1385  
1386 1386  Select this speed instruction to be effective.
1387 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1388 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1389 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-28|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1372 +)))|(% rowspan="2" %)rpm
1373 +|-5000 to 5000*
1374 +|(% rowspan="2" %)P01-28|(% rowspan="2" %)(((
1390 1390  Internal speed Instruction 6
1391 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1376 +)))|(% rowspan="2" %)(((
1392 1392  Operation setting
1393 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1378 +)))|(% rowspan="2" %)(((
1394 1394  Effective immediately
1395 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1380 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1396 1396  Internal speed instruction 6
1397 1397  
1398 1398  When DI input port:
... ... @@ -1404,15 +1404,15 @@
1404 1404  13-INSPD1: 0,
1405 1405  
1406 1406  Select this speed instruction to be effective.
1407 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1408 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1409 -|(% rowspan="2" style="text-align:center; vertical-align:middle; width:111px" %)P01-29|(% rowspan="2" style="text-align:center; vertical-align:middle; width:214px" %)(((
1392 +)))|(% rowspan="2" %)rpm
1393 +|-5000 to 5000*
1394 +|(% rowspan="2" %)P01-29|(% rowspan="2" %)(((
1410 1410  Internal speed Instruction 7
1411 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:138px" %)(((
1396 +)))|(% rowspan="2" %)(((
1412 1412  Operation setting
1413 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:161px" %)(((
1398 +)))|(% rowspan="2" %)(((
1414 1414  Effective immediately
1415 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle; width:107px" %)0|(% style="text-align:center; vertical-align:middle; width:117px" %)-3000 to 3000|(% rowspan="2" style="width:302px" %)(((
1400 +)))|(% rowspan="2" %)0|-3000 to 3000|(% rowspan="2" %)(((
1416 1416  Internal speed instruction 7
1417 1417  
1418 1418  When DI input port:
... ... @@ -1424,34 +1424,34 @@
1424 1424  13-INSPD1: 1,
1425 1425  
1426 1426  Select this speed instruction to be effective.
1427 -)))|(% rowspan="2" style="text-align:center; vertical-align:middle" %)rpm
1428 -|(% style="text-align:center; vertical-align:middle; width:117px" %)-5000 to 5000*
1412 +)))|(% rowspan="2" %)rpm
1413 +|-5000 to 5000*
1429 1429  
1430 1430  Table 6-27 Internal speed instruction parameters
1431 1431  
1432 1432  ✎**Note: **“*” means the set range of VD2F servo drive.
1433 1433  
1434 -(% class="table-bordered" %)
1435 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1436 -|(% style="text-align:center; vertical-align:middle" %)13|(% style="text-align:center; vertical-align:middle" %)INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1437 -|(% style="text-align:center; vertical-align:middle" %)14|(% style="text-align:center; vertical-align:middle" %)INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1438 -|(% style="text-align:center; vertical-align:middle" %)15|(% style="text-align:center; vertical-align:middle" %)INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1439 1439  
1420 +|**DI function code**|**function name**|**Function**
1421 +|13|INSPD1 internal speed instruction selection 1|Form internal multi-speed running segment number
1422 +|14|INSPD2 internal speed instruction selection 2|Form internal multi-speed running segment number
1423 +|15|INSPD3 internal speed instruction selection 3|Form internal multi-speed running segment number
1424 +
1440 1440  Table 6-28 DI multi-speed function code description
1441 1441  
1442 1442  The multi-speed segment number is a 3-bit binary number, and the DI terminal logic is level valid. When the input level is valid, the segment selection bit value is 1, otherwise it is 0. The corresponding relationship between INSPD1 to 3 and segment numbers is shown as below.
1443 1443  
1444 -(% class="table-bordered" %)
1445 -|(% style="text-align:center; vertical-align:middle" %)**INSPD3**|(% style="text-align:center; vertical-align:middle" %)**INSPD2**|(% style="text-align:center; vertical-align:middle" %)**INSPD1**|(% style="text-align:center; vertical-align:middle" %)**Running segment number**|(% style="text-align:center; vertical-align:middle" %)**Internal speed instruction number**
1446 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0
1447 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)2|(% style="text-align:center; vertical-align:middle" %)1
1448 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)3|(% style="text-align:center; vertical-align:middle" %)2
1429 +
1430 +|**INSPD3**|**INSPD2**|**INSPD1**|**Running segment number**|**Internal speed instruction number**
1431 +|0|0|0|1|0
1432 +|0|0|1|2|1
1433 +|0|1|0|3|2
1449 1449  |(% colspan="5" %)......
1450 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)8|(% style="text-align:center; vertical-align:middle" %)7
1435 +|1|1|1|8|7
1451 1451  
1452 1452  Table 6-29 Correspondence between INSPD bits and segment numbers
1453 1453  
1454 -(% style="text-align:center" %)
1439 +
1455 1455  [[image:image-20220608170845-26.png]]
1456 1456  
1457 1457  Figure 6-29 Multi-segment speed running curve
... ... @@ -1460,7 +1460,7 @@
1460 1460  
1461 1461  The servo drive processes the analog voltage signal output by the host computer or other equipment as a speed instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog speed input, and AI_2 is analog speed limit.
1462 1462  
1463 -(% style="text-align:center" %)
1448 +
1464 1464  [[image:image-20220608153341-5.png]]
1465 1465  
1466 1466  Figure 6-30 Analog input circuit
... ... @@ -1467,7 +1467,7 @@
1467 1467  
1468 1468  Taking AI_1 as an example, the method of setting the speed instruction of analog voltage is illustrated as below.
1469 1469  
1470 -(% style="text-align:center" %)
1455 +
1471 1471  [[image:image-20220608170955-27.png]]
1472 1472  
1473 1473  Figure 6-31 Analog voltage speed instruction setting steps
... ... @@ -1480,18 +1480,18 @@
1480 1480  
1481 1481  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1482 1482  
1483 -(% style="text-align:center" %)
1468 +
1484 1484  [[image:image-20220608171124-28.png]]
1485 1485  
1486 1486  Figure 6-32 AI_1 diagram before and after bias
1487 1487  
1488 -(% class="table-bordered" %)
1489 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:125px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:165px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:111px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:360px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:44px" %)**Unit**
1490 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-5000 to 5000|(% style="width:360px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1491 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)200|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 60000|(% style="width:360px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle; width:44px" %)0.01ms
1492 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)20|(% style="text-align:center; vertical-align:middle; width:136px" %)0 to 1000|(% style="width:360px" %)Set AI_1 channel quantity dead zone value|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1493 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:125px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:137px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:165px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:111px" %)0|(% style="text-align:center; vertical-align:middle; width:136px" %)-500 to 500|(% style="width:360px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle; width:44px" %)mV
1494 1494  
1474 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1475 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1476 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1477 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel quantity dead zone value|mV
1478 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1479 +
1495 1495  Table 6-30 AI_1 parameters
1496 1496  
1497 1497  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1502,7 +1502,7 @@
1502 1502  
1503 1503  In the speed control mode, excessive acceleration of the speed instruction will cause the motor to jump or vibrate. Therefore, a suitable acceleration and deceleration time can realize the smooth speed change of the motor and avoid the occurrence of mechanical damage caused by the above situation.
1504 1504  
1505 -(% style="text-align:center" %)
1490 +
1506 1506  [[image:image-20220608171314-29.png]]
1507 1507  
1508 1508  Figure 6-33 of acceleration and deceleration time diagram
... ... @@ -1511,22 +1511,22 @@
1511 1511  
1512 1512  Actual deceleration time T2 =[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/44.jpg?rev=1.1]]
1513 1513  
1514 -(% class="table-bordered" %)
1515 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:137px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1499 +
1500 +|**Function code**|**Name**|(((
1516 1516  **Setting method**
1517 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1502 +)))|(((
1518 1518  **Effective time**
1519 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:92px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:393px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:66px" %)**Unit**
1520 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-03|(% style="text-align:center; vertical-align:middle; width:137px" %)Acceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1504 +)))|**Default value**|**Range**|**Definition**|**Unit**
1505 +|P01-03|Acceleration time|(((
1521 1521  Operation setting
1522 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1507 +)))|(((
1523 1523  Effective immediately
1524 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to accelerate from 0 to 1000rpm|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1525 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-04|(% style="text-align:center; vertical-align:middle; width:137px" %)Deceleration time|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1509 +)))|50|0 to 65535|The time for the speed instruction to accelerate from 0 to 1000rpm|ms
1510 +|P01-04|Deceleration time|(((
1526 1526  Operation setting
1527 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1512 +)))|(((
1528 1528  Effective immediately
1529 -)))|(% style="text-align:center; vertical-align:middle; width:104px" %)50|(% style="text-align:center; vertical-align:middle; width:92px" %)0 to 65535|(% style="width:393px" %)The time for the speed instruction to decelerate from 1000rpm to 0|(% style="text-align:center; vertical-align:middle; width:66px" %)ms
1514 +)))|50|0 to 65535|The time for the speed instruction to decelerate from 1000rpm to 0|ms
1530 1530  
1531 1531  Table 6-31 Acceleration and deceleration time parameters
1532 1532  
... ... @@ -1545,27 +1545,27 @@
1545 1545  
1546 1546  The amplitude of negative speed command ≤ min (Maximum motor speed, P01-10, P01-13)
1547 1547  
1548 -(% class="table-bordered" %)
1549 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1533 +
1534 +|**Function code**|**Name**|(((
1550 1550  **Setting method**
1551 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1536 +)))|(((
1552 1552  **Effective time**
1553 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:395px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Unit**
1554 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-10|(% style="text-align:center; vertical-align:middle; width:136px" %)Maximum speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1538 +)))|**Default value**|**Range**|**Definition**|**Unit**
1539 +|P01-10|Maximum speed threshold|(((
1555 1555  Operation setting
1556 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1541 +)))|(((
1557 1557  Effective immediately
1558 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3600|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1559 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-12|(% style="text-align:center; vertical-align:middle; width:136px" %)Forward speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1543 +)))|3600|0 to 5000|Set the maximum speed limit value, if exceeds this value, an overspeed fault will be reported|rpm
1544 +|P01-12|Forward speed threshold|(((
1560 1560  Operation setting
1561 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1546 +)))|(((
1562 1562  Effective immediately
1563 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set forward speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1564 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-13|(% style="text-align:center; vertical-align:middle; width:136px" %)Reverse speed threshold|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
1548 +)))|3000|0 to 5000|Set forward speed limit value|rpm
1549 +|P01-13|Reverse speed threshold|(((
1565 1565  Operation setting
1566 -)))|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
1551 +)))|(((
1567 1567  Effective immediately
1568 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)3000|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 5000|(% style="width:395px" %)Set reverse speed limit value|(% style="text-align:center; vertical-align:middle; width:61px" %)rpm
1553 +)))|3000|0 to 5000|Set reverse speed limit value|rpm
1569 1569  
1570 1570  Table 6-32 Rotation speed related function codes
1571 1571  
... ... @@ -1575,19 +1575,19 @@
1575 1575  
1576 1576  If the speed instruction amplitude is greater than zero-speed clamp speed threshold, the servo motor exits the locked state and continues to run according to the current input speed instruction.
1577 1577  
1578 -(% class="table-bordered" %)
1579 -|(% style="text-align:center; vertical-align:middle; width:119px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1563 +
1564 +|**Function code**|**Name**|(((
1580 1580  **Setting method**
1581 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1566 +)))|(((
1582 1582  **Effective time**
1583 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:86px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:58px" %)**Unit**
1584 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1568 +)))|**Default value**|**Range**|**Definition**|**Unit**
1569 +|P01-21|(((
1585 1585  Zero-speed clamp function selection
1586 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1571 +)))|(((
1587 1587  Operation setting
1588 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1573 +)))|(((
1589 1589  Effective immediately
1590 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)0|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 3|(% style="width:398px" %)(((
1575 +)))|0|0 to 3|(((
1591 1591  Set the zero-speed clamp function. In speed mode:
1592 1592  
1593 1593  0: Force the speed to 0;
... ... @@ -1597,18 +1597,18 @@
1597 1597  2: When speed instruction is less than P01-22, force the speed to 0 and keep the position locked
1598 1598  
1599 1599  3: Invalid, ignore zero-speed clamp input
1600 -)))|(% style="text-align:center; vertical-align:middle; width:58px" %)-
1601 -|(% style="text-align:center; vertical-align:middle; width:119px" %)P01-22|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1585 +)))|-
1586 +|P01-22|(((
1602 1602  Zero-speed clamp speed threshold
1603 -)))|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
1588 +)))|(((
1604 1604  Operation setting
1605 -)))|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1590 +)))|(((
1606 1606  Effective immediately
1607 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)20|(% style="text-align:center; vertical-align:middle; width:86px" %)0 to 1000|(% style="text-align:left; vertical-align:middle; width:398px" %)Set the speed threshold of zero-speed clamp function|(% style="text-align:center; vertical-align:middle; width:58px" %)rpm
1592 +)))|20|0 to 1000|Set the speed threshold of zero-speed clamp function|rpm
1608 1608  
1609 1609  Table 6-33 Zero-speed clamp related parameters
1610 1610  
1611 -(% style="text-align:center" %)
1596 +
1612 1612  [[image:image-20220608171549-30.png]]
1613 1613  
1614 1614  Figure 6-34 Zero-speed clamp diagram
... ... @@ -1621,7 +1621,7 @@
1621 1621  
1622 1622  After the speed instruction is filtered, the absolute value of the actual speed absolute value of the servo motor reaches P05-16 (rotation detection speed threshold), it could be considered that the motor is rotating. At this time, the servo drive outputs a rotation detection signal (TGON), which can be used to confirm that the motor has rotated. On the contrary, when the absolute value of the actual rotation speed of the servo motor is less than P05-16, it is considered that the motor is not rotating.
1623 1623  
1624 -(% style="text-align:center" %)
1609 +
1625 1625  [[image:image-20220608171625-31.png]]
1626 1626  
1627 1627  Figure 6-35 Rotation detection signal diagram
... ... @@ -1628,30 +1628,28 @@
1628 1628  
1629 1629  To use the motor rotation detection signal output function, a DO terminal of the servo drive should be assigned to function 132 (T-COIN, rotation detection). The function code parameters and related DO function codes are shown in __[[Table 6-34>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-35>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1630 1630  
1631 -(% class="table-bordered" %)
1632 -|(% style="text-align:center; vertical-align:middle; width:147px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1616 +
1617 +|**Function code**|**Name**|(((
1633 1633  **Setting method**
1634 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1619 +)))|(((
1635 1635  **Effective time**
1636 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:337px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1637 -|(% style="text-align:center; vertical-align:middle; width:147px" %)P05-16|(% style="text-align:center; vertical-align:middle; width:166px" %)(((
1621 +)))|**Default value**|**Range**|**Definition**|**Unit**
1622 +|P05-16|(((
1638 1638  Rotation detection
1639 1639  
1640 1640  speed threshold
1641 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)(((
1626 +)))|(((
1642 1642  Operation setting
1643 -)))|(% style="text-align:center; vertical-align:middle; width:160px" %)(((
1628 +)))|(((
1644 1644  Effective immediately
1645 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)20|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:337px" %)Set the motor rotation signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1630 +)))|20|0 to 1000|Set the motor rotation signal judgment threshold|rpm
1646 1646  
1647 1647  Table 6-34 Rotation detection speed threshold parameters
1648 1648  
1649 -(% class="table-bordered" %)
1650 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1651 -|(% style="text-align:center; vertical-align:middle" %)132|(% style="text-align:center; vertical-align:middle" %)(((
1652 -T-COIN
1653 1653  
1654 -rotation detection
1635 +|**DO function code**|**Function name**|**Function**
1636 +|132|(((
1637 +T-COIN rotation detection
1655 1655  )))|(((
1656 1656  Valid: when the absolute value of motor speed after filtering is greater than or equal to the set value of function code P05-16
1657 1657  
... ... @@ -1664,7 +1664,7 @@
1664 1664  
1665 1665  If the absolute value of the actual speed of servo motor is less than a certain threshold P05-19, it is considered that servo motor stops rotating (close to a standstill), and the servo drive outputs a zero speed signal (ZSP) at this time. On the contrary, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero-speed signal is invalid.
1666 1666  
1667 -(% style="text-align:center" %)
1650 +
1668 1668  [[image:image-20220608171904-32.png]]
1669 1669  
1670 1670  Figure 6-36 Zero-speed signal diagram
... ... @@ -1671,25 +1671,25 @@
1671 1671  
1672 1672  To use the motor zero-speed signal output function, a DO terminal of servo drive should be assigned to function 133 (ZSP, zero-speed signal). The function code parameters and related DO function codes are shown in __[[Table 6-36>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-37>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1673 1673  
1674 -(% class="table-bordered" %)
1675 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:188px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1657 +
1658 +|**Function code**|**Name**|(((
1676 1676  **Setting method**
1677 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1660 +)))|(((
1678 1678  **Effective time**
1679 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:79px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:342px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1680 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P05-19|(% style="text-align:center; vertical-align:middle; width:188px" %)Zero speed output signal threshold|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1662 +)))|**Default value**|**Range**|**Definition**|**Unit**
1663 +|P05-19|Zero speed output signal threshold|(((
1681 1681  Operation setting
1682 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1665 +)))|(((
1683 1683  Effective immediately
1684 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10|(% style="text-align:center; vertical-align:middle; width:79px" %)0 to 6000|(% style="text-align:center; vertical-align:middle; width:342px" %)Set zero-speed output signal judgment threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1667 +)))|10|0 to 6000|Set zero-speed output signal judgment threshold|rpm
1685 1685  
1686 1686  Table 6-36 Zero-speed output signal threshold parameter
1687 1687  
1688 -(% class="table-bordered" %)
1689 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
1690 -|(% style="text-align:center; vertical-align:middle" %)133|(% style="text-align:center; vertical-align:middle" %)(((
1671 +
1672 +|**DO function code**|**Function name**|**Function**
1673 +|133|(((
1691 1691  ZSP zero speed signal
1692 -)))|(% style="text-align:center; vertical-align:middle" %)Output this signal indicates that the servo motor is stopping rotation
1675 +)))|Output this signal indicates that the servo motor is stopping rotation
1693 1693  
1694 1694  Table 6-37 DO zero-speed signal function code
1695 1695  
... ... @@ -1697,7 +1697,7 @@
1697 1697  
1698 1698  When the absolute value of the deviation between the actual speed of the servo motor after filtering and the speed instruction meets a certain threshold P05-17, it is considered that the actual speed of the motor has reached the set value, and the servo drive outputs a speed coincidence signal (V-COIN) at this time. Conversely, if the absolute value of the deviation between the actual speed of the servo motor and the set speed instruction after filtering exceeds the threshold, the speed consistent signal is invalid.
1699 1699  
1700 -(% style="text-align:center" %)
1683 +
1701 1701  [[image:image-20220608172053-33.png]]
1702 1702  
1703 1703  Figure 6-37 Speed consistent signal diagram
... ... @@ -1704,25 +1704,25 @@
1704 1704  
1705 1705  To use the motor speed consistent function, a DO terminal of the servo drive should be assigned to function 136 (V-COIN, consistent speed). The function code parameters and related DO function codes are shown in __[[Table 6-38>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-39>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1706 1706  
1707 -(% class="table-bordered" %)
1708 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:243px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1690 +
1691 +|**Function code**|**Name**|(((
1709 1709  **Setting method**
1710 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1693 +)))|(((
1711 1711  **Effective time**
1712 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:76px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:288px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1713 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P05-17|(% style="text-align:center; vertical-align:middle; width:243px" %)Speed consistent signal threshold|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
1695 +)))|**Default value**|**Range**|**Definition**|**Unit**
1696 +|P05-17|Speed consistent signal threshold|(((
1714 1714  Operationsetting
1715 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1698 +)))|(((
1716 1716  Effective immediately
1717 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)10|(% style="text-align:center; vertical-align:middle; width:76px" %)0 to 100|(% style="text-align:center; vertical-align:middle; width:288px" %)Set speed consistent signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1700 +)))|10|0 to 100|Set speed consistent signal threshold|rpm
1718 1718  
1719 1719  Table 6-38 Speed consistent signal threshold parameters
1720 1720  
1721 -(% class="table-bordered" %)
1722 -|(% style="text-align:center; vertical-align:middle; width:193px" %)**DO Function code**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:672px" %)**Function**
1723 -|(% style="text-align:center; vertical-align:middle; width:193px" %)136|(% style="text-align:center; vertical-align:middle; width:340px" %)(((
1704 +
1705 +|**DO Function code**|**Function name**|**Function**
1706 +|136|(((
1724 1724  U-COIN consistent speed
1725 -)))|(% style="text-align:center; vertical-align:middle; width:672px" %)The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1708 +)))|The output signal indicates that the absolute deviation of the actual speed of servo motor and the speed instruction meets the P05-17 set value
1726 1726  
1727 1727  Table 6-39 DO speed consistent function code
1728 1728  
... ... @@ -1730,7 +1730,7 @@
1730 1730  
1731 1731  After filtering, the absolute value of the actual speed of the servo motor exceeds a certain threshold [P05-17], and it is considered that the actual speed of the servo motor has reached the expected value. At this time, the servo drive can output a speed close signal (V-NEAR) through the DO terminal. Conversely, if the absolute value of the actual speed of the servo motor after filtering is not greater than this value, the speed approach signal is invalid.
1732 1732  
1733 -(% style="text-align:center" %)
1716 +
1734 1734  [[image:image-20220608172207-34.png]]
1735 1735  
1736 1736  Figure 6-38 Speed approaching signal diagram
... ... @@ -1737,25 +1737,25 @@
1737 1737  
1738 1738  To use the motor speed approach function, a DO terminal of the servo drive should be assigned to function 137 (V-NEAR, speed approach). The function code parameters and related DO function codes are shown in __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__ and __[[Table 6-40>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HZero-speedclampfunction]]__.
1739 1739  
1740 -(% class="table-bordered" %)
1741 -|(% style="text-align:center; vertical-align:middle; width:114px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:238px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1723 +
1724 +|**Function code**|**Name**|(((
1742 1742  **Setting method**
1743 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1726 +)))|(((
1744 1744  **Effective time**
1745 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:263px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1746 -|(% style="text-align:center; vertical-align:middle; width:114px" %)P05-18|(% style="text-align:center; vertical-align:middle; width:238px" %)Speed approach signal threshold|(% style="text-align:center; vertical-align:middle; width:153px" %)(((
1728 +)))|**Default value**|**Range**|**Definition**|**Unit**
1729 +|P05-18|Speed approach signal threshold|(((
1747 1747  Operation setting
1748 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
1731 +)))|(((
1749 1749  Effective immediately
1750 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 6000|(% style="text-align:center; vertical-align:middle; width:263px" %)Set speed approach signal threshold|(% style="text-align:center; vertical-align:middle" %)rpm
1733 +)))|100|10 to 6000|Set speed approach signal threshold|rpm
1751 1751  
1752 1752  Table 6-40 Speed approaching signal threshold parameters
1753 1753  
1754 -(% class="table-bordered" %)
1755 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:314px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:719px" %)**Function**
1756 -|(% style="text-align:center; vertical-align:middle" %)137|(% style="text-align:center; vertical-align:middle; width:314px" %)(((
1737 +
1738 +|**DO function code**|**Function name**|**Function**
1739 +|137|(((
1757 1757  V-NEAR speed approach
1758 -)))|(% style="text-align:center; vertical-align:middle; width:719px" %)The output signal indicates that the actual speed of the servo motor has reached the expected value
1741 +)))|The output signal indicates that the actual speed of the servo motor has reached the expected value
1759 1759  
1760 1760  Table 6-41 DO speed approach function code
1761 1761  
... ... @@ -1763,7 +1763,7 @@
1763 1763  
1764 1764  The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current can realize the control of the torque. Torque control refers to controlling the output torque of the motor through torque instructions. Torque instruction could be given by internal instruction and analog voltage.
1765 1765  
1766 -(% style="text-align:center" %)
1749 +
1767 1767  [[image:image-20220608172405-35.png]]
1768 1768  
1769 1769  Figure 6-39 Torque mode diagram
... ... @@ -1772,21 +1772,21 @@
1772 1772  
1773 1773  In torque instruction, VD2A and VD2B servo drives have two instruction source: internal torque instruction and analog torque instruction. VD2F drive only has internal torque instruction. The torque instruction source is set by the function code P01-07.
1774 1774  
1775 -(% class="table-bordered" %)
1776 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:186px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1758 +
1759 +|**Function code**|**Name**|(((
1777 1777  **Setting method**
1778 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1761 +)))|(((
1779 1779  **Effective time**
1780 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1781 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:186px" %)Torque instruction source|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1763 +)))|**Default value**|**Range**|**Definition**|**Unit**
1764 +|P01-08|Torque instruction source|(((
1782 1782  Shutdown setting
1783 -)))|(% style="text-align:center; vertical-align:middle; width:162px" %)(((
1766 +)))|(((
1784 1784  Effective immediately
1785 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(% style="text-align:center; vertical-align:middle" %)(((
1768 +)))|0|0 to 1|(((
1786 1786  0: internal torque instruction
1787 1787  
1788 1788  1: AI_1 analog input(not supported by VD2F)
1789 -)))|(% style="text-align:center; vertical-align:middle" %)-
1772 +)))|-
1790 1790  
1791 1791  Table 6-42 Torque instruction source parameter
1792 1792  
... ... @@ -1794,17 +1794,17 @@
1794 1794  
1795 1795  Torque instruction source is from inside, the value is set by function code P01-08.
1796 1796  
1797 -(% class="table-bordered" %)
1798 -|(% style="text-align:center; vertical-align:middle; width:112px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:274px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1780 +
1781 +|**Function code**|**Name**|(((
1799 1799  **Setting method**
1800 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1783 +)))|(((
1801 1801  **Effective time**
1802 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:211px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1803 -|(% style="text-align:center; vertical-align:middle; width:112px" %)P01-08|(% style="text-align:center; vertical-align:middle; width:274px" %)Torque instruction keyboard set value|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
1785 +)))|**Default value**|**Range**|**Definition**|**Unit**
1786 +|P01-08|Torque instruction keyboard set value|(((
1804 1804  Operation setting
1805 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
1788 +)))|(((
1806 1806  Effective immediately
1807 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)0|(% style="text-align:center; vertical-align:middle; width:129px" %)-3000 to 3000|(% style="text-align:center; vertical-align:middle; width:211px" %)-300.0% to 300.0%|(% style="text-align:center; vertical-align:middle" %)0.1%
1790 +)))|0|-3000 to 3000|-300.0% to 300.0%|0.1%
1808 1808  
1809 1809  Table 6-43 Torque instruction keyboard set value
1810 1810  
... ... @@ -1812,7 +1812,7 @@
1812 1812  
1813 1813  The servo drive processes the analog voltage signal output by host computer or other equipment as torque instruction. VD2A and VD2B series servo drives have 2 analog input channels: AI_1 and AI_2. AI_1 is analog torque input, and AI_2 is analog torque limit.
1814 1814  
1815 -(% style="text-align:center" %)
1798 +
1816 1816  [[image:image-20220608153646-7.png||height="213" width="408"]]
1817 1817  
1818 1818  Figure 6-40 Analog input circuit
... ... @@ -1819,7 +1819,7 @@
1819 1819  
1820 1820  Taking AI_1 as an example, the method of setting torque instruction of analog voltage is as below.
1821 1821  
1822 -(% style="text-align:center" %)
1805 +
1823 1823  [[image:image-20220608172502-36.png]]
1824 1824  
1825 1825  Figure 6-41 Analog voltage torque instruction setting steps
... ... @@ -1832,18 +1832,18 @@
1832 1832  
1833 1833  Dead zone: It is the corresponding analog input voltage interval when the sample voltage is 0.
1834 1834  
1835 -(% style="text-align:center" %)
1818 +
1836 1836  [[image:image-20220608172611-37.png]]
1837 1837  
1838 1838  Figure 6-42 AI_1 diagram before and after bias
1839 1839  
1840 -(% class="table-bordered" %)
1841 -|(% style="text-align:center; vertical-align:middle; width:127px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:148px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Setting method**|(% style="text-align:center; vertical-align:middle; width:162px" %)**Effective time**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:134px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:340px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1842 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-01☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input bias|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-5000 to 5000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel analog bias value|(% style="text-align:center; vertical-align:middle" %)mV
1843 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-02☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 input filter time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)200|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 60000|(% style="text-align:center; vertical-align:middle; width:340px" %)AI_1 channel input first-order low-pass filtering time constant|(% style="text-align:center; vertical-align:middle" %)0.01ms
1844 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-03☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 dead zone|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)20|(% style="text-align:center; vertical-align:middle; width:134px" %)0 to 1000|(% style="text-align:center; vertical-align:middle; width:340px" %)Set AI_1 channel dead zone value|(% style="text-align:center; vertical-align:middle" %)mV
1845 -|(% style="text-align:center; vertical-align:middle; width:127px" %)P05-04☆|(% style="text-align:center; vertical-align:middle; width:148px" %)AI_1 zero drift|(% style="text-align:center; vertical-align:middle; width:144px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:162px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:85px" %)0|(% style="text-align:center; vertical-align:middle; width:134px" %)-500 to 500|(% style="text-align:center; vertical-align:middle; width:340px" %)Automatic calibration of zero drift inside the drive|(% style="text-align:center; vertical-align:middle" %)mV
1846 1846  
1824 +|**Function code**|**Name**|**Setting method**|**Effective time**|**Default value**|**Range**|**Definition**|**Unit**
1825 +|P05-01☆|AI_1 input bias|Operation setting|Effective immediately|0|-5000 to 5000|Set AI_1 channel analog bias value|mV
1826 +|P05-02☆|AI_1 input filter time constant|Operation setting|Effective immediately|200|0 to 60000|AI_1 channel input first-order low-pass filtering time constant|0.01ms
1827 +|P05-03☆|AI_1 dead zone|Operation setting|Effective immediately|20|0 to 1000|Set AI_1 channel dead zone value|mV
1828 +|P05-04☆|AI_1 zero drift|Operation setting|Effective immediately|0|-500 to 500|Automatic calibration of zero drift inside the drive|mV
1829 +
1847 1847  Table 6-44 AI_1 parameters
1848 1848  
1849 1849  ✎**Note: **“☆” means VD2F servo drive does not support the function code .
... ... @@ -1852,23 +1852,23 @@
1852 1852  
1853 1853  In torque mode, the servo drive could realize low-pass filtering of torque instruction, making the instruction smoother and reducing the vibration of servo motor. The first-order filtering is shown in __[[Figure 6-43>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_205df0eae349c586.gif?rev=1.1]]__.
1854 1854  
1855 -(% class="table-bordered" %)
1856 -|(% style="text-align:center; vertical-align:middle; width:115px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:129px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1838 +
1839 +|**Function code**|**Name**|(((
1857 1857  **Setting method**
1858 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1841 +)))|(((
1859 1859  **Effective time**
1860 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:89px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:398px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1861 -|(% style="text-align:center; vertical-align:middle; width:115px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:129px" %)Torque filtering time constant|(% style="text-align:center; vertical-align:middle; width:144px" %)(((
1843 +)))|**Default value**|**Range**|**Definition**|**Unit**
1844 +|P04-04|Torque filtering time constant|(((
1862 1862  Operation setting
1863 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1846 +)))|(((
1864 1864  Effective immediately
1865 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)50|(% style="text-align:center; vertical-align:middle; width:89px" %)10 to 2500|(% style="text-align:center; vertical-align:middle; width:398px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 0|(% style="text-align:center; vertical-align:middle" %)0.01ms
1848 +)))|50|10 to 2500|This parameter is automatically set when “self-adjustment mode selection” is selected as 0|0.01ms
1866 1866  
1867 1867  Table 6-45 Torque filtering time constant parameter details
1868 1868  
1869 1869  ✎**Note: **If the filter time constant is set too large, the responsiveness will be reduced. Please set it while confirming the responsiveness.
1870 1870  
1871 -(% style="text-align:center" %)
1854 +
1872 1872  [[image:image-20220608172646-38.png]]
1873 1873  
1874 1874  Figure 6-43 Torque instruction-first-order filtering diagram
... ... @@ -1879,7 +1879,7 @@
1879 1879  
1880 1880  At any time, there is only one valid torque limit value. And the positive and negative torque limit values do not exceed the maximum torque of drive and motor and ±300.0% of the rated torque.
1881 1881  
1882 -(% style="text-align:center" %)
1865 +
1883 1883  [[image:image-20220608172806-39.png]]
1884 1884  
1885 1885  Figure 6-44 Torque instruction limit diagram
... ... @@ -1888,50 +1888,50 @@
1888 1888  
1889 1889  You need to set the torque limit source by function code P01-14. After the setting, the drive torque instruction will be limited within the torque limit value. When the torque limit value is reached, the motor will operate with the torque limit value as the torque instruction. The torque limit value should be set according to the load operation requirements. If the setting is too small, the motor's acceleration and deceleration capacity may be weakened. During constant torque operation, the actual motor speed cannot reach the required value.
1890 1890  
1891 -(% class="table-bordered" %)
1892 -|(% style="text-align:center; vertical-align:middle; width:116px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:145px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1874 +
1875 +|**Function code**|**Name**|(((
1893 1893  **Setting method**
1894 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1877 +)))|(((
1895 1895  **Effective time**
1896 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:96px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:344px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1897 -|(% style="text-align:center; vertical-align:middle; width:116px" %)P01-14|(% style="text-align:center; vertical-align:middle; width:145px" %)(((
1879 +)))|**Default value**|**Range**|**Definition**|**Unit**
1880 +|P01-14|(((
1898 1898  Torque limit source
1899 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
1882 +)))|(((
1900 1900  Shutdown setting
1901 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
1884 +)))|(((
1902 1902  Effective immediately
1903 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)0|(% style="text-align:center; vertical-align:middle; width:96px" %)0 to 1|(% style="text-align:center; vertical-align:middle; width:344px" %)(((
1886 +)))|0|0 to 1|(((
1904 1904  0: internal value
1905 1905  
1906 1906  1: AI_1 analog input
1907 1907  
1908 1908  (not supported by VD2F)
1909 -)))|(% style="text-align:center; vertical-align:middle" %)-
1892 +)))|-
1910 1910  
1911 1911  1) Torque limit source is internal torque instruction (P01-14=0)
1912 1912  
1913 1913  Torque limit source is from inside, you need to set torque limit, and the value is set by function code P01-15 and P01-16.
1914 1914  
1915 -(% class="table-bordered" %)
1916 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:154px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1898 +
1899 +|**Function code**|**Name**|(((
1917 1917  **Setting method**
1918 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1901 +)))|(((
1919 1919  **Effective time**
1920 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:95px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:353px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:63px" %)**Unit**
1921 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-15|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1903 +)))|**Default value**|**Range**|**Definition**|**Unit**
1904 +|P01-15|(((
1922 1922  Forward torque limit
1923 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1906 +)))|(((
1924 1924  Operation setting
1925 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1908 +)))|(((
1926 1926  Effective immediately
1927 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is forward torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1928 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-16|(% style="text-align:center; vertical-align:middle; width:154px" %)(((
1910 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is forward torque limit value|0.1%
1911 +|P01-16|(((
1929 1929  Reverse torque limit
1930 -)))|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
1913 +)))|(((
1931 1931  Operation setting
1932 -)))|(% style="text-align:center; vertical-align:middle; width:169px" %)(((
1915 +)))|(((
1933 1933  Effective immediately
1934 -)))|(% style="text-align:center; vertical-align:middle; width:118px" %)3000|(% style="text-align:center; vertical-align:middle; width:95px" %)0 to 3000|(% style="text-align:center; vertical-align:middle; width:353px" %)When P01-14 is set to 0, the value of this function code is reverse torque limit value|(% style="text-align:center; vertical-align:middle; width:63px" %)0.1%
1917 +)))|3000|0 to 3000|When P01-14 is set to 0, the value of this function code is reverse torque limit value|0.1%
1935 1935  
1936 1936  Table 6-46 Torque limit parameter details
1937 1937  
... ... @@ -1943,11 +1943,11 @@
1943 1943  
1944 1944  When torque instruction reaches the torque limit value, the drive outputs a torque limit signal (T-LIMIT) for the host computer use. At this time, one DO terminal of the drive should be assigned to function 139 (T-LIMIT, in torque limit) , and confirm that the terminal logic is valid.
1945 1945  
1946 -(% class="table-bordered" %)
1947 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:222px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:758px" %)**Function**
1948 -|(% style="text-align:center; vertical-align:middle" %)139|(% style="text-align:center; vertical-align:middle; width:222px" %)(((
1929 +
1930 +|**DO function code**|**Function name**|**Function**
1931 +|139|(((
1949 1949  T-LIMIT in torque limit
1950 -)))|(% style="text-align:center; vertical-align:middle; width:758px" %)Output of this signal indicates that the servo motor torque is limited
1933 +)))|Output of this signal indicates that the servo motor torque is limited
1951 1951  
1952 1952  Table 6-47 DO torque limit function codes
1953 1953  
... ... @@ -1958,46 +1958,43 @@
1958 1958  In torque mode, the actual motor speed would be in the limited speed. After the speed limit is reached, the motor runs at a constant speed at the speed limit. The running curves are shown as __[[Figure 6-45>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_e1eced3568bc22d7.gif?rev=1.1]]__ and __[[Figure 6-46>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_79d479af8534745f.gif?rev=1.1]]__.
1959 1959  
1960 1960  |(((
1961 -(% style="text-align:center" %)
1962 1962  [[image:image-20220608172910-40.png]]
1963 1963  )))|(((
1964 -(% style="text-align:center" %)
1965 1965  [[image:image-20220608173155-41.png]]
1966 1966  )))
1967 1967  |Figure 6-45 Forward running curve|Figure 6-46 Reverse running curve
1968 1968  
1969 -(% class="table-bordered" %)
1970 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:157px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1950 +|**Function code**|**Name**|(((
1971 1971  **Setting method**
1972 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1952 +)))|(((
1973 1973  **Effective time**
1974 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:166px" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
1975 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-17|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1954 +)))|**Default value**|**Range**|**Definition**|**Unit**
1955 +|P01-17|(((
1976 1976  Forward torque
1977 1977  
1978 1978  limit in torque mode
1979 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1959 +)))|(((
1980 1980  Operation setting
1981 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1961 +)))|(((
1982 1982  Effective immediately
1983 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1963 +)))|3000|0 to 5000|(((
1984 1984  Forward torque
1985 1985  
1986 1986  limit in torque mode
1987 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1988 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P01-18|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
1967 +)))|0.1%
1968 +|P01-18|(((
1989 1989  Reverse torque
1990 1990  
1991 1991  limit in torque mode
1992 -)))|(% style="text-align:center; vertical-align:middle; width:140px" %)(((
1972 +)))|(((
1993 1993  Operation setting
1994 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
1974 +)))|(((
1995 1995  Effective immediately
1996 -)))|(% style="text-align:center; vertical-align:middle; width:171px" %)3000|(% style="text-align:center; vertical-align:middle; width:166px" %)0 to 5000|(% style="text-align:center; vertical-align:middle" %)(((
1976 +)))|3000|0 to 5000|(((
1997 1997  Reverse torque
1998 1998  
1999 1999  limit in torque mode
2000 -)))|(% style="text-align:center; vertical-align:middle" %)0.1%
1980 +)))|0.1%
2001 2001  
2002 2002  Table 6-48 Speed limit parameters in torque mode
2003 2003  
... ... @@ -2011,7 +2011,7 @@
2011 2011  
2012 2012  The torque arrival function is used to determine whether the actual torque instruction reaches the set interval. When the actual torque instruction reaches the torque instruction threshold, the servo drive outputs a torque arrival signal (T-COIN) for the host computer use.
2013 2013  
2014 -(% style="text-align:center" %)
1994 +
2015 2015  [[image:image-20220608173541-42.png]]
2016 2016  
2017 2017  Figure 6-47 Torque arrival output diagram
... ... @@ -2018,44 +2018,44 @@
2018 2018  
2019 2019  To use the torque arrival function, a DO terminal of the servo drive should be assigned to function 138 (T-COIN, torque arrival). The function code parameters and related DO function codes are shown in __[[Table 6-49>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__ and __[[Table 6-50>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20(Full%20V1.1)/06%20Operation/#HTorque-relatedDOoutputfunctions]]__.
2020 2020  
2021 -(% class="table-bordered" %)
2022 -|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:115px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2001 +
2002 +|**Function code**|**Name**|(((
2023 2023  **Setting method**
2024 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2004 +)))|(((
2025 2025  **Effective time**
2026 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:417px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2027 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-20|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2006 +)))|**Default value**|**Range**|**Definition**|**Unit**
2007 +|P05-20|(((
2028 2028  Torque arrival
2029 2029  
2030 2030  threshold
2031 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2011 +)))|(((
2032 2032  Operation setting
2033 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2013 +)))|(((
2034 2034  Effective immediately
2035 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)100|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 300|(% style="text-align:center; vertical-align:middle; width:417px" %)(((
2015 +)))|100|0 to 300|(((
2036 2036  The torque arrival threshold must be used with “Torque arrival hysteresis value”:
2037 2037  
2038 2038  When the actual torque reaches Torque arrival threshold + Torque arrival hysteresis Value, the torque arrival DO is valid;
2039 2039  
2040 2040  When the actual torque decreases below torque arrival threshold-torque arrival hysteresis value, the torque arrival DO is invalid
2041 -)))|(% style="text-align:center; vertical-align:middle" %)%
2042 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P05-21|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
2021 +)))|%
2022 +|P05-21|(((
2043 2043  Torque arrival
2044 2044  
2045 2045  hysteresis
2046 -)))|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
2026 +)))|(((
2047 2047  Operation setting
2048 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
2028 +)))|(((
2049 2049  Effective immediately
2050 -)))|(% style="text-align:center; vertical-align:middle; width:115px" %)10|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 20|(% style="text-align:center; vertical-align:middle; width:417px" %)Torque arrival the hysteresis value must be used with Torque arrival threshold|(% style="text-align:center; vertical-align:middle" %)%
2030 +)))|10|0 to 20|Torque arrival the hysteresis value must be used with Torque arrival threshold|%
2051 2051  
2052 2052  Table 6-49 Torque arrival parameters
2053 2053  
2054 -(% class="table-bordered" %)
2055 -|(% style="text-align:center; vertical-align:middle" %)**DO function code**|(% style="text-align:center; vertical-align:middle; width:205px" %)**Function name**|(% style="text-align:center; vertical-align:middle; width:803px" %)**Function**
2056 -|(% style="text-align:center; vertical-align:middle" %)138|(% style="text-align:center; vertical-align:middle; width:205px" %)(((
2034 +
2035 +|**DO function code**|**Function name**|**Function**
2036 +|138|(((
2057 2057  T-COIN torque arrival
2058 -)))|(% style="text-align:center; vertical-align:middle; width:803px" %)Used to determine whether the actual torque instruction has reached the set range
2038 +)))|Used to determine whether the actual torque instruction has reached the set range
2059 2059  
2060 2060  Table 6-50 DO Torque Arrival Function Code
2061 2061  
... ... @@ -2071,17 +2071,17 @@
2071 2071  
2072 2072  Set the function code P00-01 through the software of Wecon “SCTool” or servo drive panel, and the servo drive will run in mixed mode.
2073 2073  
2074 -(% class="table-bordered" %)
2075 -|(% style="text-align:center; vertical-align:middle; width:118px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:122px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2054 +
2055 +|**Function code**|**Name**|(((
2076 2076  **Setting method**
2077 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2057 +)))|(((
2078 2078  **Effective time**
2079 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:443px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2080 -|(% style="text-align:center; vertical-align:middle; width:118px" %)P00-01|(% style="text-align:center; vertical-align:middle; width:122px" %)Control mode|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
2059 +)))|**Default value**|**Range**|**Definition**|**Unit**
2060 +|P00-01|Control mode|(((
2081 2081  Shutdown setting
2082 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)(((
2062 +)))|(((
2083 2083  Shutdown setting
2084 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)1|(% style="text-align:center; vertical-align:middle; width:72px" %)1 to 6|(% style="width:443px" %)(((
2064 +)))|1|1 to 6|(((
2085 2085  1: Position control
2086 2086  
2087 2087  2: Speed control
... ... @@ -2093,23 +2093,22 @@
2093 2093  5: Position/torque mixed control
2094 2094  
2095 2095  6: Speed/torque mixed control
2096 -)))|(% style="text-align:center; vertical-align:middle" %)-
2076 +)))|-
2097 2097  
2098 2098  Table 6-51 Mixed control mode parameters
2099 2099  
2100 2100  Please set the servo drive parameters in different control modes according to the mechanical structure and indicators. The setting method refer to [[__“Parameters”__>>url:http://docs.we-con.com.cn/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/#_Chapter%209%20Parameters]]. When function code P00-01=4/5/6 (that is, in mixed mode), a DI terminal of the servo drive needs to be assigned to function 17 (MixModeSel, mixed mode selection), and the DI terminal logic is determined to be valid.
2101 2101  
2102 -(% class="table-bordered" %)
2103 -|(% style="text-align:center; vertical-align:middle" %)**DI function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2104 -|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)MixModeSel|(% style="text-align:center; vertical-align:middle" %)Mixed mode selection|(% style="text-align:center; vertical-align:middle" %)Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2105 -(% class="table-bordered" %)
2106 -|(% style="text-align:center; vertical-align:middle" %)**P00-01**|(% style="text-align:center; vertical-align:middle" %)**MixModeSel terminal logic**|(% style="text-align:center; vertical-align:middle" %)**Control mode**
2107 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2108 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2109 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)5|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2110 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Position mode
2111 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)6|(% style="text-align:center; vertical-align:middle" %)Valid|(% style="text-align:center; vertical-align:middle" %)Torque mode
2112 -|(% style="text-align:center; vertical-align:middle" %)invalid|(% style="text-align:center; vertical-align:middle" %)Speed mode
2082 +
2083 +|**DI function code**|**Name**|**Function name**|**Function**
2084 +|17|MixModeSel|Mixed mode selection|Used in mixed control mode, when the servo status is "run", set the current control mode of the servo drive(((
2085 +|**P00-01**|**MixModeSel terminal logic**|**Control mode**
2086 +|(% rowspan="2" %)4|Valid|Speed mode
2087 +|invalid|Position mode
2088 +|(% rowspan="2" %)5|Valid|Torque mode
2089 +|invalid|Position mode
2090 +|(% rowspan="2" %)6|Valid|Torque mode
2091 +|invalid|Speed mode
2113 2113  )))
2114 2114  
2115 2115  Table 6-52 Description of DI function codes in control mode
... ... @@ -2128,15 +2128,15 @@
2128 2128  
2129 2129  The single-turn absolute value system is applicable for the equipment load stroke within the single-turn range of the encoder. At this time, the absolute encoder is only as a single-turn system function and does not need to be connected to the battery. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2130 2130  
2131 -(% class="table-bordered" %)
2132 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2133 -|(% style="text-align:center; vertical-align:middle" %)A1 (single-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2134 2134  
2111 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2112 +|A1 (single-turn magnetic encoder)|17|0 to 131071
2113 +
2135 2135  Table 6-53 Single-turn absolute encoder information
2136 2136  
2137 2137  The relationship between encoder feedback position and rotating load position is shown in the figure below. (take a 17-bit encoder as an example).
2138 2138  
2139 -(% style="text-align:center" %)
2118 +
2140 2140  [[image:image-20220608173618-43.png]]
2141 2141  
2142 2142  Figure 6-48 Diagram of relationship between encoder feedback position and rotating load position
... ... @@ -2145,16 +2145,16 @@
2145 2145  
2146 2146  The encoder adapted to the multi-turn absolute value system is equipped with 16-bit RAM memory. Compared with the single-turn absolute value, it can additionally memorize the number of turns of the 16-bit encoder. The multi-turn absolute encoder is equipped with a battery (the battery is installed on the encoder cable with a battery unit), which can achieve direct internal high-speed readings and external output without the need for external sensors to assist memory positions. The types and information of encoders adapted to VD2 series servo drives are shown as below.
2147 2147  
2148 -(% class="table-bordered" %)
2149 -|(% style="text-align:center; vertical-align:middle" %)**Encoder type**|(% style="text-align:center; vertical-align:middle" %)**Encoder resolution (bits)**|(% style="text-align:center; vertical-align:middle" %)**Data range**
2150 -|(% style="text-align:center; vertical-align:middle" %)C1 (multi-turn magnetic encoder)|(% style="text-align:center; vertical-align:middle" %)17|(% style="text-align:center; vertical-align:middle" %)0 to 131071
2151 -|(% style="text-align:center; vertical-align:middle" %)D2 (multi-turn Optical encoder)|(% style="text-align:center; vertical-align:middle" %)23|(% style="text-align:center; vertical-align:middle" %)0 to 8388607
2152 2152  
2128 +|**Encoder type**|**Encoder resolution (bits)**|**Data range**
2129 +|C1 (multi-turn magnetic encoder)|17|0 to 131071
2130 +|D2 (multi-turn Optical encoder)|23|0 to 8388607
2131 +
2153 2153  Table 6-54 Multi-turn absolute encoder information
2154 2154  
2155 2155  The relationship between encoder feedback position and rotating load multi-turn is shown in the figure below (take a 23-bit encoder as an example).
2156 2156  
2157 -(% style="text-align:center" %)
2136 +
2158 2158  [[image:image-20220608173701-44.png]]
2159 2159  
2160 2160  Figure 6-49 The relationship between encoder feedback position and rotating load position
... ... @@ -2163,12 +2163,12 @@
2163 2163  
2164 2164  The feedback data of the absolute value encoder can be divided into the position within 1 turn of the absolute value encoder and the number of rotations of the absolute value encoder. The related information of the two feedback data is shown in the table below.
2165 2165  
2166 -(% class="table-bordered" %)
2167 -|(% style="text-align:center; vertical-align:middle" %)**Monitoring number**|(% style="text-align:center; vertical-align:middle" %)**Category**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)**Unit**|(% style="text-align:center; vertical-align:middle" %)**Data type**
2168 -|(% style="text-align:center; vertical-align:middle" %)U0-54|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Absolute encoder position within 1 turn|(% style="text-align:center; vertical-align:middle" %)Encoder unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2169 -|(% style="text-align:center; vertical-align:middle" %)U0-55|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Rotations number of absolute encoder|(% style="text-align:center; vertical-align:middle" %)circle|(% style="text-align:center; vertical-align:middle" %)16-bit
2170 -|(% style="text-align:center; vertical-align:middle" %)U0-56|(% style="text-align:center; vertical-align:middle" %)Universal|(% style="text-align:center; vertical-align:middle" %)Multi-turn absolute value encoder current position|(% style="text-align:center; vertical-align:middle" %)Instruction unit|(% style="text-align:center; vertical-align:middle" %)32-bit
2171 2171  
2146 +|**Monitoring number**|**Category**|**Name**|**Unit**|**Data type**
2147 +|U0-54|Universal|Absolute encoder position within 1 turn|Encoder unit|32-bit
2148 +|U0-55|Universal|Rotations number of absolute encoder|circle|16-bit
2149 +|U0-56|Universal|Multi-turn absolute value encoder current position|Instruction unit|32-bit
2150 +
2172 2172  Table 6-55 Encoder feedback data
2173 2173  
2174 2174  == **Absolute value system encoder battery box use precautions** ==
... ... @@ -2175,7 +2175,7 @@
2175 2175  
2176 2176  Er.40 (Encoder battery failure) will occur when the battery is turned on for the first time, and the function code P10-03 must be set to 1 to clear the encoder fault to operate the absolute value system again.
2177 2177  
2178 -(% style="text-align:center" %)
2157 +
2179 2179  [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/45.jpg?rev=1.1||height="303" width="750"]]
2180 2180  
2181 2181  Figure 6-50 the encoder battery box
... ... @@ -2188,23 +2188,23 @@
2188 2188  
2189 2189  When the servo drive is powered off, if the battery is replaced and powered on again, Er.40 (encoder battery failure) will occur, and the multi-turn data will change suddenly. Please set the function code P10-03 or P10-06 to 1 to clear the encoder fault alarms and perform the origin return function operation again.
2190 2190  
2191 -(% class="table-bordered" %)
2192 -|(% style="text-align:center; vertical-align:middle; width:110px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:144px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2170 +
2171 +|**Function code**|**Name**|(((
2193 2193  **Setting method**
2194 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2173 +)))|(((
2195 2195  **Effective time**
2196 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:61px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:438px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2197 -|(% style="text-align:center; vertical-align:middle; width:110px" %)P10-06|(% style="text-align:center; vertical-align:middle; width:144px" %)Multi-turn absolute encoder reset|(% style="text-align:center; vertical-align:middle; width:135px" %)(((
2175 +)))|**Default value**|**Range**|**Definition**|**Unit**
2176 +|P10-06|Multi-turn absolute encoder reset|(((
2198 2198  Shutdown setting
2199 -)))|(% style="text-align:center; vertical-align:middle; width:165px" %)(((
2178 +)))|(((
2200 2200  Effective immediately
2201 -)))|(% style="text-align:center; vertical-align:middle; width:106px" %)0|(% style="text-align:center; vertical-align:middle; width:61px" %)0 to 1|(% style="width:438px" %)(((
2180 +)))|0|0 to 1|(((
2202 2202  0: No operation
2203 2203  
2204 2204  1: Clear rotation number of multi-turn absolute encoder, multi-turn absolute encoder current position and encoder fault alarms.
2205 2205  
2206 2206  ✎**Note: **After resetting the multi-turn data of the encoder, the encoder absolute position will change suddenly, and the mechanical origin return operation is required.
2207 -)))|(% style="text-align:center; vertical-align:middle" %)-
2186 +)))|-
2208 2208  
2209 2209  Table 6-56 Absolute encoder reset enable parameter
2210 2210  
... ... @@ -2222,18 +2222,18 @@
2222 2222  
2223 2223  Take the VDI_1 terminal assignment forward drive prohibition (03-POT) as an example, and the use steps of VDI are as the figure below.
2224 2224  
2225 -(% style="text-align:center" %)
2204 +
2226 2226  [[image:image-20220608173804-46.png]]
2227 2227  
2228 2228  Figure 6-51 VDI_1 setting steps
2229 2229  
2230 -(% class="table-bordered" %)
2231 -|(% style="text-align:center; vertical-align:middle; width:131px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:183px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:147px" %)(((
2209 +
2210 +|**Function code**|**Name**|(((
2232 2232  **Setting method**
2233 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
2212 +)))|(((
2234 2234  **Effective time**
2235 -)))|(% style="text-align:center; vertical-align:middle; width:143px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:77px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:266px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2236 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-1|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_1 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2214 +)))|**Default value**|**Range**|**Definition**|**Unit**
2215 +|P13-1|Virtual VDI_1 input value|Operation setting|Effective immediately|0|0 to 1|(((
2237 2237  When P06-04 is set to 1, DI_1 channel logic is control by this function code.
2238 2238  
2239 2239  VDI_1 input level:
... ... @@ -2241,8 +2241,8 @@
2241 2241  0: low level
2242 2242  
2243 2243  1: high level
2244 -)))|(% style="text-align:center; vertical-align:middle" %)-
2245 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-2|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_2 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2223 +)))|-
2224 +|P13-2|Virtual VDI_2 input value|Operation setting|Effective immediately|0|0 to 1|(((
2246 2246  When P06-07 is set to 1, DI_2 channel logic is control by this function code.
2247 2247  
2248 2248  VDI_2 input level:
... ... @@ -2250,8 +2250,8 @@
2250 2250  0: low level
2251 2251  
2252 2252  1: high level
2253 -)))|(% style="text-align:center; vertical-align:middle" %)-
2254 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-3|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_3 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2232 +)))|-
2233 +|P13-3|Virtual VDI_3 input value|Operation setting|Effective immediately|0|0 to 1|(((
2255 2255  When P06-10 is set to 1, DI_3 channel logic is control by this function code.
2256 2256  
2257 2257  VDI_3 input level:
... ... @@ -2259,8 +2259,8 @@
2259 2259  0: low level
2260 2260  
2261 2261  1: high level
2262 -)))|(% style="text-align:center; vertical-align:middle" %)-
2263 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-4|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_4 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2241 +)))|-
2242 +|P13-4|Virtual VDI_4 input value|Operation setting|Effective immediately|0|0 to 1|(((
2264 2264  When P06-13 is set to 1, DI_4 channel logic is control by this function code.
2265 2265  
2266 2266  VDI_4 input level:
... ... @@ -2268,8 +2268,8 @@
2268 2268  0: low level
2269 2269  
2270 2270  1: high level
2271 -)))|(% style="text-align:center; vertical-align:middle" %)-
2272 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-05☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_5 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2250 +)))|-
2251 +|P13-05☆|Virtual VDI_5 input value|Operation setting|Effective immediately|0|0 to 1|(((
2273 2273  When P06-16 is set to 1, DI_5 channel logic is control by this function code.
2274 2274  
2275 2275  VDI_5 input level:
... ... @@ -2277,8 +2277,8 @@
2277 2277  0: low level
2278 2278  
2279 2279  1: high level
2280 -)))|(% style="text-align:center; vertical-align:middle" %)-
2281 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-06☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_6 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2259 +)))|-
2260 +|P13-06☆|Virtual VDI_6 input value|Operation setting|Effective immediately|0|0 to 1|(((
2282 2282  When P06-19 is set to 1, DI_6 channel logic is control by this function code.
2283 2283  
2284 2284  VDI_6 input level:
... ... @@ -2286,8 +2286,8 @@
2286 2286  0: low level
2287 2287  
2288 2288  1: high level
2289 -)))|(% style="text-align:center; vertical-align:middle" %)-
2290 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-07☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_7 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2268 +)))|-
2269 +|P13-07☆|Virtual VDI_7 input value|Operation setting|Effective immediately|0|0 to 1|(((
2291 2291  When P06-22 is set to 1, DI_7 channel logic is control by this function code.
2292 2292  
2293 2293  VDI_7 input level:
... ... @@ -2295,8 +2295,8 @@
2295 2295  0: low level
2296 2296  
2297 2297  1: high level
2298 -)))|(% style="text-align:center; vertical-align:middle" %)-
2299 -|(% style="text-align:center; vertical-align:middle; width:131px" %)P13-08☆|(% style="text-align:center; vertical-align:middle; width:183px" %)Virtual VDI_8 input value|(% style="text-align:center; vertical-align:middle; width:147px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:213px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:143px" %)0|(% style="text-align:center; vertical-align:middle; width:77px" %)0 to 1|(% style="width:266px" %)(((
2277 +)))|-
2278 +|P13-08☆|Virtual VDI_8 input value|Operation setting|Effective immediately|0|0 to 1|(((
2300 2300  When P06-25 is set to 1, DI_8 channel logic is control by this function code.
2301 2301  
2302 2302  VDI_8 input level:
... ... @@ -2304,7 +2304,7 @@
2304 2304  0: low level
2305 2305  
2306 2306  1: high level
2307 -)))|(% style="text-align:center; vertical-align:middle" %)-
2286 +)))|-
2308 2308  
2309 2309  Table 6-57 Virtual VDI parameters
2310 2310  
... ... @@ -2314,11 +2314,11 @@
2314 2314  
2315 2315  VD2A and VD2B servo drives have 8 hardware DI terminals (DI_1 to DI_8) , and VD2F servo drive has 4 hardware DI terminals (DI_1 to DI_4) . All the DI terminals are normal terminals.
2316 2316  
2317 -(% class="table-bordered" %)
2318 -|(% style="text-align:center; vertical-align:middle" %)**Setting value**|(% style="text-align:center; vertical-align:middle" %)**DI channel logic selection**|(% style="text-align:center; vertical-align:middle" %)**Illustration**
2319 -|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Active high level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2320 -|(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Active low level|(% style="text-align:center; vertical-align:middle" %)[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2321 2321  
2297 +|**Setting value**|**DI channel logic selection**|**Illustration**
2298 +|0|Active high level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/46.jpg?rev=1.1||height="97" width="307"]]
2299 +|1|Active low level|[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/06%20Operation/WebHome/47.jpg?rev=1.1||height="83" width="305"]]
2300 +
2322 2322  Table 6-58 DI terminal channel logic selection
2323 2323  
2324 2324  == **VDO** ==
... ... @@ -2327,55 +2327,55 @@
2327 2327  
2328 2328  Take the DO_2 terminal as communication VDO, and the use steps of VDI are as the figure below.
2329 2329  
2330 -(% style="text-align:center" %)
2309 +
2331 2331  [[image:image-20220608173957-48.png]]
2332 2332  
2333 2333  Figure 6-52 VDO_2 setting steps
2334 2334  
2335 -(% class="table-bordered" %)
2336 -|(% style="text-align:center; vertical-align:middle" %)**Function code**|(% style="text-align:center; vertical-align:middle" %)**Name**|(% style="text-align:center; vertical-align:middle" %)(((
2314 +
2315 +|**Function code**|**Name**|(((
2337 2337  **Setting method**
2338 -)))|(% style="text-align:center; vertical-align:middle" %)(((
2317 +)))|(((
2339 2339  **Effective time**
2340 -)))|(% style="text-align:center; vertical-align:middle" %)**Default value**|(% style="text-align:center; vertical-align:middle" %)**Range**|(% style="text-align:center; vertical-align:middle" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2341 -|(% style="text-align:center; vertical-align:middle" %)P13-11|(% style="text-align:center; vertical-align:middle" %)Communication VDO_1 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2319 +)))|**Default value**|**Range**|**Definition**|**Unit**
2320 +|P13-11|Communication VDO_1 output value|Operation setting|Effective immediately|0|0 to 1|(((
2342 2342  VDO_1 output level:
2343 2343  
2344 2344  0: low level
2345 2345  
2346 2346  1: high level
2347 -)))|(% style="text-align:center; vertical-align:middle" %)-
2348 -|(% style="text-align:center; vertical-align:middle" %)P13-12|(% style="text-align:center; vertical-align:middle" %)Communication VDO_2 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2326 +)))|-
2327 +|P13-12|Communication VDO_2 output value|Operation setting|Effective immediately|0|0 to 1|(((
2349 2349  VDO_2 output level:
2350 2350  
2351 2351  0: low level
2352 2352  
2353 2353  1: high level
2354 -)))|(% style="text-align:center; vertical-align:middle" %)-
2355 -|(% style="text-align:center; vertical-align:middle" %)P13-13|(% style="text-align:center; vertical-align:middle" %)Communication VDO_3 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2333 +)))|-
2334 +|P13-13|Communication VDO_3 output value|Operation setting|Effective immediately|0|0 to 1|(((
2356 2356  VDO_3 output level:
2357 2357  
2358 2358  0: low level
2359 2359  
2360 2360  1: high level
2361 -)))|(% style="text-align:center; vertical-align:middle" %)-
2362 -|(% style="text-align:center; vertical-align:middle" %)P13-14|(% style="text-align:center; vertical-align:middle" %)Communication VDO_4 output value|(% style="text-align:center; vertical-align:middle" %)Operation setting|(% style="text-align:center; vertical-align:middle" %)Effective immediately|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)0 to 1|(((
2340 +)))|-
2341 +|P13-14|Communication VDO_4 output value|Operation setting|Effective immediately|0|0 to 1|(((
2363 2363  VDO_4 output level:
2364 2364  
2365 2365  0: low level
2366 2366  
2367 2367  1: high level
2368 -)))|(% style="text-align:center; vertical-align:middle" %)-
2347 +)))|-
2369 2369  
2370 2370  Table 6-59 Communication control DO function parameters
2371 2371  
2372 -(% class="table-bordered" %)
2373 -|(% style="text-align:center; vertical-align:middle" %)**DO function number**|(% style="text-align:center; vertical-align:middle" %)**Function name**|(% style="text-align:center; vertical-align:middle" %)**Function**
2374 -|(% style="text-align:center; vertical-align:middle" %)145|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO1 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2375 -|(% style="text-align:center; vertical-align:middle" %)146|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO2 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2376 -|(% style="text-align:center; vertical-align:middle" %)147|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO3 output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2377 -|(% style="text-align:center; vertical-align:middle" %)148|(% style="text-align:center; vertical-align:middle" %)COM_VDO1 communication VDO4output|(% style="text-align:center; vertical-align:middle" %)Use communication VDO
2378 2378  
2352 +|**DO function number**|**Function name**|**Function**
2353 +|145|COM_VDO1 communication VDO1 output|Use communication VDO
2354 +|146|COM_VDO1 communication VDO2 output|Use communication VDO
2355 +|147|COM_VDO1 communication VDO3 output|Use communication VDO
2356 +|148|COM_VDO1 communication VDO4output|Use communication VDO
2357 +
2379 2379  Table 6-60 VDO function number
2380 2380  
2381 2381  ✎**Note:** You are advised to configure function codes for DO terminals in sequence to avoid errors during DO signal observation
... ... @@ -2386,17 +2386,17 @@
2386 2386  
2387 2387  VD2 Series absolute encoder (VD2SA) servo drive provides motor overload protection to prevent motor burning due to high temperature. By setting function code P10-04 to modify motor overload alarm (A-82) and motor overload protection fault time (Er.34). The default value of P10-04 is 100%.
2388 2388  
2389 -(% class="table-bordered" %)
2390 -|(% style="text-align:center; vertical-align:middle; width:122px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:150px" %)(((
2368 +
2369 +|**Function code**|**Name**|(((
2391 2391  **Setting method**
2392 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
2371 +)))|(((
2393 2393  **Effective time**
2394 -)))|(% style="text-align:center; vertical-align:middle; width:116px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:72px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:445px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
2395 -|(% style="text-align:center; vertical-align:middle; width:122px" %)P10-04|(% style="text-align:center; vertical-align:middle; width:99px" %)motor overload protection time coefficient|(% style="text-align:center; vertical-align:middle; width:150px" %)Operation setting|(% style="text-align:center; vertical-align:middle; width:157px" %)Effective immediately|(% style="text-align:center; vertical-align:middle; width:116px" %)100|(% style="text-align:center; vertical-align:middle; width:72px" %)0 to 800|(% style="width:445px" %)(((
2373 +)))|**Default value**|**Range**|**Definition**|**Unit**
2374 +|P10-04|motor overload protection time coefficient|Operation setting|Effective immediately|100|0 to 800|(((
2396 2396  According to the heating condition of the motor, the value could be modified to make the overload protection time float up and down in the reference value.
2397 2397  
2398 2398  50 corresponds to 50%, that is, the time is reduced by half. 300 corresponds to 300%, that is, the time extended to 3 times. When the value is set to 0, the overload protection fault detection function is disabled
2399 -)))|(% style="text-align:center; vertical-align:middle" %)%
2378 +)))|%
2400 2400  
2401 2401  In the following cases, it could be modified according to the actual heat generation of the motor
2402 2402  
image-20220611151617-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611151642-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611151705-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611151719-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611151917-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220611152020-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content